1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
/* Semantics ops support for CGEN-based simulators.
Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of the GNU Simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef CGEN_SEM_OPS_H
#define CGEN_SEM_OPS_H
#include <assert.h>
#if defined (__GNUC__) && ! defined (SEMOPS_DEFINE_INLINE)
#define SEMOPS_DEFINE_INLINE
#define SEMOPS_INLINE extern inline
#else
#define SEMOPS_INLINE
#endif
/* Semantic operations.
At one point this file was machine generated. Maybe it will be again. */
/* TODO: Lazy encoding/decoding of fp values. */
/* These don't really have a mode. */
#define ANDIF(x, y) ((x) && (y))
#define ORIF(x, y) ((x) || (y))
#define SUBBI(x, y) ((x) - (y))
#define ANDBI(x, y) ((x) & (y))
#define ORBI(x, y) ((x) | (y))
#define XORBI(x, y) ((x) ^ (y))
#define NEGBI(x) (- (x))
#define NOTBI(x) (! (BI) (x))
#define INVBI(x) (~ (x))
#define EQBI(x, y) ((BI) (x) == (BI) (y))
#define NEBI(x, y) ((BI) (x) != (BI) (y))
#define LTBI(x, y) ((BI) (x) < (BI) (y))
#define LEBI(x, y) ((BI) (x) <= (BI) (y))
#define GTBI(x, y) ((BI) (x) > (BI) (y))
#define GEBI(x, y) ((BI) (x) >= (BI) (y))
#define LTUBI(x, y) ((BI) (x) < (BI) (y))
#define LEUBI(x, y) ((BI) (x) <= (BI) (y))
#define GTUBI(x, y) ((BI) (x) > (BI) (y))
#define GEUBI(x, y) ((BI) (x) >= (BI) (y))
#define ADDQI(x, y) ((x) + (y))
#define SUBQI(x, y) ((x) - (y))
#define MULQI(x, y) ((x) * (y))
#define DIVQI(x, y) ((QI) (x) / (QI) (y))
#define UDIVQI(x, y) ((UQI) (x) / (UQI) (y))
#define MODQI(x, y) ((QI) (x) % (QI) (y))
#define UMODQI(x, y) ((UQI) (x) % (UQI) (y))
#define SRAQI(x, y) ((QI) (x) >> (y))
#define SRLQI(x, y) ((UQI) (x) >> (y))
#define SLLQI(x, y) ((UQI) (x) << (y))
extern QI RORQI (QI, int);
extern QI ROLQI (QI, int);
#define ANDQI(x, y) ((x) & (y))
#define ORQI(x, y) ((x) | (y))
#define XORQI(x, y) ((x) ^ (y))
#define NEGQI(x) (- (x))
#define NOTQI(x) (! (QI) (x))
#define INVQI(x) (~ (x))
#define ABSQI(x) ((x) < 0 ? -(x) : (x))
#define EQQI(x, y) ((QI) (x) == (QI) (y))
#define NEQI(x, y) ((QI) (x) != (QI) (y))
#define LTQI(x, y) ((QI) (x) < (QI) (y))
#define LEQI(x, y) ((QI) (x) <= (QI) (y))
#define GTQI(x, y) ((QI) (x) > (QI) (y))
#define GEQI(x, y) ((QI) (x) >= (QI) (y))
#define LTUQI(x, y) ((UQI) (x) < (UQI) (y))
#define LEUQI(x, y) ((UQI) (x) <= (UQI) (y))
#define GTUQI(x, y) ((UQI) (x) > (UQI) (y))
#define GEUQI(x, y) ((UQI) (x) >= (UQI) (y))
#define ADDHI(x, y) ((x) + (y))
#define SUBHI(x, y) ((x) - (y))
#define MULHI(x, y) ((x) * (y))
#define DIVHI(x, y) ((HI) (x) / (HI) (y))
#define UDIVHI(x, y) ((UHI) (x) / (UHI) (y))
#define MODHI(x, y) ((HI) (x) % (HI) (y))
#define UMODHI(x, y) ((UHI) (x) % (UHI) (y))
#define SRAHI(x, y) ((HI) (x) >> (y))
#define SRLHI(x, y) ((UHI) (x) >> (y))
#define SLLHI(x, y) ((UHI) (x) << (y))
extern HI RORHI (HI, int);
extern HI ROLHI (HI, int);
#define ANDHI(x, y) ((x) & (y))
#define ORHI(x, y) ((x) | (y))
#define XORHI(x, y) ((x) ^ (y))
#define NEGHI(x) (- (x))
#define NOTHI(x) (! (HI) (x))
#define INVHI(x) (~ (x))
#define ABSHI(x) ((x) < 0 ? -(x) : (x))
#define EQHI(x, y) ((HI) (x) == (HI) (y))
#define NEHI(x, y) ((HI) (x) != (HI) (y))
#define LTHI(x, y) ((HI) (x) < (HI) (y))
#define LEHI(x, y) ((HI) (x) <= (HI) (y))
#define GTHI(x, y) ((HI) (x) > (HI) (y))
#define GEHI(x, y) ((HI) (x) >= (HI) (y))
#define LTUHI(x, y) ((UHI) (x) < (UHI) (y))
#define LEUHI(x, y) ((UHI) (x) <= (UHI) (y))
#define GTUHI(x, y) ((UHI) (x) > (UHI) (y))
#define GEUHI(x, y) ((UHI) (x) >= (UHI) (y))
#define ADDSI(x, y) ((x) + (y))
#define SUBSI(x, y) ((x) - (y))
#define MULSI(x, y) ((x) * (y))
#define DIVSI(x, y) ((SI) (x) / (SI) (y))
#define UDIVSI(x, y) ((USI) (x) / (USI) (y))
#define MODSI(x, y) ((SI) (x) % (SI) (y))
#define UMODSI(x, y) ((USI) (x) % (USI) (y))
#define SRASI(x, y) ((SI) (x) >> (y))
#define SRLSI(x, y) ((USI) (x) >> (y))
#define SLLSI(x, y) ((USI) (x) << (y))
extern SI RORSI (SI, int);
extern SI ROLSI (SI, int);
#define ANDSI(x, y) ((x) & (y))
#define ORSI(x, y) ((x) | (y))
#define XORSI(x, y) ((x) ^ (y))
#define NEGSI(x) (- (x))
#define NOTSI(x) (! (SI) (x))
#define INVSI(x) (~ (x))
#define ABSSI(x) ((x) < 0 ? -(x) : (x))
#define EQSI(x, y) ((SI) (x) == (SI) (y))
#define NESI(x, y) ((SI) (x) != (SI) (y))
#define LTSI(x, y) ((SI) (x) < (SI) (y))
#define LESI(x, y) ((SI) (x) <= (SI) (y))
#define GTSI(x, y) ((SI) (x) > (SI) (y))
#define GESI(x, y) ((SI) (x) >= (SI) (y))
#define LTUSI(x, y) ((USI) (x) < (USI) (y))
#define LEUSI(x, y) ((USI) (x) <= (USI) (y))
#define GTUSI(x, y) ((USI) (x) > (USI) (y))
#define GEUSI(x, y) ((USI) (x) >= (USI) (y))
#ifdef DI_FN_SUPPORT
extern DI ADDDI (DI, DI);
extern DI SUBDI (DI, DI);
extern DI MULDI (DI, DI);
extern DI DIVDI (DI, DI);
extern DI UDIVDI (DI, DI);
extern DI MODDI (DI, DI);
extern DI UMODDI (DI, DI);
extern DI SRADI (DI, int);
extern UDI SRLDI (UDI, int);
extern UDI SLLDI (UDI, int);
extern DI RORDI (DI, int);
extern DI ROLDI (DI, int);
extern DI ANDDI (DI, DI);
extern DI ORDI (DI, DI);
extern DI XORDI (DI, DI);
extern DI NEGDI (DI);
extern int NOTDI (DI);
extern DI INVDI (DI);
extern int EQDI (DI, DI);
extern int NEDI (DI, DI);
extern int LTDI (DI, DI);
extern int LEDI (DI, DI);
extern int GTDI (DI, DI);
extern int GEDI (DI, DI);
extern int LTUDI (UDI, UDI);
extern int LEUDI (UDI, UDI);
extern int GTUDI (UDI, UDI);
extern int GEUDI (UDI, UDI);
#else /* ! DI_FN_SUPPORT */
#define ADDDI(x, y) ((x) + (y))
#define SUBDI(x, y) ((x) - (y))
#define MULDI(x, y) ((x) * (y))
#define DIVDI(x, y) ((DI) (x) / (DI) (y))
#define UDIVDI(x, y) ((UDI) (x) / (UDI) (y))
#define MODDI(x, y) ((DI) (x) % (DI) (y))
#define UMODDI(x, y) ((UDI) (x) % (UDI) (y))
#define SRADI(x, y) ((DI) (x) >> (y))
#define SRLDI(x, y) ((UDI) (x) >> (y))
#define SLLDI(x, y) ((UDI) (x) << (y))
extern DI RORDI (DI, int);
extern DI ROLDI (DI, int);
#define ANDDI(x, y) ((x) & (y))
#define ORDI(x, y) ((x) | (y))
#define XORDI(x, y) ((x) ^ (y))
#define NEGDI(x) (- (x))
#define NOTDI(x) (! (DI) (x))
#define INVDI(x) (~ (x))
#define ABSDI(x) ((x) < 0 ? -(x) : (x))
#define EQDI(x, y) ((DI) (x) == (DI) (y))
#define NEDI(x, y) ((DI) (x) != (DI) (y))
#define LTDI(x, y) ((DI) (x) < (DI) (y))
#define LEDI(x, y) ((DI) (x) <= (DI) (y))
#define GTDI(x, y) ((DI) (x) > (DI) (y))
#define GEDI(x, y) ((DI) (x) >= (DI) (y))
#define LTUDI(x, y) ((UDI) (x) < (UDI) (y))
#define LEUDI(x, y) ((UDI) (x) <= (UDI) (y))
#define GTUDI(x, y) ((UDI) (x) > (UDI) (y))
#define GEUDI(x, y) ((UDI) (x) >= (UDI) (y))
#endif /* DI_FN_SUPPORT */
#define EXTBIQI(x) ((QI) (BI) (x))
#define EXTBIHI(x) ((HI) (BI) (x))
#define EXTBISI(x) ((SI) (BI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTBIDI (BI);
#else
#define EXTBIDI(x) ((DI) (BI) (x))
#endif
#define EXTQIHI(x) ((HI) (QI) (x))
#define EXTQISI(x) ((SI) (QI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTQIDI (QI);
#else
#define EXTQIDI(x) ((DI) (QI) (x))
#endif
#define EXTHIHI(x) ((HI) (HI) (x))
#define EXTHISI(x) ((SI) (HI) (x))
#define EXTSISI(x) ((SI) (SI) (x))
#if defined (DI_FN_SUPPORT)
extern DI EXTHIDI (HI);
#else
#define EXTHIDI(x) ((DI) (HI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern DI EXTSIDI (SI);
#else
#define EXTSIDI(x) ((DI) (SI) (x))
#endif
#define ZEXTBIQI(x) ((QI) (BI) (x))
#define ZEXTBIHI(x) ((HI) (BI) (x))
#define ZEXTBISI(x) ((SI) (BI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTBIDI (BI);
#else
#define ZEXTBIDI(x) ((DI) (BI) (x))
#endif
#define ZEXTQIHI(x) ((HI) (UQI) (x))
#define ZEXTQISI(x) ((SI) (UQI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTQIDI (QI);
#else
#define ZEXTQIDI(x) ((DI) (UQI) (x))
#endif
#define ZEXTHISI(x) ((SI) (UHI) (x))
#define ZEXTHIHI(x) ((HI) (UHI) (x))
#define ZEXTSISI(x) ((SI) (USI) (x))
#if defined (DI_FN_SUPPORT)
extern DI ZEXTHIDI (HI);
#else
#define ZEXTHIDI(x) ((DI) (UHI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern DI ZEXTSIDI (SI);
#else
#define ZEXTSIDI(x) ((DI) (USI) (x))
#endif
#define TRUNCQIBI(x) ((BI) (QI) (x))
#define TRUNCHIBI(x) ((BI) (HI) (x))
#define TRUNCHIQI(x) ((QI) (HI) (x))
#define TRUNCSIBI(x) ((BI) (SI) (x))
#define TRUNCSIQI(x) ((QI) (SI) (x))
#define TRUNCSIHI(x) ((HI) (SI) (x))
#define TRUNCSISI(x) ((SI) (SI) (x))
#if defined (DI_FN_SUPPORT)
extern BI TRUNCDIBI (DI);
#else
#define TRUNCDIBI(x) ((BI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern QI TRUNCDIQI (DI);
#else
#define TRUNCDIQI(x) ((QI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern HI TRUNCDIHI (DI);
#else
#define TRUNCDIHI(x) ((HI) (DI) (x))
#endif
#if defined (DI_FN_SUPPORT)
extern SI TRUNCDISI (DI);
#else
#define TRUNCDISI(x) ((SI) (DI) (x))
#endif
/* Composing/decomposing the various types.
Word ordering is endian-independent. Words are specified most to least
significant and word number 0 is the most significant word.
??? May also wish an endian-dependent version. Later. */
#ifdef SEMOPS_DEFINE_INLINE
SEMOPS_INLINE SF
SUBWORDSISF (SI in)
{
union { SI in; SF out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE DF
SUBWORDDIDF (DI in)
{
union { DI in; DF out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE QI
SUBWORDSIQI (SI in, int byte)
{
assert (byte >= 0 && byte <= 3);
return (UQI) (in >> (8 * (3 - byte)));
}
SEMOPS_INLINE UQI
SUBWORDSIUQI (SI in, int byte)
{
assert (byte >= 0 && byte <= 3);
return (UQI) (in >> (8 * (3 - byte)));
}
SEMOPS_INLINE HI
SUBWORDDIHI (DI in, int word)
{
assert (word >= 0 && word <= 3);
return (UHI) (in >> (16 * (3 - word)));
}
SEMOPS_INLINE HI
SUBWORDSIHI (SI in, int word)
{
if (word == 0)
return (USI) in >> 16;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDSFSI (SF in)
{
union { SF in; SI out; } x;
x.in = in;
return x.out;
}
SEMOPS_INLINE UQI
SUBWORDDIUQI (DI in, int byte)
{
assert (byte >= 0 && byte <= 7);
return (UQI) (in >> (8 * (7 - byte)));
}
SEMOPS_INLINE SI
SUBWORDDISI (DI in, int word)
{
if (word == 0)
return (UDI) in >> 32;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDDFSI (DF in, int word)
{
/* Note: typedef UDI DF; */
if (word == 0)
return (UDI) in >> 32;
else
return in;
}
SEMOPS_INLINE SI
SUBWORDXFSI (XF in, int word)
{
/* Note: typedef struct { SI parts[3]; } XF; */
union { XF in; SI out[3]; } x;
x.in = in;
return x.out[word];
}
SEMOPS_INLINE SI
SUBWORDTFSI (TF in, int word)
{
/* Note: typedef struct { SI parts[4]; } TF; */
union { TF in; SI out[4]; } x;
x.in = in;
return x.out[word];
}
SEMOPS_INLINE DI
JOINSIDI (SI x0, SI x1)
{
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
return MAKEDI (x0, x1);
else
return MAKEDI (x1, x0);
}
SEMOPS_INLINE DF
JOINSIDF (SI x0, SI x1)
{
union { SI in[2]; DF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1;
else
x.in[1] = x0, x.in[0] = x1;
return x.out;
}
SEMOPS_INLINE XF
JOINSIXF (SI x0, SI x1, SI x2)
{
union { SI in[3]; XF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1, x.in[2] = x2;
else
x.in[2] = x0, x.in[1] = x1, x.in[0] = x2;
return x.out;
}
SEMOPS_INLINE TF
JOINSITF (SI x0, SI x1, SI x2, SI x3)
{
union { SI in[4]; TF out; } x;
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
x.in[0] = x0, x.in[1] = x1, x.in[2] = x2, x.in[3] = x3;
else
x.in[3] = x0, x.in[2] = x1, x.in[1] = x2, x.in[0] = x3;
return x.out;
}
#else
QI SUBWORDSIQI (SI);
HI SUBWORDSIHI (HI);
SI SUBWORDSFSI (SF);
SF SUBWORDSISF (SI);
DF SUBWORDDIDF (DI);
HI SUBWORDDIHI (DI, int);
SI SUBWORDDISI (DI, int);
SI SUBWORDDFSI (DF, int);
SI SUBWORDXFSI (XF, int);
SI SUBWORDTFSI (TF, int);
UQI SUBWORDSIUQI (SI);
UQI SUBWORDDIUQI (DI);
DI JOINSIDI (SI, SI);
DF JOINSIDF (SI, SI);
XF JOINSIXF (SI, SI, SI);
TF JOINSITF (SI, SI, SI, SI);
#endif /* SUBWORD,JOIN */
/* Semantic support utilities. */
#ifdef SEMOPS_DEFINE_INLINE
SEMOPS_INLINE SI
ADDCSI (SI a, SI b, BI c)
{
SI res = ADDSI (a, ADDSI (b, c));
return res;
}
SEMOPS_INLINE BI
ADDCFSI (SI a, SI b, BI c)
{
SI tmp = ADDSI (a, ADDSI (b, c));
BI res = ((USI) tmp < (USI) a) || (c && tmp == a);
return res;
}
SEMOPS_INLINE BI
ADDOFSI (SI a, SI b, BI c)
{
SI tmp = ADDSI (a, ADDSI (b, c));
BI res = (((a < 0) == (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE SI
SUBCSI (SI a, SI b, BI c)
{
SI res = SUBSI (a, ADDSI (b, c));
return res;
}
SEMOPS_INLINE BI
SUBCFSI (SI a, SI b, BI c)
{
BI res = ((USI) a < (USI) b) || (c && a == b);
return res;
}
SEMOPS_INLINE BI
SUBOFSI (SI a, SI b, BI c)
{
SI tmp = SUBSI (a, ADDSI (b, c));
BI res = (((a < 0) != (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE HI
ADDCHI (HI a, HI b, BI c)
{
HI res = ADDHI (a, ADDHI (b, c));
return res;
}
SEMOPS_INLINE BI
ADDCFHI (HI a, HI b, BI c)
{
HI tmp = ADDHI (a, ADDHI (b, c));
BI res = ((UHI) tmp < (UHI) a) || (c && tmp == a);
return res;
}
SEMOPS_INLINE BI
ADDOFHI (HI a, HI b, BI c)
{
HI tmp = ADDHI (a, ADDHI (b, c));
BI res = (((a < 0) == (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
SEMOPS_INLINE HI
SUBCHI (HI a, HI b, BI c)
{
HI res = SUBHI (a, ADDHI (b, c));
return res;
}
SEMOPS_INLINE BI
SUBCFHI (HI a, HI b, BI c)
{
BI res = ((UHI) a < (UHI) b) || (c && a == b);
return res;
}
SEMOPS_INLINE BI
SUBOFHI (HI a, HI b, BI c)
{
HI tmp = SUBHI (a, ADDHI (b, c));
BI res = (((a < 0) != (b < 0))
&& ((a < 0) != (tmp < 0)));
return res;
}
#else
SI ADDCSI (SI, SI, BI);
UBI ADDCFSI (SI, SI, BI);
UBI ADDOFSI (SI, SI, BI);
SI SUBCSI (SI, SI, BI);
UBI SUBCFSI (SI, SI, BI);
UBI SUBOFSI (SI, SI, BI);
HI ADDCHI (HI, HI, BI);
UBI ADDCFHI (HI, HI, BI);
UBI ADDOFHI (HI, HI, BI);
HI SUBCHI (HI, HI, BI);
UBI SUBCFHI (HI, HI, BI);
UBI SUBOFHI (HI, HI, BI);
#endif
#endif /* CGEN_SEM_OPS_H */
|