1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
# Simulator main loop for frv. -*- C -*-
# Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010, 2011
# Free Software Foundation, Inc.
# Contributed by Red Hat.
#
# This file is part of the GNU Simulators.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Syntax:
# /bin/sh mainloop.in command
#
# Command is one of:
#
# init
# support
# extract-{simple,scache,pbb}
# {full,fast}-exec-{simple,scache,pbb}
#
# A target need only provide a "full" version of one of simple,scache,pbb.
# If the target wants it can also provide a fast version of same.
# It can't provide more than this.
# ??? After a few more ports are done, revisit.
# Will eventually need to machine generate a lot of this.
case "x$1" in
xsupport)
cat <<EOF
static INLINE const IDESC *
extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
int fast_p)
{
const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
@cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
if (! fast_p)
{
int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
@cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
}
return id;
}
static INLINE SEM_PC
execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
{
SEM_PC vpc;
/* Force gr0 to zero before every insn. */
@cpu@_h_gr_set (current_cpu, 0, 0);
if (fast_p)
{
vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
}
else
{
ARGBUF *abuf = &sc->argbuf;
const IDESC *idesc = abuf->idesc;
#if WITH_SCACHE_PBB
int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
#else
int virtual_p = 0;
#endif
if (! virtual_p)
{
/* FIXME: call x-before */
if (ARGBUF_PROFILE_P (abuf))
PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
/* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
{
@cpu@_model_insn_before (current_cpu, sc->first_insn_p);
model_insn = FRV_INSN_MODEL_PASS_1;
if (idesc->timing->model_fn != NULL)
(*idesc->timing->model_fn) (current_cpu, sc);
}
else
model_insn = FRV_INSN_NO_MODELING;
TRACE_INSN_INIT (current_cpu, abuf, 1);
TRACE_INSN (current_cpu, idesc->idata,
(const struct argbuf *) abuf, abuf->addr);
}
#if WITH_SCACHE
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
#else
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
#endif
if (! virtual_p)
{
/* FIXME: call x-after */
if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
{
int cycles;
if (idesc->timing->model_fn != NULL)
{
model_insn = FRV_INSN_MODEL_PASS_2;
cycles = (*idesc->timing->model_fn) (current_cpu, sc);
}
else
cycles = 1;
@cpu@_model_insn_after (current_cpu, sc->last_insn_p, cycles);
}
TRACE_INSN_FINI (current_cpu, abuf, 1);
}
}
return vpc;
}
static void
@cpu@_parallel_write_init (SIM_CPU *current_cpu)
{
CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
CGEN_WRITE_QUEUE_CLEAR (q);
previous_vliw_pc = CPU_PC_GET(current_cpu);
frv_interrupt_state.f_ne_flags[0] = 0;
frv_interrupt_state.f_ne_flags[1] = 0;
frv_interrupt_state.imprecise_interrupt = NULL;
}
static void
@cpu@_parallel_write_queued (SIM_CPU *current_cpu)
{
int i;
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
/* Loop over the queued writes, executing them. Set the pc to the address
of the insn which queued each write for the proper context in case an
interrupt is caused. Restore the proper pc after the writes are
completed. */
IADDR save_pc = CPU_PC_GET (current_cpu);
IADDR new_pc = save_pc;
int branch_taken = 0;
int limit = CGEN_WRITE_QUEUE_INDEX (q);
frv_interrupt_state.data_written.length = 0;
for (i = 0; i < limit; ++i)
{
CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, i);
/* If an imprecise interrupt was generated, then, check whether the
result should still be written. */
if (frv_interrupt_state.imprecise_interrupt != NULL)
{
/* Only check writes by the insn causing the exception. */
if (CGEN_WRITE_QUEUE_ELEMENT_IADDR (item)
== frv_interrupt_state.imprecise_interrupt->vpc)
{
/* Execute writes of floating point operations resulting in
overflow, underflow or inexact. */
if (frv_interrupt_state.imprecise_interrupt->kind
== FRV_FP_EXCEPTION)
{
if ((frv_interrupt_state.imprecise_interrupt
->u.fp_info.fsr_mask
& ~(FSR_INEXACT | FSR_OVERFLOW | FSR_UNDERFLOW)))
continue; /* Don't execute */
}
/* Execute writes marked as 'forced'. */
else if (! (CGEN_WRITE_QUEUE_ELEMENT_FLAGS (item)
& FRV_WRITE_QUEUE_FORCE_WRITE))
continue; /* Don't execute */
}
}
/* Only execute the first branch on the queue. */
if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE
|| CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_FN_PC_WRITE)
{
if (branch_taken)
continue;
branch_taken = 1;
if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE)
new_pc = item->kinds.pc_write.value;
else
new_pc = item->kinds.fn_pc_write.value;
}
CPU_PC_SET (current_cpu, CGEN_WRITE_QUEUE_ELEMENT_IADDR (item));
frv_save_data_written_for_interrupts (current_cpu, item);
cgen_write_queue_element_execute (current_cpu, item);
}
/* Update the LR with the address of the next insn if the flag is set.
This flag gets set in frvbf_set_write_next_vliw_to_LR by the JMPL,
JMPIL and CALL insns. */
if (frvbf_write_next_vliw_addr_to_LR)
{
frvbf_h_spr_set_handler (current_cpu, H_SPR_LR, save_pc);
frvbf_write_next_vliw_addr_to_LR = 0;
}
CPU_PC_SET (current_cpu, new_pc);
CGEN_WRITE_QUEUE_CLEAR (q);
}
void
@cpu@_perform_writeback (SIM_CPU *current_cpu)
{
@cpu@_parallel_write_queued (current_cpu);
}
static unsigned cache_reqno = 0x80000000; /* Start value is for debugging. */
#if 0 /* experimental */
/* FR400 has single prefetch. */
static void
fr400_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
{
int cur_ix;
FRV_CACHE *cache;
/* The cpu receives 8 bytes worth of insn data for each fetch aligned
on 8 byte boundary. */
#define FR400_FETCH_SIZE 8
cur_ix = LS;
vpc &= ~(FR400_FETCH_SIZE - 1);
cache = CPU_INSN_CACHE (current_cpu);
/* Request a load of the current address buffer, if necessary. */
if (frv_insn_fetch_buffer[cur_ix].address != vpc)
{
frv_insn_fetch_buffer[cur_ix].address = vpc;
frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
if (FRV_COUNT_CYCLES (current_cpu, 1))
frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
frv_insn_fetch_buffer[cur_ix].address,
UNIT_I0 + cur_ix);
}
/* Wait for the current address buffer to be loaded, if necessary. */
if (FRV_COUNT_CYCLES (current_cpu, 1))
{
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
int wait;
/* Account for any branch penalty. */
if (ps->branch_penalty > 0 && ! ps->past_first_p)
{
frv_model_advance_cycles (current_cpu, ps->branch_penalty);
frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
"Branch penalty:");
ps->branch_penalty = 0;
}
/* Account for insn fetch latency. */
wait = 0;
while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
{
frv_model_advance_cycles (current_cpu, 1);
++wait;
}
frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
return;
}
/* Otherwise just load the insns directly from the cache.
*/
if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
{
frv_cache_read (cache, cur_ix, vpc);
frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
}
}
#endif /* experimental */
/* FR500 has dual prefetch. */
static void
simulate_dual_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc, int fetch_size)
{
int i;
int cur_ix, pre_ix;
SI pre_address;
FRV_CACHE *cache;
/* See if the pc is within the addresses specified by either of the
fetch buffers. If so, that will be the current buffer. Otherwise,
arbitrarily select the LD buffer as the current one since it gets
priority in the case of interfering load requests. */
cur_ix = LD;
vpc &= ~(fetch_size - 1);
for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
{
if (frv_insn_fetch_buffer[i].address == vpc)
{
cur_ix = i;
break;
}
}
cache = CPU_INSN_CACHE (current_cpu);
/* Request a load of the current address buffer, if necessary. */
if (frv_insn_fetch_buffer[cur_ix].address != vpc)
{
frv_insn_fetch_buffer[cur_ix].address = vpc;
frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
if (FRV_COUNT_CYCLES (current_cpu, 1))
frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
frv_insn_fetch_buffer[cur_ix].address,
UNIT_I0 + cur_ix);
}
/* If the prefetch buffer does not represent the next sequential address, then
request a load of the next sequential address. */
pre_ix = (cur_ix + 1) % FRV_CACHE_PIPELINES;
pre_address = vpc + fetch_size;
if (frv_insn_fetch_buffer[pre_ix].address != pre_address)
{
frv_insn_fetch_buffer[pre_ix].address = pre_address;
frv_insn_fetch_buffer[pre_ix].reqno = cache_reqno++;
if (FRV_COUNT_CYCLES (current_cpu, 1))
frv_cache_request_load (cache, frv_insn_fetch_buffer[pre_ix].reqno,
frv_insn_fetch_buffer[pre_ix].address,
UNIT_I0 + pre_ix);
}
/* If counting cycles, account for any branch penalty and/or insn fetch
latency here. */
if (FRV_COUNT_CYCLES (current_cpu, 1))
{
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
int wait;
/* Account for any branch penalty. */
if (ps->branch_penalty > 0 && ! ps->past_first_p)
{
frv_model_advance_cycles (current_cpu, ps->branch_penalty);
frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
"Branch penalty:");
ps->branch_penalty = 0;
}
/* Account for insn fetch latency. */
wait = 0;
while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
{
frv_model_advance_cycles (current_cpu, 1);
++wait;
}
frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
return;
}
/* Otherwise just load the insns directly from the cache.
*/
if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
{
frv_cache_read (cache, cur_ix, vpc);
frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
}
if (frv_insn_fetch_buffer[pre_ix].reqno != NO_REQNO)
{
frv_cache_read (cache, pre_ix, pre_address);
frv_insn_fetch_buffer[pre_ix].reqno = NO_REQNO;
}
}
static void
@cpu@_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
{
SI hsr0;
SIM_DESC sd;
/* Nothing to do if not counting cycles and the cache is not enabled. */
hsr0 = GET_HSR0 ();
if (! GET_HSR0_ICE (hsr0) && ! FRV_COUNT_CYCLES (current_cpu, 1))
return;
/* Different machines handle prefetch defferently. */
sd = CPU_STATE (current_cpu);
switch (STATE_ARCHITECTURE (sd)->mach)
{
case bfd_mach_fr400:
case bfd_mach_fr450:
simulate_dual_insn_prefetch (current_cpu, vpc, 8);
break;
case bfd_mach_frvtomcat:
case bfd_mach_fr500:
case bfd_mach_fr550:
case bfd_mach_frv:
simulate_dual_insn_prefetch (current_cpu, vpc, 16);
break;
default:
break;
}
}
int frv_save_profile_model_p;
EOF
;;
xinit)
cat <<EOF
/*xxxinit*/
/* If the timer is enabled, then we will enable model profiling during
execution. This is because the timer needs accurate cycles counts to
work properly. Save the original setting of model profiling. */
if (frv_interrupt_state.timer.enabled)
frv_save_profile_model_p = PROFILE_MODEL_P (current_cpu);
EOF
;;
xextract-simple | xextract-scache)
# Inputs: current_cpu, vpc, sc, FAST_P
# Outputs: sc filled in
# SET_LAST_INSN_P(last_p) called to indicate whether insn is last one
cat <<EOF
{
CGEN_INSN_INT insn = frvbf_read_imem_USI (current_cpu, vpc);
extract (current_cpu, vpc, insn, SEM_ARGBUF (sc), FAST_P);
SET_LAST_INSN_P ((insn & 0x80000000) != 0);
}
EOF
;;
xfull-exec-* | xfast-exec-*)
# Inputs: current_cpu, vpc, FAST_P
# Outputs:
# vpc contains the address of the next insn to execute
# pc of current_cpu must be up to date (=vpc) upon exit
# CPU_INSN_COUNT (current_cpu) must be updated by number of insns executed
#
# Unlike the non-parallel case, this version is responsible for doing the
# scache lookup.
cat <<EOF
{
FRV_VLIW *vliw;
int first_insn_p = 1;
int last_insn_p = 0;
int ninsns;
CGEN_ATTR_VALUE_ENUM_TYPE slot;
/* If the timer is enabled, then enable model profiling. This is because
the timer needs accurate cycles counts to work properly. */
if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "1");
/* Init parallel-write queue and vliw. */
@cpu@_parallel_write_init (current_cpu);
vliw = CPU_VLIW (current_cpu);
frv_vliw_reset (vliw, STATE_ARCHITECTURE (CPU_STATE (current_cpu))->mach,
CPU_ELF_FLAGS (current_cpu));
frv_current_fm_slot = UNIT_NIL;
for (ninsns = 0; ! last_insn_p && ninsns < FRV_VLIW_SIZE; ++ninsns)
{
SCACHE *sc;
const CGEN_INSN *insn;
int error;
/* Go through the motions of finding the insns in the cache. */
@cpu@_simulate_insn_prefetch (current_cpu, vpc);
sc = @cpu@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
sc->first_insn_p = first_insn_p;
last_insn_p = sc->last_insn_p;
/* Add the insn to the vliw and set up the interrupt state. */
insn = sc->argbuf.idesc->idata;
error = frv_vliw_add_insn (vliw, insn);
if (! error)
frv_vliw_setup_insn (current_cpu, insn);
frv_detect_insn_access_interrupts (current_cpu, sc);
slot = (*vliw->current_vliw)[vliw->next_slot - 1];
if (slot >= UNIT_FM0 && slot <= UNIT_FM3)
frv_current_fm_slot = slot;
vpc = execute (current_cpu, sc, FAST_P);
SET_H_PC (vpc); /* needed for interrupt handling */
first_insn_p = 0;
}
/* If the timer is enabled, and model profiling was not originally enabled,
then turn it off again. This is the only place we can currently gain
control to do this. */
if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "0");
/* Check for interrupts. Also handles writeback if necessary. */
frv_process_interrupts (current_cpu);
CPU_INSN_COUNT (current_cpu) += ninsns;
}
EOF
;;
*)
echo "Invalid argument to mainloop.in: $1" >&2
exit 1
;;
esac
|