1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
/* Simulator Floating-point support.
Copyright (C) 1994, 1997 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef SIM_FPU_C
#define SIM_FPU_C
#include "sim-main.h"
#include "sim-fpu.h"
#include "sim-assert.h"
#include <math.h>
/* Floating point number is <SIGN:1><EXP:EXPBITS><FRAC:FRACBITS> */
#define SP_NGARDS 7L
#define SP_GARDROUND 0x3f
#define SP_GARDMASK 0x7f
#define SP_GARDMSB 0x40
#define SP_EXPBITS 8
#define SP_EXPBIAS 127
#define SP_FRACBITS 23
#define SP_EXPMAX (0xff)
#define SP_QUIET_NAN 0x100000L
#define SP_FRAC_NBITS 32
#define SP_FRACHIGH 0x80000000L
#define SP_FRACHIGH2 0xc0000000L
#define DP_NGARDS 8L
#define DP_GARDROUND 0x7f
#define DP_GARDMASK 0xff
#define DP_GARDMSB 0x80
#define DP_EXPBITS 11
#define DP_EXPBIAS 1023
#define DP_FRACBITS 52
#define DP_EXPMAX (0x7ff)
#define DP_QUIET_NAN 0x8000000000000LL
#define DP_FRAC_NBITS 64
#define DP_FRACHIGH 0x8000000000000000LL
#define DP_FRACHIGH2 0xc000000000000000LL
#define EXPMAX (is_double ? DP_EXPMAX : SP_EXPMAX)
#define EXPBITS (is_double ? DP_EXPBITS : SP_EXPBITS)
#define EXPBIAS (is_double ? DP_EXPBIAS : SP_EXPBIAS)
#define FRACBITS (is_double ? DP_FRACBITS : SP_FRACBITS)
#define NGARDS (is_double ? DP_NGARDS : (SP_NGARDS ))
#define SIGNBIT (1LL << (EXPBITS + FRACBITS))
#define FRAC_NBITS (is_double ? DP_FRAC_NBITS : SP_FRAC_NBITS)
#define GARDMASK (is_double ? DP_GARDMASK : SP_GARDMASK)
#define GARDMSB (is_double ? DP_GARDMSB : SP_GARDMSB)
#define GARDROUND (is_double ? DP_GARDROUND : SP_GARDROUND)
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
of a float and of a double. Assumes there are only two float types.
(double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
*/
#define F_D_BITOFF (is_double ? 0 : (52+8-(23+7)))
#if 0
#define (is_double ? DP_ : SP_)
#endif
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS))
#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS))
#define MAX_SI_INT (is_double ? LSMASK64 (63) : LSMASK64 (31))
#define MAX_USI_INT (is_double ? LSMASK64 (64) : LSMASK64 (32))
typedef enum
{
sim_fpu_class_snan,
sim_fpu_class_qnan,
sim_fpu_class_zero,
sim_fpu_class_number,
sim_fpu_class_infinity,
} sim_fpu_class;
typedef struct _sim_ufpu {
sim_fpu_class class;
int normal_exp;
int sign;
unsigned64 fraction;
union {
double d;
unsigned64 i;
} val;
} sim_ufpu;
STATIC_INLINE_SIM_FPU (unsigned64)
pack_fpu (const sim_ufpu *src, int is_double)
{
unsigned64 fraction;
unsigned64 exp;
int sign;
switch (src->class)
{
default:
/* create a NaN */
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
sign = 1; /* fixme - always a qNaN */
exp = EXPMAX;
fraction = src->fraction;
break;
case sim_fpu_class_infinity:
sign = src->sign;
exp = EXPMAX;
fraction = 0;
break;
case sim_fpu_class_zero:
sign = src->sign;
exp = 0;
fraction = 0;
break;
case sim_fpu_class_number:
if (src->normal_exp < NORMAL_EXPMIN)
{
/* This number's exponent is too low to fit into the bits
available in the number, so we'll store 0 in the exponent and
shift the fraction to the right to make up for it. */
int shift = NORMAL_EXPMIN - src->normal_exp;
sign = src->sign;
exp = 0;
if (shift > (FRAC_NBITS - NGARDS))
{
/* No point shifting, since it's more that 64 out. */
fraction = 0;
}
else
{
/* Shift by the value */
fraction = src->fraction >> F_D_BITOFF;
fraction >>= shift;
fraction >>= NGARDS;
}
}
else if (src->normal_exp > EXPBIAS)
{
/* Infinity */
sign = src->sign;
exp = EXPMAX;
fraction = 0;
}
else
{
sign = src->sign;
exp = (src->normal_exp + EXPBIAS);
fraction = src->fraction >> F_D_BITOFF;
/* IF the gard bits are the all zero, but the first, then we're
half way between two numbers, choose the one which makes the
lsb of the answer 0. */
if ((fraction & GARDMASK) == GARDMSB)
{
if (fraction & (1 << NGARDS))
fraction += GARDROUND + 1;
}
else
{
/* Add a one to the guards to round up */
fraction += GARDROUND;
}
if (fraction >= IMPLICIT_2)
{
fraction >>= 1;
exp += 1;
}
fraction >>= NGARDS;
}
}
return ((sign ? SIGNBIT : 0)
| (exp << FRACBITS)
| LSMASKED64 (fraction, FRACBITS));
}
STATIC_INLINE_SIM_FPU (void)
unpack_fpu (sim_ufpu *dst, unsigned64 s, int is_double)
{
unsigned64 fraction = LSMASKED64 (s, FRACBITS);
unsigned exp = LSMASKED64 (s >> FRACBITS, EXPBITS);
dst->sign = (s & SIGNBIT) != 0;
if (exp == 0)
{
/* Hmm. Looks like 0 */
if (fraction == 0)
{
/* tastes like zero */
dst->class = sim_fpu_class_zero;
}
else
{
/* Zero exponent with non zero fraction - it's denormalized,
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
fraction <<= NGARDS;
dst->class = sim_fpu_class_number;
while (fraction < IMPLICIT_1)
{
fraction <<= 1;
dst->normal_exp--;
}
dst->fraction = fraction << F_D_BITOFF;
}
}
else if (exp == EXPMAX)
{
/* Huge exponent*/
if (fraction == 0)
{
/* Attached to a zero fraction - means infinity */
dst->class = sim_fpu_class_infinity;
}
else
{
/* Non zero fraction, means nan */
if (dst->sign)
{
dst->class = sim_fpu_class_snan;
}
else
{
dst->class = sim_fpu_class_qnan;
}
/* Keep the fraction part as the nan number */
dst->fraction = fraction << F_D_BITOFF;
}
}
else
{
/* Nothing strange about this number */
dst->normal_exp = exp - EXPBIAS;
dst->class = sim_fpu_class_number;
dst->fraction = ((fraction << NGARDS) | IMPLICIT_1) << F_D_BITOFF;
}
/* sanity checks */
dst->val.i = -1;
dst->val.i = pack_fpu (dst, 1);
{
if (is_double)
{
ASSERT (dst->val.i == s);
}
else
{
unsigned32 val = pack_fpu (dst, 0);
unsigned32 org = s;
ASSERT (val == org);
}
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
ufpu2fpu (const sim_ufpu *d)
{
sim_fpu ans;
ans.val.i = pack_fpu (d, 1);
return ans;
}
STATIC_INLINE_SIM_FPU (sim_ufpu)
fpu2ufpu (const sim_fpu *d)
{
sim_ufpu ans;
unpack_fpu (&ans, d->val.i, 1);
return ans;
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_number (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
case sim_fpu_class_number:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_nan (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_zero (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_inf (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_infinity:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
fpu_nan (void)
{
sim_ufpu tmp;
tmp.class = sim_fpu_class_snan;
tmp.fraction = 0;
tmp.sign = 1;
tmp.normal_exp = 0;
return ufpu2fpu (&tmp);
}
STATIC_INLINE_SIM_FPU (signed64)
fpu2i (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_SI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 2))
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return a.sign ? (-tmp) : (tmp);
}
STATIC_INLINE_SIM_FPU (unsigned64)
fpu2u (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_USI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_USI_INT : 0;
/* it is a negative number */
if (a.sign)
return 0;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 1))
return MAX_USI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS + F_D_BITOFF)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return tmp;
}
/* register <-> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_32to (unsigned32 s)
{
sim_ufpu tmp;
unpack_fpu (&tmp, s, 0);
return ufpu2fpu (&tmp);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_64to (unsigned64 s)
{
sim_fpu ans;
ans.val.i = s;
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32 (sim_fpu l)
{
/* convert to single safely */
sim_ufpu tmp = fpu2ufpu (&l);
return pack_fpu (&tmp, 0);
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64 (sim_fpu s)
{
return s.val.i;
}
/* Arithmetic ops */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_add (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d + r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sub (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d - r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_mul (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d * r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_div (sim_fpu l,
sim_fpu r)
{
const int is_double = 1;
sim_ufpu a = fpu2ufpu (&l);
sim_ufpu b = fpu2ufpu (&r);
unsigned64 bit;
unsigned64 numerator;
unsigned64 denominator;
unsigned64 quotient;
if (is_ufpu_nan (&a))
{
return ufpu2fpu (&a);
}
if (is_ufpu_nan (&b))
{
return ufpu2fpu (&b);
}
if (is_ufpu_inf (&a) || is_ufpu_zero (&a))
{
if (a.class == b.class)
return fpu_nan ();
return l;
}
a.sign = a.sign ^ b.sign;
if (is_ufpu_inf (&b))
{
a.fraction = 0;
a.normal_exp = 0;
return ufpu2fpu (&a);
}
if (is_ufpu_zero (&b))
{
a.class = sim_fpu_class_infinity;
return ufpu2fpu (&a);
}
/* Calculate the mantissa by multiplying both 64bit numbers to get a
128 bit number */
{
/* quotient =
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
*/
a.normal_exp = a.normal_exp - b.normal_exp;
numerator = a.fraction;
denominator = b.fraction;
if (numerator < denominator)
{
/* Fraction will be less than 1.0 */
numerator *= 2;
a.normal_exp--;
}
bit = IMPLICIT_1;
quotient = 0;
/* ??? Does divide one bit at a time. Optimize. */
while (bit)
{
if (numerator >= denominator)
{
quotient |= bit;
numerator -= denominator;
}
bit >>= 1;
numerator *= 2;
}
if ((quotient & GARDMASK) == GARDMSB)
{
if (quotient & (1 << NGARDS))
{
/* half way, so round to even */
quotient += GARDROUND + 1;
}
else if (numerator)
{
/* but we really weren't half way, more bits exist */
quotient += GARDROUND + 1;
}
}
a.fraction = quotient;
return ufpu2fpu (&a);
}
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_inv (sim_fpu r)
{
sim_fpu ans;
ans.val.d = 1 / r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sqrt (sim_fpu r)
{
sim_fpu ans;
ans.val.d = sqrt (r.val.d);
return ans;
}
/* int/long -> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_i32to (signed32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (signed32)
sim_fpu_to32i (sim_fpu s)
{
return fpu2i (s, 0);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_u32to (unsigned32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32u (sim_fpu s)
{
return fpu2u (s, 0);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_i64to (signed64 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (signed64)
sim_fpu_to64i (sim_fpu s)
{
return fpu2i (s, 1);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_u64to (unsigned64 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64u (sim_fpu s)
{
return fpu2u (s, 1);
}
/* sim_fpu -> host format */
INLINE_SIM_FPU (float)
sim_fpu_2f (sim_fpu f)
{
return f.val.d;
}
INLINE_SIM_FPU (double)
sim_fpu_2d (sim_fpu s)
{
return s.val.d;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_f2 (float f)
{
sim_fpu ans;
ans.val.d = f;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_d2 (double d)
{
sim_fpu ans;
ans.val.d = d;
return ans;
}
/* General */
INLINE_SIM_FPU (int)
sim_fpu_is_nan (sim_fpu d)
{
sim_ufpu tmp = fpu2ufpu (&d);
return is_ufpu_nan (&tmp);
}
/* Compare operators */
INLINE_SIM_FPU (int)
sim_fpu_is_lt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d < r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_le (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d <= r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_eq (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d == r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_ne (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d != r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_ge (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d >= r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_gt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d > r.val.d);
else
return 0;
}
#endif
|