aboutsummaryrefslogtreecommitdiff
path: root/sim/avr/interp.c
blob: 48d219540b77b5143474f5c4d082d9f796000083 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
/* Simulator for Atmel's AVR core.
   Copyright (C) 2009-2015 Free Software Foundation, Inc.
   Written by Tristan Gingold, AdaCore.

   This file is part of GDB, the GNU debugger.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "config.h"

#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "bfd.h"
#include "libiberty.h"
#include "gdb/remote-sim.h"

#include "sim-main.h"
#include "sim-base.h"
#include "sim-options.h"

/* As AVR is a 8/16 bits processor, define handy types.  */
typedef unsigned short int word;
typedef signed short int sword;
typedef unsigned char byte;
typedef signed char sbyte;

/* The only real register.  */
unsigned int pc;

/* We update a cycle counter.  */
static unsigned int cycles = 0;

/* If true, the pc needs more than 2 bytes.  */
static int avr_pc22;

/* Max size of I space (which is always flash on avr).  */
#define MAX_AVR_FLASH (128 * 1024)
#define PC_MASK (MAX_AVR_FLASH - 1)

/* Mac size of D space.  */
#define MAX_AVR_SRAM (64 * 1024)
#define SRAM_MASK (MAX_AVR_SRAM - 1)

/* D space offset in ELF file.  */
#define SRAM_VADDR 0x800000

/* Simulator specific ports.  */
#define STDIO_PORT	0x52
#define EXIT_PORT	0x4F
#define ABORT_PORT	0x49

/* GDB defined register numbers.  */
#define AVR_SREG_REGNUM  32
#define AVR_SP_REGNUM    33
#define AVR_PC_REGNUM    34

/* Memory mapped registers.  */
#define SREG	0x5F
#define REG_SP	0x5D
#define EIND	0x5C
#define RAMPZ	0x5B

#define REGX 0x1a
#define REGY 0x1c
#define REGZ 0x1e
#define REGZ_LO 0x1e
#define REGZ_HI 0x1f

/* Sreg (status) bits.  */
#define SREG_I 0x80
#define SREG_T 0x40
#define SREG_H 0x20
#define SREG_S 0x10
#define SREG_V 0x08
#define SREG_N 0x04
#define SREG_Z 0x02
#define SREG_C 0x01

/* In order to speed up emulation we use a simple approach:
   a code is associated with each instruction.  The pre-decoding occurs
   usually once when the instruction is first seen.
   This works well because I&D spaces are separated.

   Missing opcodes: sleep, spm, wdr (as they are mmcu dependent).
*/
enum avr_opcode
  {
    /* Opcode not yet decoded.  */
    OP_unknown,
    OP_bad,

    OP_nop,

    OP_rjmp,
    OP_rcall,
    OP_ret,
    OP_reti,

    OP_break,

    OP_brbs,
    OP_brbc,

    OP_bset,
    OP_bclr,

    OP_bld,
    OP_bst,

    OP_sbrc,
    OP_sbrs,

    OP_eor,
    OP_and,
    OP_andi,
    OP_or,
    OP_ori,
    OP_com,
    OP_swap,
    OP_neg,

    OP_out,
    OP_in,
    OP_cbi,
    OP_sbi,

    OP_sbic,
    OP_sbis,

    OP_ldi,
    OP_cpse,
    OP_cp,
    OP_cpi,
    OP_cpc,
    OP_sub,
    OP_sbc,
    OP_sbiw,
    OP_adiw,
    OP_add,
    OP_adc,
    OP_subi,
    OP_sbci,
    OP_inc,
    OP_dec,
    OP_lsr,
    OP_ror,
    OP_asr,

    OP_mul,
    OP_muls,
    OP_mulsu,
    OP_fmul,
    OP_fmuls,
    OP_fmulsu,

    OP_mov,
    OP_movw,

    OP_push,
    OP_pop,

    OP_st_X,
    OP_st_dec_X,
    OP_st_X_inc,
    OP_st_Y_inc,
    OP_st_dec_Y,
    OP_st_Z_inc,
    OP_st_dec_Z,
    OP_std_Y,
    OP_std_Z,
    OP_ldd_Y,
    OP_ldd_Z,
    OP_ld_Z_inc,
    OP_ld_dec_Z,
    OP_ld_Y_inc,
    OP_ld_dec_Y,
    OP_ld_X,
    OP_ld_X_inc,
    OP_ld_dec_X,
    
    OP_lpm,
    OP_lpm_Z,
    OP_lpm_inc_Z,
    OP_elpm,
    OP_elpm_Z,
    OP_elpm_inc_Z,

    OP_ijmp,
    OP_icall,

    OP_eijmp,
    OP_eicall,

    /* 2 words opcodes.  */
#define OP_2words OP_jmp
    OP_jmp,
    OP_call,
    OP_sts,
    OP_lds
  };

struct avr_insn_cell
{
  /* The insn (16 bits).  */
  word op;

  /* Pre-decoding code.  */
  enum avr_opcode code : 8;
  /* One byte of additional information.  */
  byte r;
};

/* I&D memories.  */
/* TODO: Should be moved to SIM_CPU.  */
static struct avr_insn_cell flash[MAX_AVR_FLASH];
static byte sram[MAX_AVR_SRAM];

/* Sign extend a value.  */
static int sign_ext (word val, int nb_bits)
{
  if (val & (1 << (nb_bits - 1)))
    return val | (-1 << nb_bits);
  return val;
}

/* Insn field extractors.  */

/* Extract xxxx_xxxRx_xxxx_RRRR.  */
static inline byte get_r (word op)
{
  return (op & 0xf) | ((op >> 5) & 0x10);
}

/* Extract xxxx_xxxxx_xxxx_RRRR.  */
static inline byte get_r16 (word op)
{
  return 16 + (op & 0xf);
}

/* Extract xxxx_xxxxx_xxxx_xRRR.  */
static inline byte get_r16_23 (word op)
{
  return 16 + (op & 0x7);
}

/* Extract xxxx_xxxD_DDDD_xxxx.  */
static inline byte get_d (word op)
{
  return (op >> 4) & 0x1f;
}

/* Extract xxxx_xxxx_DDDD_xxxx.  */
static inline byte get_d16 (word op)
{
  return 16 + ((op >> 4) & 0x0f);
}

/* Extract xxxx_xxxx_xDDD_xxxx.  */
static inline byte get_d16_23 (word op)
{
  return 16 + ((op >> 4) & 0x07);
}

/* Extract xxxx_xAAx_xxxx_AAAA.  */
static inline byte get_A (word op)
{
  return (op & 0x0f) | ((op & 0x600) >> 5);
}

/* Extract xxxx_xxxx_AAAA_Axxx.  */
static inline byte get_biA (word op)
{
  return (op >> 3) & 0x1f;
}

/* Extract xxxx_KKKK_xxxx_KKKK.  */
static inline byte get_K (word op)
{
  return (op & 0xf) | ((op & 0xf00) >> 4);
}

/* Extract xxxx_xxKK_KKKK_Kxxx.  */
static inline int get_k (word op)
{
  return sign_ext ((op & 0x3f8) >> 3, 7);
}

/* Extract xxxx_xxxx_xxDD_xxxx.  */
static inline byte get_d24 (word op)
{
  return 24 + ((op >> 3) & 6);
}

/* Extract xxxx_xxxx_KKxx_KKKK.  */
static inline byte get_k6 (word op)
{
  return (op & 0xf) | ((op >> 2) & 0x30);
}
 
/* Extract xxQx_QQxx_xxxx_xQQQ.  */
static inline byte get_q (word op)
{
  return (op & 7) | ((op >> 7) & 0x18)| ((op >> 8) & 0x20);
}

/* Extract xxxx_xxxx_xxxx_xBBB.  */
static inline byte get_b (word op)
{
  return (op & 7);
}

/* AVR is little endian.  */
static inline word
read_word (unsigned int addr)
{
  return sram[addr] | (sram[addr + 1] << 8);
}

static inline void
write_word (unsigned int addr, word w)
{
  sram[addr] = w;
  sram[addr + 1] = w >> 8;
}

static inline word
read_word_post_inc (unsigned int addr)
{
  word v = read_word (addr);
  write_word (addr, v + 1);
  return v;
}

static inline word
read_word_pre_dec (unsigned int addr)
{
  word v = read_word (addr) - 1;
  write_word (addr, v);
  return v;
}

static void
update_flags_logic (byte res)
{
  sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
  if (res == 0)
    sram[SREG] |= SREG_Z;
  if (res & 0x80)
    sram[SREG] |= SREG_N | SREG_S;
}

static void
update_flags_add (byte r, byte a, byte b)
{
  byte carry;

  sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  if (r & 0x80)
    sram[SREG] |= SREG_N;
  carry = (a & b) | (a & ~r) | (b & ~r);
  if (carry & 0x08)
    sram[SREG] |= SREG_H;
  if (carry & 0x80)
    sram[SREG] |= SREG_C;
  if (((a & b & ~r) | (~a & ~b & r)) & 0x80)
    sram[SREG] |= SREG_V;
  if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_V))
    sram[SREG] |= SREG_S;
  if (r == 0)
    sram[SREG] |= SREG_Z;
}

static void update_flags_sub (byte r, byte a, byte b)
{
  byte carry;

  sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  if (r & 0x80)
    sram[SREG] |= SREG_N;
  carry = (~a & b) | (b & r) | (r & ~a);
  if (carry & 0x08)
    sram[SREG] |= SREG_H;
  if (carry & 0x80)
    sram[SREG] |= SREG_C;
  if (((a & ~b & ~r) | (~a & b & r)) & 0x80)
    sram[SREG] |= SREG_V;
  if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_V))
    sram[SREG] |= SREG_S;
  /* Note: Z is not set.  */
}

static enum avr_opcode
decode (unsigned int pc)
{
  word op1 = flash[pc].op;

  switch ((op1 >> 12) & 0x0f)
    {
    case 0x0:
      switch ((op1 >> 10) & 0x3)
        {
        case 0x0:
          switch ((op1 >> 8) & 0x3)
            {
            case 0x0:
              if (op1 == 0)
                return OP_nop;
              break;
            case 0x1:
              return OP_movw;
            case 0x2:
              return OP_muls;
            case 0x3:
              if (op1 & 0x80)
                {
                  if (op1 & 0x08)
                    return OP_fmulsu;
                  else
                    return OP_fmuls;
                }
              else
                {
                  if (op1 & 0x08)
                    return OP_fmul;
                  else
                    return OP_mulsu;
                }
            }
          break;
        case 0x1:
          return OP_cpc;
        case 0x2:
          flash[pc].r = SREG_C;
          return OP_sbc;
        case 0x3:
          flash[pc].r = 0;
          return OP_add;
        }
      break;
    case 0x1:
      switch ((op1 >> 10) & 0x3)
        {
        case 0x0:
          return OP_cpse;
        case 0x1:
          return OP_cp;
        case 0x2:
          flash[pc].r = 0;
          return OP_sub;
        case 0x3:
          flash[pc].r = SREG_C;
          return OP_adc;
        }
      break;
    case 0x2:
      switch ((op1 >> 10) & 0x3)
        {
        case 0x0:
          return OP_and;
        case 0x1:
          return OP_eor;
        case 0x2:
          return OP_or;
        case 0x3:
          return OP_mov;
        }
      break;
    case 0x3:
      return OP_cpi;
    case 0x4:
      return OP_sbci;
    case 0x5:
      return OP_subi;
    case 0x6:
      return OP_ori;
    case 0x7:
      return OP_andi;
    case 0x8:
    case 0xa:
      if (op1 & 0x0200)
        {
          if (op1 & 0x0008)
            {
              flash[pc].r = get_q (op1);
              return OP_std_Y;
            }
          else
            {
              flash[pc].r = get_q (op1);
              return OP_std_Z;
            }
        }
      else
        {
          if (op1 & 0x0008)
            {
              flash[pc].r = get_q (op1);
              return OP_ldd_Y;
            }
          else
            {
              flash[pc].r = get_q (op1);
              return OP_ldd_Z;
            }
        }
      break;
    case 0x9: /* 9xxx */
      switch ((op1 >> 8) & 0xf)
        {
        case 0x0:
        case 0x1:
          switch ((op1 >> 0) & 0xf)
            {
            case 0x0:
              return OP_lds;
            case 0x1:
              return OP_ld_Z_inc;
            case 0x2:
              return OP_ld_dec_Z;
            case 0x4:
              return OP_lpm_Z;
            case 0x5:
              return OP_lpm_inc_Z;
            case 0x6:
              return OP_elpm_Z;
            case 0x7:
              return OP_elpm_inc_Z;
            case 0x9:
              return OP_ld_Y_inc;
            case 0xa:
              return OP_ld_dec_Y;
            case 0xc:
              return OP_ld_X;
            case 0xd:
              return OP_ld_X_inc;
            case 0xe:
              return OP_ld_dec_X;
            case 0xf:
              return OP_pop;
            }
          break;
        case 0x2:
        case 0x3:
          switch ((op1 >> 0) & 0xf)
            {
            case 0x0:
              return OP_sts;
            case 0x1:
              return OP_st_Z_inc;
            case 0x2:
              return OP_st_dec_Z;
            case 0x9:
              return OP_st_Y_inc;
            case 0xa:
              return OP_st_dec_Y;
            case 0xc:
              return OP_st_X;
            case 0xd:
              return OP_st_X_inc;
            case 0xe:
              return OP_st_dec_X;
            case 0xf:
              return OP_push;
            }
          break;
        case 0x4:
        case 0x5:
          switch (op1 & 0xf)
            {
            case 0x0:
              return OP_com;
            case 0x1:
              return OP_neg;
            case 0x2:
              return OP_swap;
            case 0x3:
              return OP_inc;
            case 0x5:
              flash[pc].r = 0x80;
              return OP_asr;
            case 0x6:
              flash[pc].r = 0;
              return OP_lsr;
            case 0x7:
              return OP_ror;
            case 0x8: /* 9[45]x8 */
              switch ((op1 >> 4) & 0x1f)
                {
                case 0x00:
                case 0x01:
                case 0x02:
                case 0x03:
                case 0x04:
                case 0x05:
                case 0x06:
                case 0x07:
                  return OP_bset;
                case 0x08:
                case 0x09:
                case 0x0a:
                case 0x0b:
                case 0x0c:
                case 0x0d:
                case 0x0e:
                case 0x0f:
                  return OP_bclr;
                case 0x10:
                  return OP_ret;
                case 0x11:
                  return OP_reti;
                case 0x19:
                  return OP_break;
                case 0x1c:
                  return OP_lpm;
                case 0x1d:
                  return OP_elpm;
                default:
                  break;
                }
              break;
            case 0x9: /* 9[45]x9 */
              switch ((op1 >> 4) & 0x1f)
                {
                case 0x00:
                  return OP_ijmp;
                case 0x01:
                  return OP_eijmp;
                case 0x10:
                  return OP_icall;
                case 0x11:
                  return OP_eicall;
                default:
                  break;
                }
              break;
            case 0xa:
              return OP_dec;
            case 0xc:
            case 0xd:
              flash[pc].r = ((op1 & 0x1f0) >> 3) | (op1 & 1);
              return OP_jmp;
            case 0xe:
            case 0xf:
              flash[pc].r = ((op1 & 0x1f0) >> 3) | (op1 & 1);
              return OP_call;
            }
          break;
        case 0x6:
          return OP_adiw;
        case 0x7:
          return OP_sbiw;
        case 0x8:
          return OP_cbi;
        case 0x9:
          return OP_sbic;
        case 0xa:
          return OP_sbi;
        case 0xb:
          return OP_sbis;
        case 0xc:
        case 0xd:
        case 0xe:
        case 0xf:
          return OP_mul;
        }
      break;
    case 0xb:
      flash[pc].r = get_A (op1);
      if (((op1 >> 11) & 1) == 0)
        return OP_in;
      else
        return OP_out;
    case 0xc:
      return OP_rjmp;
    case 0xd:
      return OP_rcall;
    case 0xe:
      return OP_ldi;
    case 0xf:
      switch ((op1 >> 9) & 7)
        {
        case 0:
        case 1:
          flash[pc].r = 1 << (op1 & 7);
          return OP_brbs;
        case 2:
        case 3:
          flash[pc].r = 1 << (op1 & 7);
          return OP_brbc;
        case 4:
          if ((op1 & 8) == 0)
            {
              flash[pc].r = 1 << (op1 & 7);
              return OP_bld;
            }
          break;
        case 5:
          if ((op1 & 8) == 0)
            {
              flash[pc].r = 1 << (op1 & 7);
              return OP_bst;
            }
          break;
        case 6:
          if ((op1 & 8) == 0)
            {
              flash[pc].r = 1 << (op1 & 7);
              return OP_sbrc;
            }
          break;
        case 7:
          if ((op1 & 8) == 0)
            {
              flash[pc].r = 1 << (op1 & 7);
              return OP_sbrs;
            }
          break;
        }
    }

  return OP_bad;
}

static void
do_call (unsigned int npc)
{
  unsigned int sp = read_word (REG_SP);

  /* Big endian!  */
  sram[sp--] = pc;
  sram[sp--] = pc >> 8;
  if (avr_pc22)
    {
      sram[sp--] = pc >> 16;
      cycles++;
    }
  write_word (REG_SP, sp);
  pc = npc & PC_MASK;
  cycles += 3;
}

static int
get_insn_length (unsigned int p)
{
  if (flash[p].code == OP_unknown)
    flash[p].code = decode(p);
  if (flash[p].code >= OP_2words)
    return 2;
  else
    return 1;
}

static unsigned int
get_z (void)
{
  return (sram[RAMPZ] << 16) | (sram[REGZ_HI] << 8) | sram[REGZ_LO];
}

static unsigned char
get_lpm (unsigned int addr)
{
  word w;

  w = flash[(addr >> 1) & PC_MASK].op;
  if (addr & 1)
    w >>= 8;
  return w;
}

static void
gen_mul (unsigned int res)
{
  write_word (0, res);
  sram[SREG] &= ~(SREG_Z | SREG_C);
  if (res == 0)
    sram[SREG] |= SREG_Z;
  if (res & 0x8000)
    sram[SREG] |= SREG_C;
  cycles++;
}

static void
step_once (SIM_CPU *cpu)
{
  unsigned int ipc;

  int code;
  word op;
  byte res;
  byte r, d, vd;

 again:
  code = flash[pc].code;
  op = flash[pc].op;

#if 0
      if (tracing && code != OP_unknown)
	{
	  if (verbose > 0) {
	    int flags;
	    int i;

	    sim_cb_eprintf (callback, "R00-07:");
	    for (i = 0; i < 8; i++)
	      sim_cb_eprintf (callback, " %02x", sram[i]);
	    sim_cb_eprintf (callback, " -");
	    for (i = 8; i < 16; i++)
	      sim_cb_eprintf (callback, " %02x", sram[i]);
	    sim_cb_eprintf (callback, "  SP: %02x %02x",
                            sram[REG_SP + 1], sram[REG_SP]);
	    sim_cb_eprintf (callback, "\n");
	    sim_cb_eprintf (callback, "R16-31:");
	    for (i = 16; i < 24; i++)
	      sim_cb_eprintf (callback, " %02x", sram[i]);
	    sim_cb_eprintf (callback, " -");
	    for (i = 24; i < 32; i++)
	      sim_cb_eprintf (callback, " %02x", sram[i]);
	    sim_cb_eprintf (callback, "  ");
	    flags = sram[SREG];
	    for (i = 0; i < 8; i++)
	      sim_cb_eprintf (callback, "%c",
                              flags & (0x80 >> i) ? "ITHSVNZC"[i] : '-');
	    sim_cb_eprintf (callback, "\n");
	  }

	  if (!tracing)
	    sim_cb_eprintf (callback, "%06x: %04x\n", 2 * pc, flash[pc].op);
	  else
	    {
	      sim_cb_eprintf (callback, "pc=0x%06x insn=0x%04x code=%d r=%d\n",
                              2 * pc, flash[pc].op, code, flash[pc].r);
	      disassemble_insn (CPU_STATE (cpu), pc);
	      sim_cb_eprintf (callback, "\n");
	    }
	}
#endif

  ipc = pc;
  pc = (pc + 1) & PC_MASK;
  cycles++;

  switch (code)
    {
      case OP_unknown:
	flash[ipc].code = decode(ipc);
	pc = ipc;
	cycles--;
	goto again;

      case OP_nop:
	break;

      case OP_jmp:
	/* 2 words instruction, but we don't care about the pc.  */
	pc = ((flash[ipc].r << 16) | flash[ipc + 1].op) & PC_MASK;
	cycles += 2;
	break;

      case OP_eijmp:
	pc = ((sram[EIND] << 16) | read_word (REGZ)) & PC_MASK;
	cycles += 2;
	break;

      case OP_ijmp:
	pc = read_word (REGZ) & PC_MASK;
	cycles += 1;
	break;

      case OP_call:
	/* 2 words instruction.  */
	pc++;
	do_call ((flash[ipc].r << 16) | flash[ipc + 1].op);
	break;

      case OP_eicall:
	do_call ((sram[EIND] << 16) | read_word (REGZ));
	break;

      case OP_icall:
	do_call (read_word (REGZ));
	break;

      case OP_rcall:
	do_call (pc + sign_ext (op & 0xfff, 12));
	break;

      case OP_reti:
	sram[SREG] |= SREG_I;
	/* Fall through */
      case OP_ret:
	{
	  unsigned int sp = read_word (REG_SP);
	  if (avr_pc22)
	    {
	      pc = sram[++sp] << 16;
	      cycles++;
	    }
	  else
	    pc = 0;
	  pc |= sram[++sp] << 8;
	  pc |= sram[++sp];
	  write_word (REG_SP, sp);
	}
	cycles += 3;
	break;

      case OP_break:
	/* Stop on this address.  */
	sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
	pc = ipc;
	break;

      case OP_bld:
	d = get_d (op);
	r = flash[ipc].r;
	if (sram[SREG] & SREG_T)
	  sram[d] |= r;
	else
	  sram[d] &= ~r;
	break;

      case OP_bst:
	if (sram[get_d (op)] & flash[ipc].r)
	  sram[SREG] |= SREG_T;
	else
	  sram[SREG] &= ~SREG_T;
	break;

      case OP_sbrc:
      case OP_sbrs:
	if (((sram[get_d (op)] & flash[ipc].r) == 0) ^ ((op & 0x0200) != 0))
	  {
	    int l = get_insn_length(pc);
	    pc += l;
	    cycles += l;
	  }
	break;

      case OP_push:
	{
	  unsigned int sp = read_word (REG_SP);
	  sram[sp--] = sram[get_d (op)];
	  write_word (REG_SP, sp);
	}
	cycles++;
	break;

      case OP_pop:
	{
	  unsigned int sp = read_word (REG_SP);
	  sram[get_d (op)] = sram[++sp];
	  write_word (REG_SP, sp);
	}
	cycles++;
	break;

      case OP_bclr:
	sram[SREG] &= ~(1 << ((op >> 4) & 0x7));
	break;

      case OP_bset:
	sram[SREG] |= 1 << ((op >> 4) & 0x7);
	break;

      case OP_rjmp:
	pc = (pc + sign_ext (op & 0xfff, 12)) & PC_MASK;
	cycles++;
	break;

      case OP_eor:
	d = get_d (op);
	res = sram[d] ^ sram[get_r (op)];
	sram[d] = res;
	update_flags_logic (res);
	break;

      case OP_and:
	d = get_d (op);
	res = sram[d] & sram[get_r (op)];
	sram[d] = res;
	update_flags_logic (res);
	break;

      case OP_andi:
	d = get_d16 (op);
	res = sram[d] & get_K (op);
	sram[d] = res;
	update_flags_logic (res);
	break;

      case OP_or:
	d = get_d (op);
	res = sram[d] | sram[get_r (op)];
	sram[d] = res;
	update_flags_logic (res);
	break;

      case OP_ori:
	d = get_d16 (op);
	res = sram[d] | get_K (op);
	sram[d] = res;
	update_flags_logic (res);
	break;

      case OP_com:
	d = get_d (op);
	res = ~sram[d];
	sram[d] = res;
	update_flags_logic (res);
	sram[SREG] |= SREG_C;
	break;

      case OP_swap:
	d = get_d (op);
	vd = sram[d];
	sram[d] = (vd >> 4) | (vd << 4);
	break;

      case OP_neg:
	d = get_d (op);
	vd = sram[d];
	res = -vd;
	sram[d] = res;
	sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	else
	  sram[SREG] |= SREG_C;
	if (res == 0x80)
	  sram[SREG] |= SREG_V | SREG_N;
	else if (res & 0x80)
	  sram[SREG] |= SREG_N | SREG_S;
	if ((res | vd) & 0x08)
	  sram[SREG] |= SREG_H;
	break;

      case OP_inc:
	d = get_d (op);
	res = sram[d] + 1;
	sram[d] = res;
	sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
	if (res == 0x80)
	  sram[SREG] |= SREG_V | SREG_N;
	else if (res & 0x80)
	  sram[SREG] |= SREG_N | SREG_S;
	else if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_dec:
	d = get_d (op);
	res = sram[d] - 1;
	sram[d] = res;
	sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
	if (res == 0x7f)
	  sram[SREG] |= SREG_V | SREG_S;
	else if (res & 0x80)
	  sram[SREG] |= SREG_N | SREG_S;
	else if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_lsr:
      case OP_asr:
	d = get_d (op);
	vd = sram[d];
	res = (vd >> 1) | (vd & flash[ipc].r);
	sram[d] = res;
	sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
	if (vd & 1)
	  sram[SREG] |= SREG_C | SREG_S;
	if (res & 0x80)
	  sram[SREG] |= SREG_N;
	if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_C))
	  sram[SREG] |= SREG_V;
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_ror:
	d = get_d (op);
	vd = sram[d];
	res = vd >> 1 | (sram[SREG] << 7);
	sram[d] = res;
	sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
	if (vd & 1)
	  sram[SREG] |= SREG_C | SREG_S;
	if (res & 0x80)
	  sram[SREG] |= SREG_N;
	if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_C))
	  sram[SREG] |= SREG_V;
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_mul:
	gen_mul ((word)sram[get_r (op)] * (word)sram[get_d (op)]);
	break;

      case OP_muls:
	gen_mul ((sword)(sbyte)sram[get_r16 (op)]
		 * (sword)(sbyte)sram[get_d16 (op)]);
	break;

      case OP_mulsu:
	gen_mul ((sword)(word)sram[get_r16_23 (op)]
		 * (sword)(sbyte)sram[get_d16_23 (op)]);
	break;

      case OP_fmul:
	gen_mul (((word)sram[get_r16_23 (op)]
		  * (word)sram[get_d16_23 (op)]) << 1);
	break;

      case OP_fmuls:
	gen_mul (((sword)(sbyte)sram[get_r16_23 (op)]
		  * (sword)(sbyte)sram[get_d16_23 (op)]) << 1);
	break;

      case OP_fmulsu:
	gen_mul (((sword)(word)sram[get_r16_23 (op)]
		  * (sword)(sbyte)sram[get_d16_23 (op)]) << 1);
	break;

      case OP_adc:
      case OP_add:
	r = sram[get_r (op)];
	d = get_d (op);
	vd = sram[d];
	res = r + vd + (sram[SREG] & flash[ipc].r);
	sram[d] = res;
	update_flags_add (res, vd, r);
	break;

      case OP_sub:
	d = get_d (op);
	vd = sram[d];
	r = sram[get_r (op)];
	res = vd - r;
	sram[d] = res;
	update_flags_sub (res, vd, r);
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_sbc:
	{
	  byte old = sram[SREG];
	  d = get_d (op);
	  vd = sram[d];
	  r = sram[get_r (op)];
	  res = vd - r - (old & SREG_C);
	  sram[d] = res;
	  update_flags_sub (res, vd, r);
	  if (res == 0 && (old & SREG_Z))
	    sram[SREG] |= SREG_Z;
	}
	break;

      case OP_subi:
	d = get_d16 (op);
	vd = sram[d];
	r = get_K (op);
	res = vd - r;
	sram[d] = res;
	update_flags_sub (res, vd, r);
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_sbci:
	{
	  byte old = sram[SREG];

	  d = get_d16 (op);
	  vd = sram[d];
	  r = get_K (op);
	  res = vd - r - (old & SREG_C);
	  sram[d] = res;
	  update_flags_sub (res, vd, r);
	  if (res == 0 && (old & SREG_Z))
	    sram[SREG] |= SREG_Z;
	}
	break;

      case OP_mov:
	sram[get_d (op)] = sram[get_r (op)];
	break;

      case OP_movw:
	d = (op & 0xf0) >> 3;
	r = (op & 0x0f) << 1;
	sram[d] = sram[r];
	sram[d + 1] = sram[r + 1];
	break;

      case OP_out:
	d = get_A (op) + 0x20;
	res = sram[get_d (op)];
	sram[d] = res;
	if (d == STDIO_PORT)
	  putchar (res);
	else if (d == EXIT_PORT)
	  sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_exited, 0);
	else if (d == ABORT_PORT)
	  sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_exited, 1);
	break;

      case OP_in:
	d = get_A (op) + 0x20;
	sram[get_d (op)] = sram[d];
	break;

      case OP_cbi:
	d = get_biA (op) + 0x20;
	sram[d] &= ~(1 << get_b(op));
	break;

      case OP_sbi:
	d = get_biA (op) + 0x20;
	sram[d] |= 1 << get_b(op);
	break;

      case OP_sbic:
	if (!(sram[get_biA (op) + 0x20] & 1 << get_b(op)))
	  {
	    int l = get_insn_length(pc);
	    pc += l;
	    cycles += l;
	  }
	break;

      case OP_sbis:
	if (sram[get_biA (op) + 0x20] & 1 << get_b(op))
	  {
	    int l = get_insn_length(pc);
	    pc += l;
	    cycles += l;
	  }
	break;

      case OP_ldi:
	res = get_K (op);
	d = get_d16 (op);
	sram[d] = res;
	break;

      case OP_lds:
	sram[get_d (op)] = sram[flash[pc].op];
	pc++;
	cycles++;
	break;

      case OP_sts:
	sram[flash[pc].op] = sram[get_d (op)];
	pc++;
	cycles++;
	break;

      case OP_cpse:
	if (sram[get_r (op)] == sram[get_d (op)])
	  {
	    int l = get_insn_length(pc);
	    pc += l;
	    cycles += l;
	  }
	break;

      case OP_cp:
	r = sram[get_r (op)];
	d = sram[get_d (op)];
	res = d - r;
	update_flags_sub (res, d, r);
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_cpi:
	r = get_K (op);
	d = sram[get_d16 (op)];
	res = d - r;
	update_flags_sub (res, d, r);
	if (res == 0)
	  sram[SREG] |= SREG_Z;
	break;

      case OP_cpc:
	{
	  byte old = sram[SREG];
	  d = sram[get_d (op)];
	  r = sram[get_r (op)];
	  res = d - r - (old & SREG_C);
	  update_flags_sub (res, d, r);
	  if (res == 0 && (old & SREG_Z))
	    sram[SREG] |= SREG_Z;
	}
	break;

      case OP_brbc:
	if (!(sram[SREG] & flash[ipc].r))
	  {
	    pc = (pc + get_k (op)) & PC_MASK;
	    cycles++;
	  }
	break;

      case OP_brbs:
	if (sram[SREG] & flash[ipc].r)
	  {
	    pc = (pc + get_k (op)) & PC_MASK;
	    cycles++;
	  }
	break;

      case OP_lpm:
	sram[0] = get_lpm (read_word (REGZ));
	cycles += 2;
	break;

      case OP_lpm_Z:
	sram[get_d (op)] = get_lpm (read_word (REGZ));
	cycles += 2;
	break;

      case OP_lpm_inc_Z:
	sram[get_d (op)] = get_lpm (read_word_post_inc (REGZ));
	cycles += 2;
	break;

      case OP_elpm:
	sram[0] = get_lpm (get_z ());
	cycles += 2;
	break;

      case OP_elpm_Z:
	sram[get_d (op)] = get_lpm (get_z ());
	cycles += 2;
	break;

      case OP_elpm_inc_Z:
	{
	  unsigned int z = get_z ();

	  sram[get_d (op)] = get_lpm (z);
	  z++;
	  sram[REGZ_LO] = z;
	  sram[REGZ_HI] = z >> 8;
	  sram[RAMPZ] = z >> 16;
	}
	cycles += 2;
	break;

      case OP_ld_Z_inc:
	sram[get_d (op)] = sram[read_word_post_inc (REGZ) & SRAM_MASK];
	cycles++;
	break;

      case OP_ld_dec_Z:
	sram[get_d (op)] = sram[read_word_pre_dec (REGZ) & SRAM_MASK];
	cycles++;
	break;

      case OP_ld_X_inc:
	sram[get_d (op)] = sram[read_word_post_inc (REGX) & SRAM_MASK];
	cycles++;
	break;

      case OP_ld_dec_X:
	sram[get_d (op)] = sram[read_word_pre_dec (REGX) & SRAM_MASK];
	cycles++;
	break;

      case OP_ld_Y_inc:
	sram[get_d (op)] = sram[read_word_post_inc (REGY) & SRAM_MASK];
	cycles++;
	break;

      case OP_ld_dec_Y:
	sram[get_d (op)] = sram[read_word_pre_dec (REGY) & SRAM_MASK];
	cycles++;
	break;

      case OP_st_X:
	sram[read_word (REGX) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_X_inc:
	sram[read_word_post_inc (REGX) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_dec_X:
	sram[read_word_pre_dec (REGX) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_Z_inc:
	sram[read_word_post_inc (REGZ) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_dec_Z:
	sram[read_word_pre_dec (REGZ) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_Y_inc:
	sram[read_word_post_inc (REGY) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_st_dec_Y:
	sram[read_word_pre_dec (REGY) & SRAM_MASK] = sram[get_d (op)];
	cycles++;
	break;

      case OP_std_Y:
	sram[read_word (REGY) + flash[ipc].r] = sram[get_d (op)];
	cycles++;
	break;

      case OP_std_Z:
	sram[read_word (REGZ) + flash[ipc].r] = sram[get_d (op)];
	cycles++;
	break;

      case OP_ldd_Z:
	sram[get_d (op)] = sram[read_word (REGZ) + flash[ipc].r];
	cycles++;
	break;

      case OP_ldd_Y:
	sram[get_d (op)] = sram[read_word (REGY) + flash[ipc].r];
	cycles++;
	break;

      case OP_ld_X:
	sram[get_d (op)] = sram[read_word (REGX) & SRAM_MASK];
	cycles++;
	break;

      case OP_sbiw:
	{
	  word wk = get_k6 (op);
	  word wres;
	  word wr;

	  d = get_d24 (op);
	  wr = read_word (d);
	  wres = wr - wk;

	  sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
	  if (wres == 0)
	    sram[SREG] |= SREG_Z;
	  if (wres & 0x8000)
	    sram[SREG] |= SREG_N;
	  if (wres & ~wr & 0x8000)
	    sram[SREG] |= SREG_C;
	  if (~wres & wr & 0x8000)
	    sram[SREG] |= SREG_V;
	  if (((~wres & wr) ^ wres) & 0x8000)
	    sram[SREG] |= SREG_S;
	  write_word (d, wres);
	}
	cycles++;
	break;

      case OP_adiw:
	{
	  word wk = get_k6 (op);
	  word wres;
	  word wr;

	  d = get_d24 (op);
	  wr = read_word (d);
	  wres = wr + wk;

	  sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
	  if (wres == 0)
	    sram[SREG] |= SREG_Z;
	  if (wres & 0x8000)
	    sram[SREG] |= SREG_N;
	  if (~wres & wr & 0x8000)
	    sram[SREG] |= SREG_C;
	  if (wres & ~wr & 0x8000)
	    sram[SREG] |= SREG_V;
	  if (((wres & ~wr) ^ wres) & 0x8000)
	    sram[SREG] |= SREG_S;
	  write_word (d, wres);
	}
	cycles++;
	break;

      case OP_bad:
	sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_signalled, SIM_SIGILL);

      default:
	sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_signalled, SIM_SIGILL);
      }
}

void
sim_engine_run (SIM_DESC sd,
		int next_cpu_nr, /* ignore  */
		int nr_cpus, /* ignore  */
		int siggnal) /* ignore  */
{
  SIM_CPU *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  cpu = STATE_CPU (sd, 0);

  while (1)
    {
      step_once (cpu);
      if (sim_events_tick (sd))
	sim_events_process (sd);
    }
}

int
sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
{
  int osize = size;

  if (addr >= 0 && addr < SRAM_VADDR)
    {
      while (size > 0 && addr < (MAX_AVR_FLASH << 1))
	{
          word val = flash[addr >> 1].op;

          if (addr & 1)
            val = (val & 0xff) | (buffer[0] << 8);
          else
            val = (val & 0xff00) | buffer[0];

	  flash[addr >> 1].op = val;
	  flash[addr >> 1].code = OP_unknown;
	  addr++;
	  buffer++;
	  size--;
	}
      return osize - size;
    }
  else if (addr >= SRAM_VADDR && addr < SRAM_VADDR + MAX_AVR_SRAM)
    {
      addr -= SRAM_VADDR;
      if (addr + size > MAX_AVR_SRAM)
	size = MAX_AVR_SRAM - addr;
      memcpy (sram + addr, buffer, size);
      return size;
    }
  else
    return 0;
}

int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
  int osize = size;

  if (addr >= 0 && addr < SRAM_VADDR)
    {
      while (size > 0 && addr < (MAX_AVR_FLASH << 1))
	{
          word val = flash[addr >> 1].op;

          if (addr & 1)
            val >>= 8;

          *buffer++ = val;
	  addr++;
	  size--;
	}
      return osize - size;
    }
  else if (addr >= SRAM_VADDR && addr < SRAM_VADDR + MAX_AVR_SRAM)
    {
      addr -= SRAM_VADDR;
      if (addr + size > MAX_AVR_SRAM)
	size = MAX_AVR_SRAM - addr;
      memcpy (buffer, sram + addr, size);
      return size;
    }
  else
    {
      /* Avoid errors.  */
      memset (buffer, 0, size);
      return size;
    }
}

static int
avr_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  if (rn < 32 && length == 1)
    {
      sram[rn] = *memory;
      return 1;
    }
  if (rn == AVR_SREG_REGNUM && length == 1)
    {
      sram[SREG] = *memory;
      return 1;
    }
  if (rn == AVR_SP_REGNUM && length == 2)
    {
      sram[REG_SP] = memory[0];
      sram[REG_SP + 1] = memory[1];
      return 2;
    }
  if (rn == AVR_PC_REGNUM && length == 4)
    {
      pc = (memory[0] >> 1) | (memory[1] << 7) 
	| (memory[2] << 15) | (memory[3] << 23);
      pc &= PC_MASK;
      return 4;
    }
  return 0;
}

static int
avr_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  if (rn < 32 && length == 1)
    {
      *memory = sram[rn];
      return 1;
    }
  if (rn == AVR_SREG_REGNUM && length == 1)
    {
      *memory = sram[SREG];
      return 1;
    }
  if (rn == AVR_SP_REGNUM && length == 2)
    {
      memory[0] = sram[REG_SP];
      memory[1] = sram[REG_SP + 1];
      return 2;
    }
  if (rn == AVR_PC_REGNUM && length == 4)
    {
      memory[0] = pc << 1;
      memory[1] = pc >> 7;
      memory[2] = pc >> 15;
      memory[3] = pc >> 23;
      return 4;
    }
  return 0;
}

static sim_cia
avr_pc_get (sim_cpu *cpu)
{
  return pc;
}

static void
avr_pc_set (sim_cpu *cpu, sim_cia _pc)
{
  pc = _pc;
}

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
{
  int i;
  SIM_DESC sd = sim_state_alloc (kind, cb);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  STATE_WATCHPOINTS (sd)->pc = &pc;
  STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (pc);

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* getopt will print the error message so we just have to exit if this fails.
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_REG_FETCH (cpu) = avr_reg_fetch;
      CPU_REG_STORE (cpu) = avr_reg_store;
      CPU_PC_FETCH (cpu) = avr_pc_get;
      CPU_PC_STORE (cpu) = avr_pc_set;
    }

  /* Clear all the memory.  */
  memset (sram, 0, sizeof (sram));
  memset (flash, 0, sizeof (flash));

  return sd;
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
  /* Set the PC.  */
  if (abfd != NULL)
    pc = bfd_get_start_address (abfd);
  else
    pc = 0;

  if (abfd != NULL)
    avr_pc22 = (bfd_get_mach (abfd) >= bfd_mach_avr6);

  return SIM_RC_OK;
}