aboutsummaryrefslogtreecommitdiff
path: root/sim/d10v/interp.c
blob: 008894b0d8ddf19868b8d0a4a107167ce50100cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
#include <signal.h>
#include "sysdep.h"
#include "bfd.h"
#include "callback.h"
#include "remote-sim.h"

#include "d10v_sim.h"

#define IMEM_SIZE 18		/* D10V instruction memory size is 18 bits */
#define DMEM_SIZE 16		/* Data memory is 64K (but only 32K internal RAM) */
#define UMEM_SIZE 17		/* Each unified memory segment is 17 bits */
#define UMEM_SEGMENTS 128	/* Number of segments in unified memory region */

enum _leftright { LEFT_FIRST, RIGHT_FIRST };

static char *myname;
static SIM_OPEN_KIND sim_kind;
int d10v_debug;
host_callback *d10v_callback;
unsigned long ins_type_counters[ (int)INS_MAX ];

uint16 OP[4];

static int init_text_p = 0;
/* non-zero if we opened prog_bfd */
static int prog_bfd_was_opened_p;
bfd *prog_bfd;
asection *text;
bfd_vma text_start;
bfd_vma text_end;

static long hash PARAMS ((long insn, int format));
static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int size));
static void get_operands PARAMS ((struct simops *s, uint32 ins));
static void do_long PARAMS ((uint32 ins));
static void do_2_short PARAMS ((uint16 ins1, uint16 ins2, enum _leftright leftright));
static void do_parallel PARAMS ((uint16 ins1, uint16 ins2));
static char *add_commas PARAMS ((char *buf, int sizeof_buf, unsigned long value));
extern void sim_set_profile PARAMS ((int n));
extern void sim_set_profile_size PARAMS ((int n));

#ifndef INLINE
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#define INLINE __inline__
#else
#define INLINE
#endif
#endif

#define MAX_HASH  63
struct hash_entry
{
  struct hash_entry *next;
  long opcode;
  long mask;
  int size;
  struct simops *ops;
};

struct hash_entry hash_table[MAX_HASH+1];

INLINE static long 
hash(insn, format)
     long insn;
     int format;
{
  if (format & LONG_OPCODE)
    return ((insn & 0x3F000000) >> 24);
  else
    return((insn & 0x7E00) >> 9);
}

INLINE static struct hash_entry *
lookup_hash (ins, size)
     uint32 ins;
     int size;
{
  struct hash_entry *h;

  if (size)
    h = &hash_table[(ins & 0x3F000000) >> 24];
  else
    h = &hash_table[(ins & 0x7E00) >> 9];

  while ((ins & h->mask) != h->opcode || h->size != size)
    {
      if (h->next == NULL)
	{
	  (*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC);
	  exit (1);
	}
      h = h->next;
    }
  return (h);
}

INLINE static void
get_operands (struct simops *s, uint32 ins)
{
  int i, shift, bits, flags;
  uint32 mask;
  for (i=0; i < s->numops; i++)
    {
      shift = s->operands[3*i];
      bits = s->operands[3*i+1];
      flags = s->operands[3*i+2];
      mask = 0x7FFFFFFF >> (31 - bits);
      OP[i] = (ins >> shift) & mask;
    }
}

bfd_vma
decode_pc ()
{
  asection *s;
  if (!init_text_p && prog_bfd != NULL)
    {
      init_text_p = 1;
      for (s = prog_bfd->sections; s; s = s->next)
	if (strcmp (bfd_get_section_name (prog_bfd, s), ".text") == 0)
	  {
	    text = s;
	    text_start = bfd_get_section_vma (prog_bfd, s);
	    text_end = text_start + bfd_section_size (prog_bfd, s);
	    break;
	  }
    }

  return (PC << 2) + text_start;
}

static void
do_long (ins)
     uint32 ins;
{
  struct hash_entry *h;
#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
#endif
  h = lookup_hash (ins, 1);
  get_operands (h->ops, ins);
  State.ins_type = INS_LONG;
  ins_type_counters[ (int)State.ins_type ]++;
  (h->ops->func)();
}

static void
do_2_short (ins1, ins2, leftright)
     uint16 ins1, ins2;
     enum _leftright leftright;
{
  struct hash_entry *h;
  reg_t orig_pc = PC;
  enum _ins_type first, second;

#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
				       ins1, (leftright) ? "left" : "right", ins2);
#endif

  if (leftright == LEFT_FIRST)
    {
      first = INS_LEFT;
      second = INS_RIGHT;
      ins_type_counters[ (int)INS_LEFTRIGHT ]++;
    }
  else
    {
      first = INS_RIGHT;
      second = INS_LEFT;
      ins_type_counters[ (int)INS_RIGHTLEFT ]++;
    }

  h = lookup_hash (ins1, 0);
  get_operands (h->ops, ins1);
  State.ins_type = first;
  ins_type_counters[ (int)State.ins_type ]++;
  (h->ops->func)();

  /* If the PC has changed (ie, a jump), don't do the second instruction */
  if (orig_pc == PC && !State.exception)
    {
      h = lookup_hash (ins2, 0);
      get_operands (h->ops, ins2);
      State.ins_type = second;
      ins_type_counters[ (int)State.ins_type ]++;
      ins_type_counters[ (int)INS_CYCLES ]++;
      (h->ops->func)();
    }
  else if (orig_pc != PC && !State.exception)
    ins_type_counters[ (int)INS_COND_JUMP ]++;
}

static void
do_parallel (ins1, ins2)
     uint16 ins1, ins2;
{
  struct hash_entry *h1, *h2;
#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
#endif
  ins_type_counters[ (int)INS_PARALLEL ]++;
  h1 = lookup_hash (ins1, 0);
  h2 = lookup_hash (ins2, 0);

  if (h1->ops->exec_type == PARONLY)
    {
      get_operands (h1->ops, ins1);
      State.ins_type = INS_LEFT_COND_TEST;
      ins_type_counters[ (int)State.ins_type ]++;
      (h1->ops->func)();
      if (State.exe)
	{
	  ins_type_counters[ (int)INS_COND_TRUE ]++;
	  get_operands (h2->ops, ins2);
	  State.ins_type = INS_RIGHT_COND_EXE;
	  ins_type_counters[ (int)State.ins_type ]++;
	  (h2->ops->func)();
	}
      else
	ins_type_counters[ (int)INS_COND_FALSE ]++;
    }
  else if (h2->ops->exec_type == PARONLY)
    {
      get_operands (h2->ops, ins2);
      State.ins_type = INS_RIGHT_COND_TEST;
      ins_type_counters[ (int)State.ins_type ]++;
      (h2->ops->func)();
      if (State.exe)
	{
	  ins_type_counters[ (int)INS_COND_TRUE ]++;
	  get_operands (h1->ops, ins1);
	  State.ins_type = INS_LEFT_COND_EXE;
	  ins_type_counters[ (int)State.ins_type ]++;
	  (h1->ops->func)();
	}
      else
	ins_type_counters[ (int)INS_COND_FALSE ]++;
    }
  else
    {
      get_operands (h1->ops, ins1);
      State.ins_type = INS_LEFT_PARALLEL;
      ins_type_counters[ (int)State.ins_type ]++;
      (h1->ops->func)();
      if (!State.exception)
	{
	  get_operands (h2->ops, ins2);
	  State.ins_type = INS_RIGHT_PARALLEL;
	  ins_type_counters[ (int)State.ins_type ]++;
	  (h2->ops->func)();
	}
    }
}
 
static char *
add_commas(buf, sizeof_buf, value)
     char *buf;
     int sizeof_buf;
     unsigned long value;
{
  int comma = 3;
  char *endbuf = buf + sizeof_buf - 1;

  *--endbuf = '\0';
  do {
    if (comma-- == 0)
      {
	*--endbuf = ',';
	comma = 2;
      }

    *--endbuf = (value % 10) + '0';
  } while ((value /= 10) != 0);

  return endbuf;
}

void
sim_size (power)
     int power;

{
  int i;

  if (State.imem)
    {
      for (i=0;i<UMEM_SEGMENTS;i++)
	{
	  if (State.umem[i])
	    {
	      free (State.umem[i]);
	      State.umem[i] = NULL;
	    }
	}
      free (State.imem);
      free (State.dmem);
    }

  State.imem = (uint8 *)calloc(1,1<<IMEM_SIZE);
  State.dmem = (uint8 *)calloc(1,1<<DMEM_SIZE);
  for (i=1;i<(UMEM_SEGMENTS-1);i++)
    State.umem[i] = NULL;
  State.umem[0] = (uint8 *)calloc(1,1<<UMEM_SIZE);
  State.umem[1] = (uint8 *)calloc(1,1<<UMEM_SIZE);
  State.umem[2] = (uint8 *)calloc(1,1<<UMEM_SIZE);
  State.umem[UMEM_SEGMENTS-1] = (uint8 *)calloc(1,1<<UMEM_SIZE);
  if (!State.imem || !State.dmem || !State.umem[0] || !State.umem[1] || !State.umem[2] || !State.umem[UMEM_SEGMENTS-1] )
    {
      (*d10v_callback->printf_filtered) (d10v_callback, "Memory allocation failed.\n");
      exit(1);
    }
  
#ifdef DEBUG
  if ((d10v_debug & DEBUG_MEMSIZE) != 0)
    {
      char buffer[20];
      (*d10v_callback->printf_filtered) (d10v_callback,
					 "Allocated %s bytes instruction memory and\n",
					 add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)));

      (*d10v_callback->printf_filtered) (d10v_callback, "          %s bytes data memory.\n",
					 add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)));
    }
#endif
}

/* Transfer data to/from simulated memory.  Since a bug in either the
   simulated program or in gdb or the simulator itself may cause a
   bogus address to be passed in, we need to do some sanity checking
   on addresses to make sure they are within bounds.  When an address
   fails the bounds check, treat it as a zero length read/write rather
   than aborting the entire run. */

static int
xfer_mem (SIM_ADDR addr,
	  unsigned char *buffer,
	  int size,
	  int write_p)
{
  unsigned char *memory;
  int segment = ((addr >> 24) & 0xff);
  addr = (addr & 0x00ffffff);

#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    {
      if (write_p)
	{
	  (*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%02x:%06x\n", size, segment, addr);
	}
      else
	{
	  (*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%2x:%6x\n", size, segment, addr);
	}
    }
#endif

  /* to access data, we use the following mapping 
      0x00xxxxxx: Logical data address segment        (DMAP translated memory)
      0x01xxxxxx: Logical instruction address segment (IMAP translated memory)
      0x10xxxxxx: Physical data memory segment        (On-chip data memory)
      0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)
      0x12xxxxxx: Phisical unified memory segment     (Unified memory)
   */

  switch (segment)
    {
    case 0x00: /* DMAP translated memory */
      {
	int byte;
	for (byte = 0; byte < size; byte++)
	  {
	    uint8 *mem = dmem_addr (addr + byte);
	    if (mem == NULL)
	      return byte;
	    else if (write_p)
	      *mem = buffer[byte];
	    else
	      buffer[byte] = *mem;
	  }
	return byte;
      }

    case 0x01: /* IMAP translated memory */
      {
	int byte;
	for (byte = 0; byte < size; byte++)
	  {
	    uint8 *mem = imem_addr (addr + byte);
	    if (mem == NULL)
	      return byte;
	    else if (write_p)
	      *mem = buffer[byte];
	    else
	      buffer[byte] = *mem;
	  }
	return byte;
      }

    case 0x10: /* On-chip data memory */
      {
	addr &= ((1 << DMEM_SIZE) - 1);
	if ((addr + size) > (1 << DMEM_SIZE))
	  {
	    (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n",
					       addr + size - 1, (1 << DMEM_SIZE) - 1);
	    return (0);
	  }
	memory = State.dmem + addr;
	break;
      }

    case 0x11: /* On-chip insn memory */
      {
	addr &= ((1 << IMEM_SIZE) - 1);
	if ((addr + size) > (1 << IMEM_SIZE))
	  {
	    (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n",
					       addr + size - 1, (1 << IMEM_SIZE) - 1);
	    return (0);
	  }
	memory = State.imem + addr;
      }

    case 0x12: /* Unified memory */
      {
	int startsegment, startoffset;	/* Segment and offset within segment where xfer starts */
	int endsegment, endoffset;	/* Segment and offset within segment where xfer ends */
	
	startsegment = addr >> UMEM_SIZE;
	startoffset = addr & ((1 << UMEM_SIZE) - 1);
	endsegment = (addr + size) >> UMEM_SIZE;
	endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1);
	
	/* FIXME: We do not currently implement xfers across segments,
           so detect this case and fail gracefully. */
	
	if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0))
	  {
	    (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n");
	    return (0);
	  }
	if (!State.umem[startsegment])
	  {
#ifdef DEBUG
	    if ((d10v_debug & DEBUG_MEMSIZE) != 0)
	      {
		(*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n",
						   add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment);
	      }
#endif
	    State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE);
	  }
	if (!State.umem[startsegment])
	  {
	    (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE);
	    return (0);
	  }
	memory = State.umem[startsegment] + startoffset;
	break;
      }

    default:
      {
	(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%lx is not in valid range\n", (long) addr);
 	(*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx:  Logical data address segment		(DMAP translated memory)\n");
 	(*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx:  Logical instruction address segment	(IMAP translated memory)\n");
 	(*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx:  Physical data memory segment		(On-chip data memory)\n");
 	(*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx:  Physical instruction memory segment	(On-chip insn memory)\n");
 	(*d10v_callback->printf_filtered) (d10v_callback, "0x12xxxxxx:  Phisical unified memory segment		(Unified memory)\n");
	return (0);
      }
    }

  if (write_p)
    {
      memcpy (memory, buffer, size);
    }
  else
    {
      memcpy (buffer, memory, size);
    }

  return size;
}


int
sim_write (sd, addr, buffer, size)
     SIM_DESC sd;
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  /* FIXME: this should be performing a virtual transfer */
  return xfer_mem( addr, buffer, size, 1);
}

int
sim_read (sd, addr, buffer, size)
     SIM_DESC sd;
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  /* FIXME: this should be performing a virtual transfer */
  return xfer_mem( addr, buffer, size, 0);
}


SIM_DESC
sim_open (kind, callback, abfd, argv)
     SIM_OPEN_KIND kind;
     host_callback *callback;
     struct _bfd *abfd;
     char **argv;
{
  struct simops *s;
  struct hash_entry *h;
  static int init_p = 0;
  char **p;

  sim_kind = kind;
  d10v_callback = callback;
  myname = argv[0];

  for (p = argv + 1; *p; ++p)
    {
#ifdef DEBUG
      if (strcmp (*p, "-t") == 0)
	d10v_debug = DEBUG;
      else
#endif
	(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",*p);
    }
  
  /* put all the opcodes in the hash table */
  if (!init_p++)
    {
      for (s = Simops; s->func; s++)
	{
	  h = &hash_table[hash(s->opcode,s->format)];
      
	  /* go to the last entry in the chain */
	  while (h->next)
	    h = h->next;

	  if (h->ops)
	    {
	      h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
	      if (!h->next)
		perror ("malloc failure");

	      h = h->next;
	    }
	  h->ops = s;
	  h->mask = s->mask;
	  h->opcode = s->opcode;
	  h->size = s->is_long;
	}
    }

  /* reset the processor state */
  if (!State.imem)
    sim_size(1);
  sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);

  /* Fudge our descriptor.  */
  return (SIM_DESC) 1;
}


void
sim_close (sd, quitting)
     SIM_DESC sd;
     int quitting;
{
  if (prog_bfd != NULL && prog_bfd_was_opened_p)
    {
      bfd_close (prog_bfd);
      prog_bfd = NULL;
      prog_bfd_was_opened_p = 0;
    }
}

void
sim_set_profile (n)
     int n;
{
  (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile %d\n",n);
}

void
sim_set_profile_size (n)
     int n;
{
  (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n);
}


uint8 *
dmem_addr( addr )
     uint32 addr;
{
  int seg;

  addr &= 0xffff;

  if (addr > 0xbfff)
    {
      if ( (addr & 0xfff0) != 0xff00)
	{
	  (*d10v_callback->printf_filtered) (d10v_callback, "Data address 0x%lx is in I/O space, pc = 0x%lx.\n",
					     (long)addr, (long)decode_pc ());
	  State.exception = SIGBUS;
	}

      return State.dmem + addr;
    }
  
  if (addr > 0x7fff)
    {
      if (DMAP & 0x1000)
	{
	  /* instruction memory */
	  return (DMAP & 0xf) * 0x4000 + State.imem;
	}
      /* unified memory */
      /* this is ugly because we allocate unified memory in 128K segments and */
      /* dmap addresses 16k segments */
      seg = (DMAP & 0x3ff) >> 3;
      if (State.umem[seg] == NULL)
	{
	  (*d10v_callback->printf_filtered) (d10v_callback, "ERROR:  unified memory region %d unmapped, pc = 0x%lx\n",
					     seg, (long)decode_pc ());
	  State.exception = SIGBUS;
	}
      return State.umem[seg] + (DMAP & 7) * 0x4000;
    }

  return State.dmem + addr;
}


uint8 *
imem_addr (uint32 pc)
{
  uint16 imap;

  if (pc & 0x20000)
    imap = IMAP1;
  else
    imap = IMAP0;
  
  if (imap & 0x1000)
    return State.imem + pc;

  if (State.umem[imap & 0xff] == NULL)
    return 0;

  /* Discard upper bit(s) of PC in case IMAP1 selects unified memory. */
  pc &= (1 << UMEM_SIZE) - 1;

  return State.umem[imap & 0xff] + pc;
}


static int stop_simulator = 0;

int
sim_stop (sd)
     SIM_DESC sd;
{
  stop_simulator = 1;
  return 1;
}


/* Run (or resume) the program.  */
void
sim_resume (sd, step, siggnal)
     SIM_DESC sd;
     int step, siggnal;
{
  uint32 inst;
  int do_iba;
  uint8 *iaddr;

/*   (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d)  PC=0x%x\n",step,siggnal,PC); */
  State.exception = 0;
  if (step)
    sim_stop (sd);

  do
    {
      iaddr = imem_addr ((uint32)PC << 2);
      if (iaddr == NULL)
 	{
 	  State.exception = SIGBUS;
 	  break;
 	}
 
      inst = get_longword( iaddr ); 
 
      State.pc_changed = 0;
      ins_type_counters[ (int)INS_CYCLES ]++;
      
      /* check to see if IBA should be triggered after
	 this instruction */
      if (State.DB && (PC == IBA))
	do_iba = 1;
      else
	do_iba = 0;

      switch (inst & 0xC0000000)
	{
	case 0xC0000000:
	  /* long instruction */
	  do_long (inst & 0x3FFFFFFF);
	  break;
	case 0x80000000:
	  /* R -> L */
	  do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
	  break;
	case 0x40000000:
	  /* L -> R */
	  do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
	  break;
	case 0:
	  do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
	  break;
	}
      
      /* calculate the next PC */
      if (!State.pc_changed)
	{
	  if (State.RP && PC == RPT_E)
	    {
	      /* Note: The behavour of a branch instruction at RPT_E
                 is implementation dependant, this simulator takes the
                 branch.  Branching to RPT_E is valid, the instruction
                 must be executed before the loop is taken.  */
	      RPT_C -= 1;
	      if (RPT_C == 0)
		{
		  State.RP = 0;
		  PC++;
		}
	      else
		PC = RPT_S;
	    }
	  else
	    PC++;
	}
      
      if (do_iba)
	{
	  BPC = PC;
	  move_to_cr (BPSW_CR, PSW);
	  move_to_cr (PSW_CR, PSW & PSW_SM_BIT);
	  PC = SDBT_VECTOR_START;
	}
    }
  while ( !State.exception && !stop_simulator);
  
  if (step && !State.exception)
    State.exception = SIGTRAP;
}

int
sim_trace (sd)
     SIM_DESC sd;
{
#ifdef DEBUG
  d10v_debug = DEBUG;
#endif
  sim_resume (sd, 0, 0);
  return 1;
}

void
sim_info (sd, verbose)
     SIM_DESC sd;
     int verbose;
{
  char buf1[40];
  char buf2[40];
  char buf3[40];
  char buf4[40];
  char buf5[40];
  unsigned long left		= ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
  unsigned long left_nops	= ins_type_counters[ (int)INS_LEFT_NOPS ];
  unsigned long left_parallel	= ins_type_counters[ (int)INS_LEFT_PARALLEL ];
  unsigned long left_cond	= ins_type_counters[ (int)INS_LEFT_COND_TEST ];
  unsigned long left_total	= left + left_parallel + left_cond + left_nops;

  unsigned long right		= ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
  unsigned long right_nops	= ins_type_counters[ (int)INS_RIGHT_NOPS ];
  unsigned long right_parallel	= ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
  unsigned long right_cond	= ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
  unsigned long right_total	= right + right_parallel + right_cond + right_nops;

  unsigned long unknown		= ins_type_counters[ (int)INS_UNKNOWN ];
  unsigned long ins_long	= ins_type_counters[ (int)INS_LONG ];
  unsigned long parallel	= ins_type_counters[ (int)INS_PARALLEL ];
  unsigned long leftright	= ins_type_counters[ (int)INS_LEFTRIGHT ];
  unsigned long rightleft	= ins_type_counters[ (int)INS_RIGHTLEFT ];
  unsigned long cond_true	= ins_type_counters[ (int)INS_COND_TRUE ];
  unsigned long cond_false	= ins_type_counters[ (int)INS_COND_FALSE ];
  unsigned long cond_jump	= ins_type_counters[ (int)INS_COND_JUMP ];
  unsigned long cycles		= ins_type_counters[ (int)INS_CYCLES ];
  unsigned long total		= (unknown + left_total + right_total + ins_long);

  int size			= strlen (add_commas (buf1, sizeof (buf1), total));
  int parallel_size		= strlen (add_commas (buf1, sizeof (buf1),
						      (left_parallel > right_parallel) ? left_parallel : right_parallel));
  int cond_size			= strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
  int nop_size			= strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
  int normal_size		= strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));

  (*d10v_callback->printf_filtered) (d10v_callback,
				     "executed %*s left  instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
				     size, add_commas (buf1, sizeof (buf1), left_total),
				     normal_size, add_commas (buf2, sizeof (buf2), left),
				     parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
				     cond_size, add_commas (buf4, sizeof (buf4), left_cond),
				     nop_size, add_commas (buf5, sizeof (buf5), left_nops));

  (*d10v_callback->printf_filtered) (d10v_callback,
				     "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
				     size, add_commas (buf1, sizeof (buf1), right_total),
				     normal_size, add_commas (buf2, sizeof (buf2), right),
				     parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
				     cond_size, add_commas (buf4, sizeof (buf4), right_cond),
				     nop_size, add_commas (buf5, sizeof (buf5), right_nops));

  if (ins_long)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s long instruction(s)\n",
				       size, add_commas (buf1, sizeof (buf1), ins_long));

  if (parallel)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s parallel instruction(s)\n",
				       size, add_commas (buf1, sizeof (buf1), parallel));

  if (leftright)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s instruction(s) encoded L->R\n",
				       size, add_commas (buf1, sizeof (buf1), leftright));

  if (rightleft)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s instruction(s) encoded R->L\n",
				       size, add_commas (buf1, sizeof (buf1), rightleft));

  if (unknown)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s unknown instruction(s)\n",
				       size, add_commas (buf1, sizeof (buf1), unknown));

  if (cond_true)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "executed %*s instruction(s) due to EXExxx condition being true\n",
				       size, add_commas (buf1, sizeof (buf1), cond_true));

  if (cond_false)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "skipped  %*s instruction(s) due to EXExxx condition being false\n",
				       size, add_commas (buf1, sizeof (buf1), cond_false));

  if (cond_jump)
    (*d10v_callback->printf_filtered) (d10v_callback,
				       "skipped  %*s instruction(s) due to conditional branch succeeding\n",
				       size, add_commas (buf1, sizeof (buf1), cond_jump));

  (*d10v_callback->printf_filtered) (d10v_callback,
				     "executed %*s cycle(s)\n",
				     size, add_commas (buf1, sizeof (buf1), cycles));

  (*d10v_callback->printf_filtered) (d10v_callback,
				     "executed %*s total instructions\n",
				     size, add_commas (buf1, sizeof (buf1), total));
}

SIM_RC
sim_create_inferior (sd, abfd, argv, env)
     SIM_DESC sd;
     struct _bfd *abfd;
     char **argv;
     char **env;
{
  bfd_vma start_address;

  /* reset all state information */
  memset (&State.regs, 0, (int)&State.imem - (int)&State.regs[0]);

  if (argv)
    {
      /* a hack to set r0/r1 with argc/argv */
      /* some high memory that won't be overwritten by the stack soon */
      addr = State.regs[0] = 0x7C00;
      p = 20;
      i = 0;
      while (argv[i])
 	{
 	  SW (addr + 2*i, addr + p); 
 	  size = strlen (argv[i]) + 1;
 	  sim_write (sd, addr + 0, argv[i], size);
 	  p += size;
 	  i++;
 	}
      State.regs[1] = i;
    }

  /* set PC */
  if (abfd != NULL)
    start_address = bfd_get_start_address (abfd);
  else
    start_address = 0xffc0 << 2;
#ifdef DEBUG
  if (d10v_debug)
    (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior:  PC=0x%lx\n", (long) start_address);
#endif
  PC = start_address >> 2;

  /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board */
  /* resets imap0 and imap1 to 0x1000. */
  if (1)
    {
      SET_IMAP0 (0x0000);
      SET_IMAP1 (0x007f);
      SET_DMAP (0x0000);
    }
  else
    {
      SET_IMAP0(0x1000);
      SET_IMAP1(0x1000);
      SET_DMAP(0);
    }

  return SIM_RC_OK;
}


void
sim_set_callbacks (p)
     host_callback *p;
{
  d10v_callback = p;
}

void
sim_stop_reason (sd, reason, sigrc)
     SIM_DESC sd;
     enum sim_stop *reason;
     int *sigrc;
{
/*   (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason:  PC=0x%x\n",PC<<2); */

  switch (State.exception)
    {
    case SIG_D10V_STOP:			/* stop instruction */
      *reason = sim_exited;
      *sigrc = 0;
      break;

    case SIG_D10V_EXIT:			/* exit trap */
      *reason = sim_exited;
      *sigrc = State.regs[0];
      break;

    default:				/* some signal */
      *reason = sim_stopped;
      if (stop_simulator && !State.exception)
	*sigrc = SIGINT;
      else
	*sigrc = State.exception;
      break;
    }

  stop_simulator = 0;
}

void
sim_fetch_register (sd, rn, memory)
     SIM_DESC sd;
     int rn;
     unsigned char *memory;
{
  if (rn > 34)
    WRITE_64 (memory, State.a[rn-35]);
  else if (rn == 32)
    WRITE_16 (memory, IMAP0);
  else if (rn == 33)
    WRITE_16 (memory, IMAP1);
  else if (rn == 34)
    WRITE_16 (memory, DMAP);
  else if (rn >= 16)
    WRITE_16 (memory, move_from_cr (rn - 16));
  else
    WRITE_16 (memory, State.regs[rn]);
}
 
void
sim_store_register (sd, rn, memory)
     SIM_DESC sd;
     int rn;
     unsigned char *memory;
{
  if (rn > 34)
    State.a[rn-35] =  READ_64 (memory) & MASK40;
  else if (rn == 34)
    SET_DMAP( READ_16(memory) );
  else if (rn == 33)
    SET_IMAP1( READ_16(memory) );
  else if (rn == 32)
    SET_IMAP0( READ_16(memory) );
  else if (rn >= 16)
    move_to_cr (rn - 16, READ_16 (memory));
  else
    State.regs[rn]= READ_16 (memory);
}


void
sim_do_command (sd, cmd)
     SIM_DESC sd;
     char *cmd;
{ 
  (*d10v_callback->printf_filtered) (d10v_callback, "sim_do_command: %s\n",cmd);
}

SIM_RC
sim_load (sd, prog, abfd, from_tty)
     SIM_DESC sd;
     char *prog;
     bfd *abfd;
     int from_tty;
{
  extern bfd *sim_load_file (); /* ??? Don't know where this should live.  */

  if (prog_bfd != NULL && prog_bfd_was_opened_p)
    {
      bfd_close (prog_bfd);
      prog_bfd_was_opened_p = 0;
    }
  prog_bfd = sim_load_file (sd, myname, d10v_callback, prog, abfd,
			    sim_kind == SIM_OPEN_DEBUG,
			    1/*LMA*/, sim_write);
  if (prog_bfd == NULL)
    return SIM_RC_FAIL;
  prog_bfd_was_opened_p = abfd == NULL;
  return SIM_RC_OK;
}