1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
|
/* frv trap support
Copyright (C) 1999-2021 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU frvbf
#define WANT_CPU_FRVBF
#include "sim-main.h"
#include "targ-vals.h"
#include "cgen-engine.h"
#include "cgen-par.h"
#include "sim-fpu.h"
#include "bfd.h"
#include "libiberty.h"
#include <stdlib.h>
CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
return vpc;
}
/* Process an address exception. */
void
frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (sig == sim_core_unaligned_signal)
{
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
|| STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
frv_queue_data_access_error_interrupt (current_cpu, addr);
else
frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
}
frv_term (sd);
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
}
void
frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
{
int i;
if (current_cpu != NULL)
CPU_PC_SET (current_cpu, cia);
/* Invalidate the insn and data caches of all cpus. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
current_cpu = STATE_CPU (sd, i);
frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
}
frv_term (sd);
}
/* Read/write functions for system call interface. */
static int
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
}
static int
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, const char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
}
/* Handle TRA and TIRA insns. */
void
frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
USI num = ((base + offset) & 0x7f) + 0x80;
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
frv_queue_software_interrupt (current_cpu, num);
return;
}
switch (num)
{
case TRAP_SYSCALL :
{
CB_SYSCALL s;
CB_SYSCALL_INIT (&s);
s.func = GET_H_GR (7);
s.arg1 = GET_H_GR (8);
s.arg2 = GET_H_GR (9);
s.arg3 = GET_H_GR (10);
if (s.func == TARGET_SYS_exit)
{
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
}
s.p1 = (PTR) sd;
s.p2 = (PTR) current_cpu;
s.read_mem = syscall_read_mem;
s.write_mem = syscall_write_mem;
cb_syscall (cb, &s);
SET_H_GR (8, s.result);
SET_H_GR (9, s.result2);
SET_H_GR (10, s.errcode);
break;
}
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
break;
/* Add support for dumping registers, either at fixed traps, or all
unknown traps if configured with --enable-sim-trapdump. */
default:
#if !TRAPDUMP
frv_queue_software_interrupt (current_cpu, num);
return;
#endif
#ifdef TRAP_REGDUMP1
case TRAP_REGDUMP1:
#endif
#ifdef TRAP_REGDUMP2
case TRAP_REGDUMP2:
#endif
#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
{
char buf[256];
int i, j;
buf[0] = 0;
if (STATE_TEXT_SECTION (sd)
&& pc >= STATE_TEXT_START (sd)
&& pc < STATE_TEXT_END (sd))
{
const char *pc_filename = (const char *)0;
const char *pc_function = (const char *)0;
unsigned int pc_linenum = 0;
if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
STATE_TEXT_SECTION (sd),
(struct bfd_symbol **) 0,
pc - STATE_TEXT_START (sd),
&pc_filename, &pc_function, &pc_linenum)
&& (pc_function || pc_filename))
{
char *p = buf+2;
buf[0] = ' ';
buf[1] = '(';
if (pc_function)
{
strcpy (p, pc_function);
p += strlen (p);
}
else
{
char *q = (char *) strrchr (pc_filename, '/');
strcpy (p, (q) ? q+1 : pc_filename);
p += strlen (p);
}
if (pc_linenum)
{
sprintf (p, " line %d", pc_linenum);
p += strlen (p);
}
p[0] = ')';
p[1] = '\0';
if ((p+1) - buf > sizeof (buf))
abort ();
}
}
sim_io_printf (sd,
"\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
(unsigned)pc, buf, (unsigned)base, (int)offset);
for (i = 0; i < 64; i += 8)
{
long g0 = (long)GET_H_GR (i);
long g1 = (long)GET_H_GR (i+1);
long g2 = (long)GET_H_GR (i+2);
long g3 = (long)GET_H_GR (i+3);
long g4 = (long)GET_H_GR (i+4);
long g5 = (long)GET_H_GR (i+5);
long g6 = (long)GET_H_GR (i+6);
long g7 = (long)GET_H_GR (i+7);
if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
sim_io_printf (sd,
"\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
}
for (i = 0; i < 64; i += 8)
{
long f0 = (long)GET_H_FR (i);
long f1 = (long)GET_H_FR (i+1);
long f2 = (long)GET_H_FR (i+2);
long f3 = (long)GET_H_FR (i+3);
long f4 = (long)GET_H_FR (i+4);
long f5 = (long)GET_H_FR (i+5);
long f6 = (long)GET_H_FR (i+6);
long f7 = (long)GET_H_FR (i+7);
if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
sim_io_printf (sd,
"\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
}
sim_io_printf (sd,
"\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
(long)GET_H_SPR (272),
(long)GET_H_SPR (273),
(long)GET_H_SPR (256),
(long)GET_H_SPR (263));
}
break;
#endif
}
}
/* Handle the MTRAP insn. */
void
frv_mtrap (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* Check the status of media exceptions in MSR0. */
SI msr = GET_MSR (0);
if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
}
/* Handle the BREAK insn. */
void
frv_break (SIM_CPU *current_cpu)
{
IADDR pc;
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
{
/* Invalidate the insn cache because the debugger will presumably
replace the breakpoint insn with the real one. */
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
frv_queue_break_interrupt (current_cpu);
}
/* Return from trap. */
USI
frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
{
USI new_pc;
/* if (normal running mode and debug_field==0
PC=PCSR
PSR.ET=1
PSR.S=PSR.PS
else if (debug running mode and debug_field==1)
PC=(BPCSR)
PSR.ET=BPSR.BET
PSR.S=BPSR.BS
change to normal running mode
*/
int psr_s = GET_H_PSR_S ();
int psr_et = GET_H_PSR_ET ();
/* Check for exceptions in the priority order listed in the FRV Architecture
Volume 2. */
if (! psr_s)
{
/* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
if (! psr_et)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
/* privileged_instruction interrupt will have already been queued by
frv_detect_insn_access_interrupts. */
new_pc = pc + 4;
}
else if (psr_et)
{
/* Halt if PSR.S is set. See chapter 6 of the LSI. */
if (psr_s)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
new_pc = pc + 4;
}
else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
{
USI psr = GET_PSR ();
/* Return from normal running state. */
new_pc = GET_H_SPR (H_SPR_PCSR);
SET_PSR_ET (psr, 1);
SET_PSR_S (psr, GET_PSR_PS (psr));
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
}
else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
{
USI psr = GET_PSR ();
/* Return from debug state. */
new_pc = GET_H_SPR (H_SPR_BPCSR);
SET_PSR_ET (psr, GET_H_BPSR_BET ());
SET_PSR_S (psr, GET_H_BPSR_BS ());
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
CPU_DEBUG_STATE (current_cpu) = 0;
}
else
new_pc = pc + 4;
return new_pc;
}
/* Functions for handling non-excepting instruction side effects. */
static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
{
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
int limit;
USI necr = GET_NECR ();
/* See if any NESRs are implemented. First need to check the validity of
the NECR. */
if (! GET_NECR_VALID (necr))
return NO_NESR;
limit = GET_NECR_NEN (necr);
for (++current_index; current_index < limit; ++current_index)
{
SI nesr = GET_NESR (current_index);
if (! GET_NESR_VALID (nesr))
return current_index;
}
}
return NO_NESR;
}
static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
{
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
int limit;
USI necr = GET_NECR ();
/* See if any NESRs are implemented. First need to check the validity of
the NECR. */
if (! GET_NECR_VALID (necr))
return NO_NESR;
limit = GET_NECR_NEN (necr);
for (++current_index; current_index < limit; ++current_index)
{
SI nesr = GET_NESR (current_index);
if (GET_NESR_VALID (nesr))
return current_index;
}
}
return NO_NESR;
}
BI
frvbf_check_non_excepting_load (
SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
SI immediate_disp, QI data_size, BI is_float
)
{
BI rc = 1; /* perform the load. */
SIM_DESC sd = CPU_STATE (current_cpu);
int daec = 0;
int rec = 0;
int ec = 0;
USI necr;
int do_elos;
SI NE_flags[2];
SI NE_base;
SI nesr;
SI ne_index;
FRV_REGISTER_CONTROL *control;
SI address = GET_H_GR (base_index);
if (disp_index >= 0)
address += GET_H_GR (disp_index);
else
address += immediate_disp;
/* Check for interrupt factors. */
switch (data_size)
{
case NESR_UQI_SIZE:
case NESR_QI_SIZE:
break;
case NESR_UHI_SIZE:
case NESR_HI_SIZE:
if (address & 1)
ec = 1;
break;
case NESR_SI_SIZE:
if (address & 3)
ec = 1;
break;
case NESR_DI_SIZE:
if (address & 7)
ec = 1;
if (target_index & 1)
rec = 1;
break;
case NESR_XI_SIZE:
if (address & 0xf)
ec = 1;
if (target_index & 3)
rec = 1;
break;
default:
{
IADDR pc = GET_H_PC ();
sim_engine_abort (sd, current_cpu, pc,
"check_non_excepting_load: Incorrect data_size\n");
break;
}
}
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
}
else
do_elos = 0;
/* NECR, NESR, NEEAR are only implemented for the full frv machine. */
if (do_elos)
{
ne_index = next_available_nesr (current_cpu, NO_NESR);
if (ne_index == NO_NESR)
{
IADDR pc = GET_H_PC ();
sim_engine_abort (sd, current_cpu, pc,
"No available NESR register\n");
}
/* Fill in the basic fields of the NESR. */
nesr = GET_NESR (ne_index);
SET_NESR_VALID (nesr);
SET_NESR_EAV (nesr);
SET_NESR_DRN (nesr, target_index);
SET_NESR_SIZE (nesr, data_size);
SET_NESR_NEAN (nesr, ne_index);
if (is_float)
SET_NESR_FR (nesr);
else
CLEAR_NESR_FR (nesr);
/* Set the corresponding NEEAR. */
SET_NEEAR (ne_index, address);
SET_NESR_DAEC (nesr, 0);
SET_NESR_REC (nesr, 0);
SET_NESR_EC (nesr, 0);
}
/* Set the NE flag corresponding to the target register if an interrupt
factor was detected.
daec is not checked here yet, but is declared for future reference. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
GET_NE_FLAGS (NE_flags, NE_base);
if (rec)
{
SET_NE_FLAG (NE_flags, target_index);
if (do_elos)
SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
}
if (ec)
{
SET_NE_FLAG (NE_flags, target_index);
if (do_elos)
SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
}
if (do_elos)
SET_NESR (ne_index, nesr);
/* If no interrupt factor was detected then set the NE flag on the
target register if the NE flag on one of the input registers
is already set. */
if (! rec && ! ec && ! daec)
{
BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
if (disp_index >= 0)
ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
if (ne_flag)
{
SET_NE_FLAG (NE_flags, target_index);
rc = 0; /* Do not perform the load. */
}
else
CLEAR_NE_FLAG (NE_flags, target_index);
}
SET_NE_FLAGS (NE_base, NE_flags);
return rc; /* perform the load? */
}
/* Record state for media exception: media_cr_not_aligned. */
void
frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* Note: there is a discrepancy between V2.2 of the FR400
instruction manual and the various FR4xx LSI specs. The former
claims that unaligned registers cause an mp_exception while the
latter say it's an illegal_instruction. The LSI specs appear
to be correct since MTT is fixed at 1. */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
break;
}
}
/* Record state for media exception: media_acc_not_aligned. */
void
frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* See comment in frvbf_cr_not_aligned(). */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
break;
}
}
/* Record state for media exception: media_register_not_aligned. */
void
frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* See comment in frvbf_cr_not_aligned(). */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
break;
}
}
/* Record state for media exception: media_overflow. */
void
frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
{
frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
}
/* Queue a division exception. */
enum frv_dtt
frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
int target_index, int non_excepting)
{
/* If there was an overflow and it is masked, then record it in
ISR.AEXC. */
USI isr = GET_ISR ();
if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
{
dtt &= ~FRV_DTT_OVERFLOW;
SET_ISR_AEXC (isr);
SET_ISR (isr);
}
if (dtt != FRV_DTT_NO_EXCEPTION)
{
if (non_excepting)
{
/* Non excepting instruction, simply set the NE flag for the target
register. */
SI NE_flags[2];
GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
SET_NE_FLAG (NE_flags, target_index);
SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
}
else
frv_queue_division_exception_interrupt (current_cpu, dtt);
}
return dtt;
}
void
frvbf_check_recovering_store (
SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
)
{
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
int reg_ix;
CPU_RSTR_INVALIDATE(current_cpu) = 0;
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
reg_ix != NO_NESR;
reg_ix = next_valid_nesr (current_cpu, reg_ix))
{
if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
{
SI nesr = GET_NESR (reg_ix);
int nesr_drn = GET_NESR_DRN (nesr);
BI nesr_fr = GET_NESR_FR (nesr);
SI remain;
/* Invalidate cache block containing this address.
If we need to count cycles, then the cache operation will be
initiated from the model profiling functions.
See frvbf_model_.... */
if (model_insn)
{
CPU_RSTR_INVALIDATE(current_cpu) = 1;
CPU_LOAD_ADDRESS (current_cpu) = address;
}
else
frv_cache_invalidate (cache, address, 1/* flush */);
/* Copy the stored value to the register indicated by NESR.DRN. */
for (remain = size; remain > 0; remain -= 4)
{
SI value;
if (is_float)
value = GET_H_FR (regno);
else
value = GET_H_GR (regno);
switch (size)
{
case 1:
value &= 0xff;
break;
case 2:
value &= 0xffff;
break;
default:
break;
}
if (nesr_fr)
sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
value);
else
sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
value);
nesr_drn++;
regno++;
}
break; /* Only consider the first matching register. */
}
} /* loop over active neear registers. */
}
SI
frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
{
/* Only applicable to fr550 */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
return;
/* On the fr550, media insns in slots 0 and 2 can only access
accumulators acc0-acc3. Insns in slots 1 and 3 can only access
accumulators acc4-acc7 */
switch (frv_current_fm_slot)
{
case UNIT_FM0:
case UNIT_FM2:
if (regno <= 3)
return 1; /* all is ok */
break;
case UNIT_FM1:
case UNIT_FM3:
if (regno >= 4)
return 1; /* all is ok */
break;
}
/* The specified accumulator is out of range. Queue an illegal_instruction
interrupt. */
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
return 0;
}
void
frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
{
/* Only applicable to fr550 */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
return;
/* Adress must be aligned on a word boundary. */
if (address & 0x3)
frv_queue_data_access_exception_interrupt (current_cpu);
}
static void
clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
int reg_ix;
/* Only implemented for full frv. */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
return;
/* Clear the appropriate NESR and NEEAR registers. */
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
reg_ix != NO_NESR;
reg_ix = next_valid_nesr (current_cpu, reg_ix))
{
SI nesr;
/* The register is available, now check if it is active. */
nesr = GET_NESR (reg_ix);
if (GET_NESR_FR (nesr) == is_float)
{
if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
{
SET_NESR (reg_ix, 0);
SET_NEEAR (reg_ix, 0);
}
}
}
}
static void
clear_ne_flags (
SIM_CPU *current_cpu,
SI target_index,
int hi_available,
int lo_available,
SI NE_base
)
{
SI NE_flags[2];
int exception;
GET_NE_FLAGS (NE_flags, NE_base);
if (target_index >= 0)
CLEAR_NE_FLAG (NE_flags, target_index);
else
{
if (lo_available)
NE_flags[1] = 0;
if (hi_available)
NE_flags[0] = 0;
}
SET_NE_FLAGS (NE_base, NE_flags);
}
/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
means to check for any register available. */
static void
which_registers_available (
SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
)
{
if (is_float)
frv_fr_registers_available (current_cpu, hi_available, lo_available);
else
frv_gr_registers_available (current_cpu, hi_available, lo_available);
}
void
frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
int hi_available;
int lo_available;
int exception;
SI NE_base;
USI necr;
FRV_REGISTER_CONTROL *control;
/* Check for availability of the target register(s). */
which_registers_available (current_cpu, & hi_available, & lo_available,
is_float);
/* Check to make sure that the target register is available. */
if (! frv_check_register_access (current_cpu, target_index,
hi_available, lo_available))
return;
/* Determine whether we're working with GR or FR registers. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
/* Always clear the appropriate NE flags. */
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
NE_base);
/* Clear the appropriate NESR and NEEAR registers. */
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
clear_nesr_neear (current_cpu, target_index, is_float);
}
}
void
frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
SI NE_base;
SI NE_flags[2];
BI NE_flag;
int exception;
int hi_available;
int lo_available;
USI necr;
FRV_REGISTER_CONTROL *control;
/* Check for availability of the target register(s). */
which_registers_available (current_cpu, & hi_available, & lo_available,
is_float);
/* Check to make sure that the target register is available. */
if (! frv_check_register_access (current_cpu, target_index,
hi_available, lo_available))
return;
/* Determine whether we're working with GR or FR registers. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
/* Determine whether a ne exception is pending. */
GET_NE_FLAGS (NE_flags, NE_base);
if (target_index >= 0)
NE_flag = GET_NE_FLAG (NE_flags, target_index);
else
{
NE_flag =
hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
}
/* Always clear the appropriate NE flags. */
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
NE_base);
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
{
/* Clear the appropriate NESR and NEEAR registers. */
clear_nesr_neear (current_cpu, target_index, is_float);
frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
}
}
}
/* Generate the appropriate fp_exception(s) based on the given status code. */
void
frvbf_fpu_error (CGEN_FPU* fpu, int status)
{
struct frv_fp_exception_info fp_info = {
FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
};
if (status &
(sim_fpu_status_invalid_snan |
sim_fpu_status_invalid_qnan |
sim_fpu_status_invalid_isi |
sim_fpu_status_invalid_idi |
sim_fpu_status_invalid_zdz |
sim_fpu_status_invalid_imz |
sim_fpu_status_invalid_cvi |
sim_fpu_status_invalid_cmp |
sim_fpu_status_invalid_sqrt))
fp_info.fsr_mask |= FSR_INVALID_OPERATION;
if (status & sim_fpu_status_invalid_div0)
fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
if (status & sim_fpu_status_inexact)
fp_info.fsr_mask |= FSR_INEXACT;
if (status & sim_fpu_status_overflow)
fp_info.fsr_mask |= FSR_OVERFLOW;
if (status & sim_fpu_status_underflow)
fp_info.fsr_mask |= FSR_UNDERFLOW;
if (status & sim_fpu_status_denorm)
{
fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
fp_info.ftt = FTT_DENORMAL_INPUT;
}
if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
{
SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
}
}
|