aboutsummaryrefslogtreecommitdiff
path: root/sim/frv/interrupts.c
blob: 10434f1188345e9c0d1efe8cb22074e6d4c818e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
/* frv exception and interrupt support
   Copyright (C) 1999, 2000, 2001, 2007 Free Software Foundation, Inc.
   Contributed by Red Hat.

This file is part of the GNU simulators.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#define WANT_CPU frvbf
#define WANT_CPU_FRVBF

#include "sim-main.h"
#include "bfd.h"

/* FR-V Interrupt table.
   Describes the interrupts supported by the FR-V.
   This table *must* be maintained in order of interrupt priority as defined by
   frv_interrupt_kind.  */
#define DEFERRED 1
#define PRECISE  1
#define ITABLE_ENTRY(name, class, deferral, precision, offset) \
  {FRV_##name, FRV_EC_##name, class, deferral, precision, offset}

struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] =
{
  /* External interrupts */
  ITABLE_ENTRY(INTERRUPT_LEVEL_1,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21),
  ITABLE_ENTRY(INTERRUPT_LEVEL_2,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22),
  ITABLE_ENTRY(INTERRUPT_LEVEL_3,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23),
  ITABLE_ENTRY(INTERRUPT_LEVEL_4,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24),
  ITABLE_ENTRY(INTERRUPT_LEVEL_5,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25),
  ITABLE_ENTRY(INTERRUPT_LEVEL_6,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26),
  ITABLE_ENTRY(INTERRUPT_LEVEL_7,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27),
  ITABLE_ENTRY(INTERRUPT_LEVEL_8,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28),
  ITABLE_ENTRY(INTERRUPT_LEVEL_9,            FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29),
  ITABLE_ENTRY(INTERRUPT_LEVEL_10,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a),
  ITABLE_ENTRY(INTERRUPT_LEVEL_11,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b),
  ITABLE_ENTRY(INTERRUPT_LEVEL_12,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c),
  ITABLE_ENTRY(INTERRUPT_LEVEL_13,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d),
  ITABLE_ENTRY(INTERRUPT_LEVEL_14,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e),
  ITABLE_ENTRY(INTERRUPT_LEVEL_15,           FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f),
  /* Software interrupt */
  ITABLE_ENTRY(TRAP_INSTRUCTION,             FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80),
  /* Program interrupts */
  ITABLE_ENTRY(COMMIT_EXCEPTION,             FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x19),
  ITABLE_ENTRY(DIVISION_EXCEPTION,           FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x17),
  ITABLE_ENTRY(DATA_STORE_ERROR,             FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x14),
  ITABLE_ENTRY(DATA_ACCESS_EXCEPTION,        FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x13),
  ITABLE_ENTRY(DATA_ACCESS_MMU_MISS,         FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x12),
  ITABLE_ENTRY(DATA_ACCESS_ERROR,            FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x11),
  ITABLE_ENTRY(MP_EXCEPTION,                 FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x0e),
  ITABLE_ENTRY(FP_EXCEPTION,                 FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x0d),
  ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED,      FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x10),
  ITABLE_ENTRY(REGISTER_EXCEPTION,           FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x08),
  ITABLE_ENTRY(MP_DISABLED,                  FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x0b),
  ITABLE_ENTRY(FP_DISABLED,                  FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x0a),
  ITABLE_ENTRY(PRIVILEGED_INSTRUCTION,       FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x06),
  ITABLE_ENTRY(ILLEGAL_INSTRUCTION,          FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x07),
  ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x03),
  ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR,     FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x02),
  ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS,  FRV_PROGRAM_INTERRUPT,  !DEFERRED,  PRECISE, 0x01),
  ITABLE_ENTRY(COMPOUND_EXCEPTION,           FRV_PROGRAM_INTERRUPT,  !DEFERRED, !PRECISE, 0x20),
  /* Break interrupt */
  ITABLE_ENTRY(BREAK_EXCEPTION,              FRV_BREAK_INTERRUPT,    !DEFERRED, !PRECISE, 0xff),
  /* Reset interrupt */
  ITABLE_ENTRY(RESET,                        FRV_RESET_INTERRUPT,    !DEFERRED, !PRECISE, 0x00)
};

/* The current interrupt state.  */
struct frv_interrupt_state frv_interrupt_state;

/* maintain the address of the start of the previous VLIW insn sequence.  */
IADDR previous_vliw_pc;

/* Add a break interrupt to the interrupt queue.  */
struct frv_interrupt_queue_element *
frv_queue_break_interrupt (SIM_CPU *current_cpu)
{
  return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION);
}

/* Add a software interrupt to the interrupt queue.  */
struct frv_interrupt_queue_element *
frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset)
{
  struct frv_interrupt_queue_element *new_element
    = frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION);

  struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind];
  interrupt->handler_offset = offset;

  return new_element;
}

/* Add a program interrupt to the interrupt queue.  */
struct frv_interrupt_queue_element *
frv_queue_program_interrupt (
  SIM_CPU *current_cpu, enum frv_interrupt_kind kind
)
{
  return frv_queue_interrupt (current_cpu, kind);
}

/* Add an external interrupt to the interrupt queue.  */
struct frv_interrupt_queue_element *
frv_queue_external_interrupt (
  SIM_CPU *current_cpu, enum frv_interrupt_kind kind
)
{
  if (! GET_H_PSR_ET ()
      || (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ()))
    return NULL; /* Leave it for later.  */

  return frv_queue_interrupt (current_cpu, kind);
}

/* Add any interrupt to the interrupt queue. It will be added in reverse
   priority order.  This makes it easy to find the highest priority interrupt
   at the end of the queue and to remove it after processing.  */
struct frv_interrupt_queue_element *
frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind)
{
  int i;
  int j;
  int limit = frv_interrupt_state.queue_index;
  struct frv_interrupt_queue_element *new_element;
  enum frv_interrupt_class iclass;

  if (limit >= FRV_INTERRUPT_QUEUE_SIZE)
    abort (); /* TODO: Make the queue dynamic */

  /* Find the right place in the queue.  */
  for (i = 0; i < limit; ++i)
    {
      if (frv_interrupt_state.queue[i].kind >= kind)
	break;
    }

  /* Don't queue two external interrupts of the same priority.  */
  iclass = frv_interrupt_table[kind].iclass;
  if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT)
    {
      if (frv_interrupt_state.queue[i].kind == kind)
	return & frv_interrupt_state.queue[i];
    }

  /* Make room for the new interrupt in this spot.  */
  for (j = limit - 1; j >= i; --j)
    frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j];

  /* Add the new interrupt.  */
  frv_interrupt_state.queue_index++;
  new_element = & frv_interrupt_state.queue[i];
  new_element->kind = kind;
  new_element->vpc = CPU_PC_GET (current_cpu);
  new_element->u.data_written.length = 0;
  frv_set_interrupt_queue_slot (current_cpu, new_element);

  return new_element;
}

struct frv_interrupt_queue_element *
frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec)
{
  struct frv_interrupt_queue_element *new_element =
    frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION);

  new_element->u.rec = rec;

  return new_element;
}

struct frv_interrupt_queue_element *
frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr)
{
  struct frv_interrupt_queue_element *new_element;
  USI isr = GET_ISR ();

  /* Make sure that this exception is not masked.  */
  if (GET_ISR_EMAM (isr))
    return NULL;

  /* Queue the interrupt.  */
  new_element = frv_queue_program_interrupt (current_cpu,
					     FRV_MEM_ADDRESS_NOT_ALIGNED);
  new_element->eaddress = addr;
  new_element->u.data_written = frv_interrupt_state.data_written;
  frv_interrupt_state.data_written.length = 0;

  return new_element;
}

struct frv_interrupt_queue_element *
frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr)
{
  struct frv_interrupt_queue_element *new_element;
  new_element = frv_queue_program_interrupt (current_cpu,
					     FRV_DATA_ACCESS_ERROR);
  new_element->eaddress = addr;
  return new_element;
}

struct frv_interrupt_queue_element *
frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu)
{
  return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION);
}

struct frv_interrupt_queue_element *
frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu)
{
  return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR);
}

struct frv_interrupt_queue_element *
frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu)
{
  return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION);
}

struct frv_interrupt_queue_element *
frv_queue_illegal_instruction_interrupt (
  SIM_CPU *current_cpu, const CGEN_INSN *insn
)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
    case bfd_mach_fr550:
      break;
    default:
      /* Some machines generate fp_exception for this case.  */
      if (frv_is_float_insn (insn) || frv_is_media_insn (insn))
	{
	  struct frv_fp_exception_info fp_info = {
	    FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR
	  };
	  return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
	}
      break;
    }

  return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
}

struct frv_interrupt_queue_element *
frv_queue_privileged_instruction_interrupt (SIM_CPU *current_cpu, const CGEN_INSN *insn)
{
  /* The fr550 has no privileged instruction interrupt. It uses
     illegal_instruction.  */
  SIM_DESC sd = CPU_STATE (current_cpu);
  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
    return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);

  return frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION);
}

struct frv_interrupt_queue_element *
frv_queue_float_disabled_interrupt (SIM_CPU *current_cpu)
{
  /* The fr550 has no fp_disabled interrupt. It uses illegal_instruction.  */
  SIM_DESC sd = CPU_STATE (current_cpu);
  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
    return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
  
  return frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED);
}

struct frv_interrupt_queue_element *
frv_queue_media_disabled_interrupt (SIM_CPU *current_cpu)
{
  /* The fr550 has no mp_disabled interrupt. It uses illegal_instruction.  */
  SIM_DESC sd = CPU_STATE (current_cpu);
  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
    return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
  
  return frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED);
}

struct frv_interrupt_queue_element *
frv_queue_non_implemented_instruction_interrupt (
  SIM_CPU *current_cpu, const CGEN_INSN *insn
)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
    case bfd_mach_fr550:
      break;
    default:
      /* Some machines generate fp_exception or mp_exception for this case.  */
      if (frv_is_float_insn (insn))
	{
	  struct frv_fp_exception_info fp_info = {
	    FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP
	  };
	  return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
	}
      if (frv_is_media_insn (insn))
	{
	  frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP,
					  0);
	  return NULL; /* no interrupt queued at this time.  */
	}
      break;
    }

  return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
}

/* Queue the given fp_exception interrupt. Also update fp_info by removing
   masked interrupts and updating the 'slot' flield.  */
struct frv_interrupt_queue_element *
frv_queue_fp_exception_interrupt (
  SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info
)
{
  SI fsr0 = GET_FSR (0);
  int tem = GET_FSR_TEM (fsr0);
  int aexc = GET_FSR_AEXC (fsr0);
  struct frv_interrupt_queue_element *new_element = NULL;

  /* Update AEXC with the interrupts that are masked.  */
  aexc |= fp_info->fsr_mask & ~tem;
  SET_FSR_AEXC (fsr0, aexc);
  SET_FSR (0, fsr0);

  /* update fsr_mask with the exceptions that are enabled.  */
  fp_info->fsr_mask &= tem;

  /* If there is an unmasked interrupt then queue it, unless
     this was a non-excepting insn, in which case simply set the NE
     status registers.  */
  if (frv_interrupt_state.ne_index != NE_NOFLAG
      && fp_info->fsr_mask != FSR_NO_EXCEPTION)
    {
      SET_NE_FLAG (frv_interrupt_state.f_ne_flags, 
		   frv_interrupt_state.ne_index);
      /* TODO -- Set NESR for chips which support it.  */
      new_element = NULL;
    }
  else if (fp_info->fsr_mask != FSR_NO_EXCEPTION
	   || fp_info->ftt == FTT_UNIMPLEMENTED_FPOP
	   || fp_info->ftt == FTT_SEQUENCE_ERROR
	   || fp_info->ftt == FTT_INVALID_FR)
    {
      new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION);
      new_element->u.fp_info = *fp_info;
    }

  return new_element;
}

struct frv_interrupt_queue_element *
frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt)
{
  struct frv_interrupt_queue_element *new_element =
    frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION);

  new_element->u.dtt = dtt;

  return new_element;
}

/* Check for interrupts caused by illegal insn access.  These conditions are
   checked in the order specified by the fr400 and fr500 LSI specs.  */
void
frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc)
{

  const CGEN_INSN *insn = sc->argbuf.idesc->idata;
  SIM_DESC sd = CPU_STATE (current_cpu);
  FRV_VLIW *vliw = CPU_VLIW (current_cpu);

  /* Check for vliw constraints.  */
  if (vliw->constraint_violation)
    frv_queue_illegal_instruction_interrupt (current_cpu, insn);
  /* Check for non-excepting insns.  */
  else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING)
      && ! GET_H_PSR_NEM ())
    frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
  /* Check for conditional insns.  */
  else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL)
      && ! GET_H_PSR_CM ())
    frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
  /* Make sure floating point support is enabled.  */
  else if (! GET_H_PSR_EF ())
    {
      /* Generate fp_disabled if it is a floating point insn or if PSR.EM is
	 off and the insns accesses a fp register.  */
      if (frv_is_float_insn (insn)
	  || (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)
	      && ! GET_H_PSR_EM ()))
	frv_queue_float_disabled_interrupt (current_cpu);
    }
  /* Make sure media support is enabled.  */
  else if (! GET_H_PSR_EM ())
    {
      /* Generate mp_disabled if it is a media insn.  */
      if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP)
	frv_queue_media_disabled_interrupt (current_cpu);
    }
  /* Check for privileged insns.  */
  else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) &&
	   ! GET_H_PSR_S ())
    frv_queue_privileged_instruction_interrupt (current_cpu, insn);
#if 0 /* disable for now until we find out how FSR0.QNE gets reset.  */
  else
    {
      /* Enter the halt state if FSR0.QNE is set and we are executing a
	 floating point insn, a media insn or an insn which access a FR
	 register.  */
      SI fsr0 = GET_FSR (0);
      if (GET_FSR_QNE (fsr0)
	  && (frv_is_float_insn (insn) || frv_is_media_insn (insn)
	      || CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)))
	{
	  sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped,
			   SIM_SIGINT);
	}
    }
#endif
}

/* Record the current VLIW slot in the given interrupt queue element.  */
void
frv_set_interrupt_queue_slot (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  FRV_VLIW *vliw = CPU_VLIW (current_cpu);
  int slot = vliw->next_slot - 1;
  item->slot = (*vliw->current_vliw)[slot];
}

/* Handle an individual interrupt.  */
static void
handle_interrupt (SIM_CPU *current_cpu, IADDR pc)
{
  struct frv_interrupt *interrupt;
  int writeback_done = 0;
  while (1)
    {
      /* Interrupts are queued in priority order with the highest priority
	 last.  */
      int index = frv_interrupt_state.queue_index - 1;
      struct frv_interrupt_queue_element *item
	= & frv_interrupt_state.queue[index];
      interrupt = & frv_interrupt_table[item->kind];

      switch (interrupt->iclass)
	{
	case FRV_EXTERNAL_INTERRUPT:
	  /* Perform writeback first. This may cause a higher priority
	     interrupt.  */
	  if (! writeback_done)
	    {
	      frvbf_perform_writeback (current_cpu);
	      writeback_done = 1;
	      continue;
	    }
	  frv_external_interrupt (current_cpu, item, pc);
	  return;
	case FRV_SOFTWARE_INTERRUPT:
	  frv_interrupt_state.queue_index = index;
	  frv_software_interrupt (current_cpu, item, pc);
	  return;
	case FRV_PROGRAM_INTERRUPT:
	  /* If the program interrupt is not strict (imprecise), then perform
	     writeback first. This may, in turn, cause a higher priority
	     interrupt.  */
	  if (! interrupt->precise && ! writeback_done)
	    {
	      frv_interrupt_state.imprecise_interrupt = item;
	      frvbf_perform_writeback (current_cpu);
	      writeback_done = 1;
	      continue;
	    }
	  frv_interrupt_state.queue_index = index;
	  frv_program_interrupt (current_cpu, item, pc);
	  return;
	case FRV_BREAK_INTERRUPT:
	  frv_interrupt_state.queue_index = index;
	  frv_break_interrupt (current_cpu, interrupt, pc);
	  return;
	case FRV_RESET_INTERRUPT:
	  break;
	default:
	  break;
	}
      frv_interrupt_state.queue_index = index;
      break; /* out of loop.  */
    }

  /* We should never get here.  */
  {
    SIM_DESC sd = CPU_STATE (current_cpu);
    sim_engine_abort (sd, current_cpu, pc,
		      "interrupt class not supported %d\n",
		      interrupt->iclass);
  }
}

/* Check to see the if the RSTR.HR or RSTR.SR bits have been set.  If so, handle
   the appropriate reset interrupt.  */
static int
check_reset (SIM_CPU *current_cpu, IADDR pc)
{
  int hsr0;
  int hr;
  int sr;
  SI rstr;
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  IADDR address = RSTR_ADDRESS;

  /* We don't want this to show up in the cache statistics, so read the
     cache passively.  */
  if (! frv_cache_read_passive_SI (cache, address, & rstr))
    rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address);

  hr = GET_RSTR_HR (rstr);
  sr = GET_RSTR_SR (rstr);

  if (! hr && ! sr)
    return 0; /* no reset.  */

  /* Reinitialize the machine state.  */
  if (hr)
    frv_hardware_reset (current_cpu);
  else
    frv_software_reset (current_cpu);

  /* Branch to the reset address.  */
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_SA (hsr0))
    SET_H_PC (0xff000000);
  else
    SET_H_PC (0);

  return 1; /* reset */
}

/* Process any pending interrupt(s) after a group of parallel insns.  */
void
frv_process_interrupts (SIM_CPU *current_cpu)
{
  SI NE_flags[2];
  /* Need to save the pc here because writeback may change it (due to a
     branch).  */
  IADDR pc = CPU_PC_GET (current_cpu);

  /* Check for a reset before anything else.  */
  if (check_reset (current_cpu, pc))
    return;

  /* First queue the writes for any accumulated NE flags.  */
  if (frv_interrupt_state.f_ne_flags[0] != 0
      || frv_interrupt_state.f_ne_flags[1] != 0)
    {
      GET_NE_FLAGS (NE_flags, H_SPR_FNER0);
      NE_flags[0] |= frv_interrupt_state.f_ne_flags[0];
      NE_flags[1] |= frv_interrupt_state.f_ne_flags[1];
      SET_NE_FLAGS (H_SPR_FNER0, NE_flags);
    }

  /* If there is no interrupt pending, then perform parallel writeback.  This
     may cause an interrupt.  */
  if (frv_interrupt_state.queue_index <= 0)
    frvbf_perform_writeback (current_cpu);

  /* If there is an interrupt pending, then process it.  */
  if (frv_interrupt_state.queue_index > 0)
    handle_interrupt (current_cpu, pc);
}

/* Find the next available ESR and return its index */
static int
esr_for_data_access_exception (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
    return 8; /* Use ESR8, EPCR8.  */

  if (item->slot == UNIT_I0)
    return 8; /* Use ESR8, EPCR8, EAR8, EDR8.  */

  return 9; /* Use ESR9, EPCR9, EAR9.  */
}

/* Set the next available EDR register with the data which was to be stored
   and return the index of the register.  */
static int
set_edr_register (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index
)
{
  /* EDR0, EDR4 and EDR8 are available as blocks of 4.
       SI data uses EDR3, EDR7 and EDR11
       DI data uses EDR2, EDR6 and EDR10
       XI data uses EDR0, EDR4 and EDR8.  */
  int i;
  edr_index += 4 - item->u.data_written.length;
  for (i = 0; i < item->u.data_written.length; ++i)
    SET_EDR (edr_index + i, item->u.data_written.words[i]);

  return edr_index;
};

/* Clear ESFR0, EPCRx, ESRx, EARx and EDRx.  */
static void
clear_exception_status_registers (SIM_CPU *current_cpu)
{
  int i;
  /* It is only necessary to clear the flag bits indicating which registers
     are valid.  */
  SET_ESFR (0, 0);
  SET_ESFR (1, 0);

  for (i = 0; i <= 2; ++i)
    {
      SI esr = GET_ESR (i);
      CLEAR_ESR_VALID (esr);
      SET_ESR (i, esr);
    }
  for (i = 8; i <= 15; ++i)
    {
      SI esr = GET_ESR (i);
      CLEAR_ESR_VALID (esr);
      SET_ESR (i, esr);
    }
}

/* Record state for media exception.  */
void
frv_set_mp_exception_registers (
  SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie
)
{
  /* Record the interrupt factor in MSR0.  */
  SI msr0 = GET_MSR (0);
  if (GET_MSR_MTT (msr0) == MTT_NONE)
    SET_MSR_MTT (msr0, mtt);

  /* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF.  */
  if (mtt == MTT_OVERFLOW)
    {
      FRV_VLIW *vliw = CPU_VLIW (current_cpu);
      int slot = vliw->next_slot - 1;
      SIM_DESC sd = CPU_STATE (current_cpu);

      /* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE,
	 otherwise set MSR0.OVF and MSR0.SIE.  */
      if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550 && (*vliw->current_vliw)[slot] == UNIT_FM1)
	{
	  SI msr = GET_MSR (1);
	  OR_MSR_SIE (msr, sie);
	  SET_MSR_OVF (msr);
	  SET_MSR (1, msr);
	}
      else
	{
	  OR_MSR_SIE (msr0, sie);
	  SET_MSR_OVF (msr0);
	}

      /* Generate the interrupt now if MSR0.MPEM is set on fr550 */
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550 && GET_MSR_MPEM (msr0))
	frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
      else
	{
	  /* Regardless of the slot, set MSR0.AOVF.  */
	  SET_MSR_AOVF (msr0);
	}
    }

  SET_MSR (0, msr0);
}

/* Determine the correct FQ register to use for the given exception.
   Return -1 if a register is not available.  */
static int
fq_for_exception (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  SI fq;
  struct frv_fp_exception_info *fp_info = & item->u.fp_info;

  /* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1.  */
  if (fp_info->ftt == FTT_IEEE_754_EXCEPTION
      && (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT)))
    {
      fq = GET_FQ (0);
      if (! GET_FQ_VALID (fq))
	return 0; /* FQ0 is available.  */
      fq = GET_FQ (1);
      if (! GET_FQ_VALID (fq))
	return 1; /* FQ1 is available.  */

      /* No FQ register is available */
      {
	SIM_DESC sd = CPU_STATE (current_cpu);
	IADDR pc = CPU_PC_GET (current_cpu);
	sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n");
      }
      return -1;
    }
  /* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3
     otherwise.  */
  if (item->slot == UNIT_FM0 || item->slot == UNIT_I0)
    return 2;

  return 3;
}

/* Set FSR0, FQ0-FQ9, depending on the interrupt.  */
static void
set_fp_exception_registers (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  int fq_index;
  SI fq;
  SI insn;
  SI fsr0;
  IADDR pc;
  struct frv_fp_exception_info *fp_info;
  SIM_DESC sd = CPU_STATE (current_cpu);

  /* No FQ registers on fr550 */
  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
    {
      /* Update the fsr.  */
      fp_info = & item->u.fp_info;
      fsr0 = GET_FSR (0);
      SET_FSR_FTT (fsr0, fp_info->ftt);
      SET_FSR (0, fsr0);
      return;
    }

  /* Select an FQ and update it with the exception information.  */
  fq_index = fq_for_exception (current_cpu, item);
  if (fq_index == -1)
    return;

  fp_info = & item->u.fp_info;
  fq = GET_FQ (fq_index);
  SET_FQ_MIV (fq, MIV_FLOAT);
  SET_FQ_SIE (fq, SIE_NIL);
  SET_FQ_FTT (fq, fp_info->ftt);
  SET_FQ_CEXC (fq, fp_info->fsr_mask);
  SET_FQ_VALID (fq);
  SET_FQ (fq_index, fq);

  /* Write the failing insn into FQx.OPC.  */
  pc = item->vpc;
  insn = GETMEMSI (current_cpu, pc, pc);
  SET_FQ_OPC (fq_index, insn);

  /* Update the fsr.  */
  fsr0 = GET_FSR (0);
  SET_FSR_QNE (fsr0); /* FQ not empty */
  SET_FSR_FTT (fsr0, fp_info->ftt);
  SET_FSR (0, fsr0);
}

/* Record the state of a division exception in the ISR.  */
static void
set_isr_exception_fields (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  USI isr = GET_ISR ();
  int dtt = GET_ISR_DTT (isr);
  dtt |= item->u.dtt;
  SET_ISR_DTT (isr, dtt);
  SET_ISR (isr);
}

/* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program
   interrupt.  */
static void
set_exception_status_registers (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
  int slot = (item->vpc - previous_vliw_pc) / 4;
  int reg_index = -1;
  int set_ear = 0;
  int set_edr = 0;
  int set_daec = 0;
  int set_epcr = 0;
  SI esr = 0;
  SIM_DESC sd = CPU_STATE (current_cpu);

  /* If the interrupt is strict (precise) or the interrupt is on the insns
     in the I0 pipe, then set the 0 registers.  */
  if (interrupt->precise)
    {
      reg_index = 0;
      if (interrupt->kind == FRV_REGISTER_EXCEPTION)
	SET_ESR_REC (esr, item->u.rec);
      else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION)
	SET_ESR_IAEC (esr, item->u.iaec);
      /* For fr550, don't set epcr for precise interrupts.  */
      if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
	set_epcr = 1;
    }
  else
    {
      switch (interrupt->kind)
	{
	case FRV_DIVISION_EXCEPTION:
	  set_isr_exception_fields (current_cpu, item);
	  /* fall thru to set reg_index.  */
	case FRV_COMMIT_EXCEPTION:
	  /* For fr550, always use ESR0.  */
	  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	    reg_index = 0;
	  else if (item->slot == UNIT_I0)
	    reg_index = 0;
	  else if (item->slot == UNIT_I1)
	    reg_index = 1;
	  set_epcr = 1;
	  break;
	case FRV_DATA_STORE_ERROR:
	  reg_index = 14; /* Use ESR14.  */
	  break;
	case FRV_DATA_ACCESS_ERROR:
	  reg_index = 15; /* Use ESR15, EPCR15.  */
	  set_ear = 1;
	  break;
	case FRV_DATA_ACCESS_EXCEPTION:
	  set_daec = 1;
	  /* fall through */
	case FRV_DATA_ACCESS_MMU_MISS:
	case FRV_MEM_ADDRESS_NOT_ALIGNED:
	  /* Get the appropriate ESR, EPCR, EAR and EDR.
	     EAR will be set. EDR will not be set if this is a store insn.  */
	  set_ear = 1;
	  /* For fr550, never use EDRx.  */
	  if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
	    if (item->u.data_written.length != 0)
	      set_edr = 1;
	  reg_index = esr_for_data_access_exception (current_cpu, item);
	  set_epcr = 1;
	  break;
	case FRV_MP_EXCEPTION:
	  /* For fr550, use EPCR2 and ESR2.  */
	  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	    {
	      reg_index = 2;
	      set_epcr = 1;
	    }
	  break; /* MSR0-1, FQ0-9 are already set.  */
	case FRV_FP_EXCEPTION:
	  set_fp_exception_registers (current_cpu, item);
	  /* For fr550, use EPCR2 and ESR2.  */
	  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	    {
	      reg_index = 2;
	      set_epcr = 1;
	    }
	  break;
	default:
	  {
	    SIM_DESC sd = CPU_STATE (current_cpu);
	    IADDR pc = CPU_PC_GET (current_cpu);
	    sim_engine_abort (sd, current_cpu, pc,
			      "invalid non-strict program interrupt kind: %d\n",
			      interrupt->kind);
	    break;
	  }
	}
    } /* non-strict (imprecise) interrupt */

  /* Now fill in the selected exception status registers.  */
  if (reg_index != -1)
    {
      /* Now set the exception status registers.  */
      SET_ESFR_FLAG (reg_index);
      SET_ESR_EC (esr, interrupt->ec);

      if (set_epcr)
	{
	  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
	    SET_EPCR (reg_index, previous_vliw_pc);
	  else
	    SET_EPCR (reg_index, item->vpc);
	}

      if (set_ear)
	{
	  SET_EAR (reg_index, item->eaddress);
	  SET_ESR_EAV (esr);
	}
      else
	CLEAR_ESR_EAV (esr);

      if (set_edr)
	{
	  int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */);
	  SET_ESR_EDN (esr, edn);
	  SET_ESR_EDV (esr);
	}
      else
	CLEAR_ESR_EDV (esr);

      if (set_daec)
	SET_ESR_DAEC (esr, item->u.daec);

      SET_ESR_VALID (esr);
      SET_ESR (reg_index, esr);
    }
}

/* Check for compound interrupts.
   Returns NULL if no interrupt is to be processed.  */
static struct frv_interrupt *
check_for_compound_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
)
{
  struct frv_interrupt *interrupt;

  /* Set the exception status registers for the original interrupt.  */
  set_exception_status_registers (current_cpu, item);
  interrupt = & frv_interrupt_table[item->kind];

  if (! interrupt->precise)
    {
      IADDR vpc = 0;
      int mask = 0;

      vpc = item->vpc;
      mask = (1 << item->kind);

      /* Look for more queued program interrupts which are non-deferred
	 (pending inhibit), imprecise (non-strict) different than an interrupt
	 already found and caused by a different insn.  A bit mask is used
	 to keep track of interrupts which have already been detected.  */
      while (item != frv_interrupt_state.queue)
	{
	  enum frv_interrupt_kind kind;
	  struct frv_interrupt *next_interrupt;
	  --item;
	  kind = item->kind;
	  next_interrupt = & frv_interrupt_table[kind];

	  if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT)
	    break; /* no program interrupts left.  */

	  if (item->vpc == vpc)
	    continue; /* caused by the same insn.  */

	  vpc = item->vpc;
	  if (! next_interrupt->precise && ! next_interrupt->deferred)
	    {
	      if (! (mask & (1 << kind)))
		{
		  /* Set the exception status registers for the additional
		     interrupt.  */
		  set_exception_status_registers (current_cpu, item);
		  mask |= (1 << kind);
		  interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION];
		}
	    }
	}
    }

  /* Return with either the original interrupt, a compound_exception,
     or no exception.  */
  return interrupt;
}

/* Handle a program interrupt.  */
void
frv_program_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
)
{
  struct frv_interrupt *interrupt;

  clear_exception_status_registers (current_cpu);
  /* If two or more non-deferred imprecise (non-strict) interrupts occur
     on two or more insns, then generate a compound_exception.  */
  interrupt = check_for_compound_interrupt (current_cpu, item);
  if (interrupt != NULL)
    {
      frv_program_or_software_interrupt (current_cpu, interrupt, pc);
      frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT,
				   FRV_PROGRAM_INTERRUPT);
    }
}

/* Handle a software interrupt.  */
void
frv_software_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
)
{
  struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
  frv_program_or_software_interrupt (current_cpu, interrupt, pc);
}

/* Handle a program interrupt or a software interrupt in non-operating mode.  */
void
frv_non_operating_interrupt (
  SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc
)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (kind)
    {
    case FRV_INTERRUPT_LEVEL_1:
    case FRV_INTERRUPT_LEVEL_2:
    case FRV_INTERRUPT_LEVEL_3:
    case FRV_INTERRUPT_LEVEL_4:
    case FRV_INTERRUPT_LEVEL_5:
    case FRV_INTERRUPT_LEVEL_6:
    case FRV_INTERRUPT_LEVEL_7:
    case FRV_INTERRUPT_LEVEL_8:
    case FRV_INTERRUPT_LEVEL_9:
    case FRV_INTERRUPT_LEVEL_10:
    case FRV_INTERRUPT_LEVEL_11:
    case FRV_INTERRUPT_LEVEL_12:
    case FRV_INTERRUPT_LEVEL_13:
    case FRV_INTERRUPT_LEVEL_14:
    case FRV_INTERRUPT_LEVEL_15:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: external %d\n", kind + 1);
      break;
    case FRV_TRAP_INSTRUCTION:
      break; /* handle as in operating mode.  */
    case FRV_COMMIT_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: commit_exception\n");
      break;
    case FRV_DIVISION_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: division_exception\n");
      break;
    case FRV_DATA_STORE_ERROR:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: data_store_error\n");
      break;
    case FRV_DATA_ACCESS_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: data_access_exception\n");
      break;
    case FRV_DATA_ACCESS_MMU_MISS:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: data_access_mmu_miss\n");
      break;
    case FRV_DATA_ACCESS_ERROR:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: data_access_error\n");
      break;
    case FRV_MP_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: mp_exception\n");
      break;
    case FRV_FP_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: fp_exception\n");
      break;
    case FRV_MEM_ADDRESS_NOT_ALIGNED:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: mem_address_not_aligned\n");
      break;
    case FRV_REGISTER_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: register_exception\n");
      break;
    case FRV_MP_DISABLED:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: mp_disabled\n");
      break;
    case FRV_FP_DISABLED:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: fp_disabled\n");
      break;
    case FRV_PRIVILEGED_INSTRUCTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: privileged_instruction\n");
      break;
    case FRV_ILLEGAL_INSTRUCTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: illegal_instruction\n");
      break;
    case FRV_INSTRUCTION_ACCESS_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: instruction_access_exception\n");
      break;
    case FRV_INSTRUCTION_ACCESS_MMU_MISS:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: instruction_access_mmu_miss\n");
      break;
    case FRV_INSTRUCTION_ACCESS_ERROR:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: insn_access_error\n");
      break;
    case FRV_COMPOUND_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: compound_exception\n");
      break;
    case FRV_BREAK_EXCEPTION:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: break_exception\n");
      break;
    case FRV_RESET:
      sim_engine_abort (sd, current_cpu, pc,
			"interrupt: reset\n");
      break;
    default:
      sim_engine_abort (sd, current_cpu, pc,
			"unhandled interrupt kind: %d\n", kind);
      break;
    }
}

/* Handle a break interrupt.  */
void
frv_break_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
)
{
  IADDR new_pc;

  /* BPCSR=PC
     BPSR.BS=PSR.S
     BPSR.BET=PSR.ET
     PSR.S=1
     PSR.ET=0
     TBR.TT=0xff
     PC=TBR
  */
  /* Must set PSR.S first to allow access to supervisor-only spr registers.  */
  SET_H_BPSR_BS (GET_H_PSR_S ());
  SET_H_BPSR_BET (GET_H_PSR_ET ());
  SET_H_PSR_S (1);
  SET_H_PSR_ET (0);
  /* Must set PSR.S first to allow access to supervisor-only spr registers.  */
  SET_H_SPR (H_SPR_BPCSR, current_pc);

  /* Set the new PC in the TBR.  */
  SET_H_TBR_TT (interrupt->handler_offset);
  new_pc = GET_H_SPR (H_SPR_TBR);
  SET_H_PC (new_pc);

  CPU_DEBUG_STATE (current_cpu) = 1;
}

/* Handle a program interrupt or a software interrupt.  */
void
frv_program_or_software_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
)
{
  USI new_pc;
  int original_psr_et;

  /* PCSR=PC
     PSR.PS=PSR.S
     PSR.ET=0
     PSR.S=1
     if PSR.ESR==1
       SR0 through SR3=GR4 through GR7
       TBR.TT=interrupt handler offset
       PC=TBR
  */
  original_psr_et = GET_H_PSR_ET ();

  SET_H_PSR_PS (GET_H_PSR_S ());
  SET_H_PSR_ET (0);
  SET_H_PSR_S (1);

  /* Must set PSR.S first to allow access to supervisor-only spr registers.  */
  /* The PCSR depends on the precision of the interrupt.  */
  if (interrupt->precise)
    SET_H_SPR (H_SPR_PCSR, previous_vliw_pc);
  else
    SET_H_SPR (H_SPR_PCSR, current_pc);

  /* Set the new PC in the TBR.  */
  SET_H_TBR_TT (interrupt->handler_offset);
  new_pc = GET_H_SPR (H_SPR_TBR);
  SET_H_PC (new_pc);

  /* If PSR.ET was not originally set, then enter the stopped state.  */
  if (! original_psr_et)
    {
      SIM_DESC sd = CPU_STATE (current_cpu);
      frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc);
      sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT);
    }
}

/* Handle a program interrupt or a software interrupt.  */
void
frv_external_interrupt (
  SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
)
{
  USI new_pc;
  struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];

  /* Don't process the interrupt if PSR.ET is not set or if it is masked.
     Interrupt 15 is processed even if it appears to be masked.  */
  if (! GET_H_PSR_ET ()
      || (interrupt->kind != FRV_INTERRUPT_LEVEL_15
	  && interrupt->kind < GET_H_PSR_PIL ()))
    return; /* Leave it for later.  */

  /* Remove the interrupt from the queue.  */
  --frv_interrupt_state.queue_index;

  /* PCSR=PC
     PSR.PS=PSR.S
     PSR.ET=0
     PSR.S=1
     if PSR.ESR==1
       SR0 through SR3=GR4 through GR7
       TBR.TT=interrupt handler offset
       PC=TBR
  */
  SET_H_PSR_PS (GET_H_PSR_S ());
  SET_H_PSR_ET (0);
  SET_H_PSR_S (1);
  /* Must set PSR.S first to allow access to supervisor-only spr registers.  */
  SET_H_SPR (H_SPR_PCSR, GET_H_PC ());

  /* Set the new PC in the TBR.  */
  SET_H_TBR_TT (interrupt->handler_offset);
  new_pc = GET_H_SPR (H_SPR_TBR);
  SET_H_PC (new_pc);
}

/* Clear interrupts which fall within the range of classes given.  */
void
frv_clear_interrupt_classes (
  enum frv_interrupt_class low_class, enum frv_interrupt_class high_class
)
{
  int i;
  int j;
  int limit = frv_interrupt_state.queue_index;

  /* Find the lowest priority interrupt to be removed.  */
  for (i = 0; i < limit; ++i)
    {
      enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind;
      struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
      if (interrupt->iclass >= low_class)
	break;
    }

  /* Find the highest priority interrupt to be removed.  */
  for (j = limit - 1; j >= i; --j)
    {
      enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind;
      struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
      if (interrupt->iclass <= high_class)
	break;
    }

  /* Shuffle the remaining high priority interrupts down into the empty space
     left by the deleted interrupts.  */
  if (j >= i)
    {
      for (++j; j < limit; ++j)
	frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j];
      frv_interrupt_state.queue_index -= (j - i);
    }
}

/* Save data written to memory into the interrupt state so that it can be
   copied to the appropriate EDR register, if necessary, in the event of an
   interrupt.  */
void
frv_save_data_written_for_interrupts (
  SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item
)
{
  /* Record the slot containing the insn doing the write in the
     interrupt state.  */
  frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item);

  /* Now record any data written to memory in the interrupt state.  */
  switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
    {
    case CGEN_BI_WRITE:
    case CGEN_QI_WRITE:
    case CGEN_SI_WRITE:
    case CGEN_SF_WRITE:
    case CGEN_PC_WRITE:
    case CGEN_FN_HI_WRITE:
    case CGEN_FN_SI_WRITE:
    case CGEN_FN_SF_WRITE:
    case CGEN_FN_DI_WRITE:
    case CGEN_FN_DF_WRITE:
    case CGEN_FN_XI_WRITE:
    case CGEN_FN_PC_WRITE:
      break; /* Ignore writes to registers.  */
    case CGEN_MEM_QI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_qi_write.value;
      break;
    case CGEN_MEM_HI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_hi_write.value;
      break;
    case CGEN_MEM_SI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_si_write.value;
      break;
    case CGEN_MEM_DI_WRITE:
      frv_interrupt_state.data_written.length = 2;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_di_write.value >> 32;
      frv_interrupt_state.data_written.words[1]
	= item->kinds.mem_di_write.value;
      break;
    case CGEN_MEM_DF_WRITE:
      frv_interrupt_state.data_written.length = 2;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_df_write.value >> 32;
      frv_interrupt_state.data_written.words[1]
	= item->kinds.mem_df_write.value;
      break;
    case CGEN_MEM_XI_WRITE:
      frv_interrupt_state.data_written.length = 4;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.mem_xi_write.value[0];
      frv_interrupt_state.data_written.words[1]
	= item->kinds.mem_xi_write.value[1];
      frv_interrupt_state.data_written.words[2]
	= item->kinds.mem_xi_write.value[2];
      frv_interrupt_state.data_written.words[3]
	= item->kinds.mem_xi_write.value[3];
      break;
    case CGEN_FN_MEM_QI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_qi_write.value;
      break;
    case CGEN_FN_MEM_HI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_hi_write.value;
      break;
    case CGEN_FN_MEM_SI_WRITE:
      frv_interrupt_state.data_written.length = 1;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_si_write.value;
      break;
    case CGEN_FN_MEM_DI_WRITE:
      frv_interrupt_state.data_written.length = 2;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_di_write.value >> 32;
      frv_interrupt_state.data_written.words[1]
	= item->kinds.fn_mem_di_write.value;
      break;
    case CGEN_FN_MEM_DF_WRITE:
      frv_interrupt_state.data_written.length = 2;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_df_write.value >> 32;
      frv_interrupt_state.data_written.words[1]
	= item->kinds.fn_mem_df_write.value;
      break;
    case CGEN_FN_MEM_XI_WRITE:
      frv_interrupt_state.data_written.length = 4;
      frv_interrupt_state.data_written.words[0]
	= item->kinds.fn_mem_xi_write.value[0];
      frv_interrupt_state.data_written.words[1]
	= item->kinds.fn_mem_xi_write.value[1];
      frv_interrupt_state.data_written.words[2]
	= item->kinds.fn_mem_xi_write.value[2];
      frv_interrupt_state.data_written.words[3]
	= item->kinds.fn_mem_xi_write.value[3];
      break;
    default:
      {
	SIM_DESC sd = CPU_STATE (current_cpu);
	IADDR pc = CPU_PC_GET (current_cpu);
	sim_engine_abort (sd, current_cpu, pc,
			  "unknown write kind during save for interrupt\n");
      }
      break;
    }
}