1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/* H8/300 simulator
Copyright 1992 Free Software Foundation, Inc.
Contributed by Cygnus Support.
Written by Steve Chamberlain (sac@cygnus.com).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include "state.h"
#define V (v!=0)
#define C (c!=0)
#define N (n!=0)
#define Z (z!=0)
#define SET_CCR(x) n = x & 0x8; v = x & 0x2; z = x & 0x4; c = x & 0x1;saved_state.ienable=x&0x80;
#define GET_CCR() ((N << 3) | (Z<<2) | (V<<1) | C) | ((!saved_state.ienable)<<7)
static union
{
short int i;
struct
{
char low;
char high;
}
u;
}
littleendian;
static void
meminit ()
{
if (!saved_state.mem)
{
int tmp;
saved_state.mem = calloc (1024, 64);
littleendian.i = 1;
/* initialze the array of pointers to byte registers */
for (tmp = 0; tmp < 8; tmp++)
{
if (littleendian.u.high)
{
saved_state.bregp[tmp] = (unsigned char *) (saved_state.reg + tmp);
saved_state.bregp[tmp + 8] = saved_state.bregp[tmp] + 1;
if (HOST_IS_LITTLE_ENDIAN)
abort();
}
else
{
saved_state.bregp[tmp + 8] = (unsigned char *) (saved_state.reg + tmp);
saved_state.bregp[tmp] = saved_state.bregp[tmp + 8] + 1;
if (!HOST_IS_LITTLE_ENDIAN)
abort();
}
}
/* we keep two 256 sized pointers to byte regs, one for when we
want to look at the reg descibed by bits NNNNxxxx and one for
when we want to look at xxxxNNNN */
for (tmp = 0; tmp < 256; tmp++)
{
saved_state.bregp_NNNNxxxx[tmp] = saved_state.bregp[(tmp >> 4) & 0xf];
saved_state.bregp_xxxxNNNN[tmp] = saved_state.bregp[tmp & 0xf];
}
/* We keep two 256 sized pointers to word regs, one for regs in
xNNNxxxx and one for regs in xxxxxNNNN */
for (tmp = 0; tmp < 256; tmp++)
{
saved_state.wregp_xNNNxxxx[tmp] = &saved_state.reg[(tmp >> 4) & 0x7];
saved_state.wregp_xxxxxNNN[tmp] = &saved_state.reg[tmp & 0x7];
}
saved_state.reg[HCHECK] = 10000000; /* don't check the hardware
often */
}
}
void
control_c (sig, code, scp, addr)
int sig;
int code;
char *scp;
char *addr;
{
saved_state.exception = SIGINT;
}
void
sim_store_register (reg, val)
int reg;
int val;
{
saved_state.reg[reg] = val;
}
void
sim_fetch_register (reg, buf)
int reg;
char *buf;
{
meminit();
buf[0] = saved_state.reg[reg] >> 8;
buf[1] = saved_state.reg[reg];
}
void
sim_write (to, from, len)
int to;
char *from;
int len;
{
int i;
meminit ();
for ( i = 0; i < len; i++)
SET_BYTE_MEM(to + i, from[i]);
}
void
sim_read (from, to, len)
int from;
char *to;
int len;
{
int i;
meminit ();
for (i = 0; i < len; i++) {
to[i] = BYTE_MEM(from + i);
}
}
int
sim_stop_signal ()
{
return saved_state.exception;
}
void
load_timer_state_from_mem()
{
saved_state.reg[TIER] = BYTE_MEM(0xff90);
saved_state.reg[TCSR] = BYTE_MEM(0xff91);
saved_state.reg[FRC] = WORD_MEM(0xff92);
saved_state.reg[TCR] = BYTE_MEM(0xff96);
saved_state.reg[TOCR] = BYTE_MEM(0xff97);
if ((saved_state.reg[TOCR] & OCRS) == 0)
{
saved_state.reg[OCRA] = WORD_MEM(0xff94);
}
else
{
saved_state.reg[OCRB] = WORD_MEM(0xff94);
}
}
void
store_timer_state_to_mem()
{
BYTE_MEM(0xff91) = saved_state.reg[TCSR];
SET_WORD_MEM(0xff92, saved_state.reg[FRC]);
}
void
sim_resume (step, sig)
int step;
int sig;
{
int lval;
int tmp;
int b0;
int b1;
int checkfreq;
int ni; /* Number of insts to execute before checking hw state */
unsigned char **blow;
unsigned char **bhigh;
unsigned short **wlow;
unsigned short **whigh;
unsigned short *npc;
int rn;
unsigned short int *reg;
unsigned char **bregp;
void (*prev) ();
unsigned short *pc;
int srca;
int srcb;
int dst;
int cycles ;
int n;
int v;
int z;
int c;
/* Set up pointers to areas */
reg = saved_state.reg;
bregp = saved_state.bregp;
blow = saved_state.bregp_xxxxNNNN;
bhigh = saved_state.bregp_NNNNxxxx;
wlow = saved_state.wregp_xxxxxNNN;
whigh = saved_state.wregp_xNNNxxxx;
prev = signal (SIGINT, control_c);
meminit();
LOAD_INTERPRETER_STATE();
if (step)
saved_state.exception = SIGTRAP;
else
{
saved_state.exception = sig;
}
do
{
b1 = pc[0];
b0 = b1>> 8;
b1 &= 0xff;
|