1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "armdefs.h"
#include "armemu.h"
#include "ansidecl.h"
/***************************************************************************\
* Definitions for the support routines *
\***************************************************************************/
ARMword ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg);
void ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg,
ARMword value);
ARMword ARMul_GetPC (ARMul_State * state);
ARMword ARMul_GetNextPC (ARMul_State * state);
void ARMul_SetPC (ARMul_State * state, ARMword value);
ARMword ARMul_GetR15 (ARMul_State * state);
void ARMul_SetR15 (ARMul_State * state, ARMword value);
ARMword ARMul_GetCPSR (ARMul_State * state);
void ARMul_SetCPSR (ARMul_State * state, ARMword value);
ARMword ARMul_GetSPSR (ARMul_State * state, ARMword mode);
void ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value);
void ARMul_CPSRAltered (ARMul_State * state);
void ARMul_R15Altered (ARMul_State * state);
ARMword ARMul_SwitchMode (ARMul_State * state, ARMword oldmode,
ARMword newmode);
static ARMword ModeToBank (ARMword mode);
unsigned ARMul_NthReg (ARMword instr, unsigned number);
void ARMul_NegZero (ARMul_State * state, ARMword result);
void ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address);
void ARMul_STC (ARMul_State * state, ARMword instr, ARMword address);
void ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source);
ARMword ARMul_MRC (ARMul_State * state, ARMword instr);
void ARMul_CDP (ARMul_State * state, ARMword instr);
unsigned IntPending (ARMul_State * state);
ARMword ARMul_Align (ARMul_State * state, ARMword address, ARMword data);
void ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) ());
void ARMul_EnvokeEvent (ARMul_State * state);
unsigned long ARMul_Time (ARMul_State * state);
static void EnvokeList (ARMul_State * state, unsigned long from,
unsigned long to);
struct EventNode
{ /* An event list node */
unsigned (*func) (); /* The function to call */
struct EventNode *next;
};
/***************************************************************************\
* This routine returns the value of a register from a mode. *
\***************************************************************************/
ARMword
ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
{
mode &= MODEBITS;
if (mode != state->Mode)
return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
else
return (state->Reg[reg]);
}
/***************************************************************************\
* This routine sets the value of a register for a mode. *
\***************************************************************************/
void
ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
{
mode &= MODEBITS;
if (mode != state->Mode)
state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
else
state->Reg[reg] = value;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC);
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetNextPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15] + isize);
else
return ((state->Reg[15] + isize) & R15PCBITS);
}
/***************************************************************************\
* This routine sets the value of the PC. *
\***************************************************************************/
void
ARMul_SetPC (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
FLUSHPIPE;
}
/***************************************************************************\
* This routine returns the value of register 15, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetR15 (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC | ECC | ER15INT | EMODE);
}
/***************************************************************************\
* This routine sets the value of Register 15. *
\***************************************************************************/
void
ARMul_SetR15 (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
{
state->Reg[15] = value;
ARMul_R15Altered (state);
}
FLUSHPIPE;
}
/***************************************************************************\
* This routine returns the value of the CPSR *
\***************************************************************************/
ARMword
ARMul_GetCPSR (ARMul_State * state)
{
return (CPSR);
}
/***************************************************************************\
* This routine sets the value of the CPSR *
\***************************************************************************/
void
ARMul_SetCPSR (ARMul_State * state, ARMword value)
{
state->Cpsr = CPSR;
SETPSR (state->Cpsr, value);
ARMul_CPSRAltered (state);
}
/***************************************************************************\
* This routine does all the nasty bits involved in a write to the CPSR, *
* including updating the register bank, given a MSR instruction. *
\***************************************************************************/
void
ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
state->Cpsr = CPSR;
if (state->Bank == USERBANK)
{ /* Only write flags in user mode */
if (BIT (19))
{
SETCC (state->Cpsr, rhs);
}
}
else
{ /* Not a user mode */
if (BITS (16, 19) == 9)
SETPSR (state->Cpsr, rhs);
else if (BIT (16))
SETINTMODE (state->Cpsr, rhs);
else if (BIT (19))
SETCC (state->Cpsr, rhs);
}
ARMul_CPSRAltered (state);
}
/***************************************************************************\
* Get an SPSR from the specified mode *
\***************************************************************************/
ARMword
ARMul_GetSPSR (ARMul_State * state, ARMword mode)
{
ARMword bank = ModeToBank (mode & MODEBITS);
if (! BANK_CAN_ACCESS_SPSR (bank))
return CPSR;
return state->Spsr[bank];
}
/***************************************************************************\
* This routine does a write to an SPSR *
\***************************************************************************/
void
ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
{
ARMword bank = ModeToBank (mode & MODEBITS);
if (BANK_CAN_ACCESS_SPSR (bank))
state->Spsr[bank] = value;
}
/***************************************************************************\
* This routine does a write to the current SPSR, given an MSR instruction *
\***************************************************************************/
void
ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
if (BANK_CAN_ACCESS_SPSR (state->Bank))
{
if (BITS (16, 19) == 9)
SETPSR (state->Spsr[state->Bank], rhs);
else if (BIT (16))
SETINTMODE (state->Spsr[state->Bank], rhs);
else if (BIT (19))
SETCC (state->Spsr[state->Bank], rhs);
}
}
/***************************************************************************\
* This routine updates the state of the emulator after the Cpsr has been *
* changed. Both the processor flags and register bank are updated. *
\***************************************************************************/
void
ARMul_CPSRAltered (ARMul_State * state)
{
ARMword oldmode;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
oldmode = state->Mode;
if (state->Mode != (state->Cpsr & MODEBITS))
{
state->Mode =
ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
ASSIGNINT (state->Cpsr & INTBITS);
ASSIGNN ((state->Cpsr & NBIT) != 0);
ASSIGNZ ((state->Cpsr & ZBIT) != 0);
ASSIGNC ((state->Cpsr & CBIT) != 0);
ASSIGNV ((state->Cpsr & VBIT) != 0);
#ifdef MODET
ASSIGNT ((state->Cpsr & TBIT) != 0);
#endif
if (oldmode > SVC26MODE)
{
if (state->Mode <= SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
else
{
if (state->Mode > SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = R15PC;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after register 15 has *
* been changed. Both the processor flags and register bank are updated. *
* This routine should only be called from a 26 bit mode. *
\***************************************************************************/
void
ARMul_R15Altered (ARMul_State * state)
{
if (state->Mode != R15MODE)
{
state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE;
ASSIGNR15INT (R15INT);
ASSIGNN ((state->Reg[15] & NBIT) != 0);
ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
ASSIGNC ((state->Reg[15] & CBIT) != 0);
ASSIGNV ((state->Reg[15] & VBIT) != 0);
}
/***************************************************************************\
* This routine controls the saving and restoring of registers across mode *
* changes. The regbank matrix is largely unused, only rows 13 and 14 are *
* used across all modes, 8 to 14 are used for FIQ, all others use the USER *
* column. It's easier this way. old and new parameter are modes numbers. *
* Notice the side effect of changing the Bank variable. *
\***************************************************************************/
ARMword
ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
{
unsigned i;
ARMword oldbank;
ARMword newbank;
oldbank = ModeToBank (oldmode);
newbank = state->Bank = ModeToBank (newmode);
if (oldbank != newbank)
{ /* really need to do it */
switch (oldbank)
{ /* save away the old registers */
case SYSTEMBANK:
/* The System mode uses the USER bank. */
oldbank = USERBANK;
/* Fall through. */
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (newbank == FIQBANK)
for (i = 8; i < 13; i++)
state->RegBank[USERBANK][i] = state->Reg[i];
state->RegBank[oldbank][13] = state->Reg[13];
state->RegBank[oldbank][14] = state->Reg[14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->RegBank[FIQBANK][i] = state->Reg[i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->RegBank[DUMMYBANK][i] = 0;
break;
default:
abort ();
}
switch (newbank)
{ /* restore the new registers */
case SYSTEMBANK:
newbank = USERBANK;
/* Fall through. */
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (oldbank == FIQBANK)
for (i = 8; i < 13; i++)
state->Reg[i] = state->RegBank[USERBANK][i];
state->Reg[13] = state->RegBank[newbank][13];
state->Reg[14] = state->RegBank[newbank][14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = state->RegBank[FIQBANK][i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = 0;
break;
default:
abort ();
} /* switch */
} /* if */
return newmode;
}
/***************************************************************************\
* Given a processor mode, this routine returns the register bank that *
* will be accessed in that mode. *
\***************************************************************************/
static ARMword
ModeToBank (ARMword mode)
{
static ARMword bankofmode[] =
{
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
};
if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
return DUMMYBANK;
return bankofmode[mode];
}
/***************************************************************************\
* Returns the register number of the nth register in a reg list. *
\***************************************************************************/
unsigned
ARMul_NthReg (ARMword instr, unsigned number)
{
unsigned bit, upto;
for (bit = 0, upto = 0; upto <= number; bit++)
if (BIT (bit))
upto++;
return (bit - 1);
}
/***************************************************************************\
* Assigns the N and Z flags depending on the value of result *
\***************************************************************************/
void
ARMul_NegZero (ARMul_State * state, ARMword result)
{
if (NEG (result))
{
SETN;
CLEARZ;
}
else if (result == 0)
{
CLEARN;
SETZ;
}
else
{
CLEARN;
CLEARZ;
};
}
/* Compute whether an addition of A and B, giving RESULT, overflowed. */
int
AddOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && NEG (b) && POS (result))
|| (POS (a) && POS (b) && NEG (result)));
}
/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
int
SubOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && POS (b) && POS (result))
|| (POS (a) && NEG (b) && NEG (result)));
}
/***************************************************************************\
* Assigns the C flag after an addition of a and b to give result *
\***************************************************************************/
void
ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && NEG (b)) ||
(NEG (a) && POS (result)) || (NEG (b) && POS (result)));
}
/***************************************************************************\
* Assigns the V flag after an addition of a and b to give result *
\***************************************************************************/
void
ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (AddOverflow (a, b, result));
}
/***************************************************************************\
* Assigns the C flag after an subtraction of a and b to give result *
\***************************************************************************/
void
ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && POS (b)) ||
(NEG (a) && POS (result)) || (POS (b) && POS (result)));
}
/***************************************************************************\
* Assigns the V flag after an subtraction of a and b to give result *
\***************************************************************************/
void
ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (SubOverflow (a, b, result));
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* LDC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void
ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
UNDEF_LSCPCBaseWb;
if (ADDREXCEPT (address))
{
INTERNALABORT (address);
}
cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
data = ARMul_LoadWordN (state, address);
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
while (cpab == ARMul_INC)
{
address += 4;
data = ARMul_LoadWordN (state, address);
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
}
if (state->abortSig || state->Aborted)
{
TAKEABORT;
}
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* STC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void
ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
UNDEF_LSCPCBaseWb;
if (ADDREXCEPT (address) || VECTORACCESS (address))
{
INTERNALABORT (address);
}
cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
#ifndef MODE32
if (ADDREXCEPT (address) || VECTORACCESS (address))
{
INTERNALABORT (address);
}
#endif
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
while (cpab == ARMul_INC)
{
address += 4;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
}
if (state->abortSig || state->Aborted)
{
TAKEABORT;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MCR instruction. *
\***************************************************************************/
void
ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
{
unsigned cpab;
cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MRC instruction. *
\***************************************************************************/
ARMword
ARMul_MRC (ARMul_State * state, ARMword instr)
{
unsigned cpab;
ARMword result = 0;
cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return (0);
}
else
cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
}
if (cpab == ARMul_CANT)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
result = ECC; /* Parent will destroy the flags otherwise */
}
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
ARMul_Icycles (state, 1, 0);
}
return (result);
}
/***************************************************************************\
* This function does the Busy-Waiting for an CDP instruction. *
\***************************************************************************/
void
ARMul_CDP (ARMul_State * state, ARMword instr)
{
unsigned cpab;
cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
return;
}
else
cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
BUSUSEDN;
}
/***************************************************************************\
* This function handles Undefined instructions, as CP isntruction *
\***************************************************************************/
void
ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
}
/***************************************************************************\
* Return TRUE if an interrupt is pending, FALSE otherwise. *
\***************************************************************************/
unsigned
IntPending (ARMul_State * state)
{
if (state->Exception)
{ /* Any exceptions */
if (state->NresetSig == LOW)
{
ARMul_Abort (state, ARMul_ResetV);
return (TRUE);
}
else if (!state->NfiqSig && !FFLAG)
{
ARMul_Abort (state, ARMul_FIQV);
return (TRUE);
}
else if (!state->NirqSig && !IFLAG)
{
ARMul_Abort (state, ARMul_IRQV);
return (TRUE);
}
}
return (FALSE);
}
/***************************************************************************\
* Align a word access to a non word boundary *
\***************************************************************************/
ARMword
ARMul_Align (state, address, data)
ARMul_State * state ATTRIBUTE_UNUSED;
ARMword address;
ARMword data;
{
/* This code assumes the address is really unaligned,
as a shift by 32 is undefined in C. */
address = (address & 3) << 3; /* get the word address */
return ((data >> address) | (data << (32 - address))); /* rot right */
}
/***************************************************************************\
* This routine is used to call another routine after a certain number of *
* cycles have been executed. The first parameter is the number of cycles *
* delay before the function is called, the second argument is a pointer *
* to the function. A delay of zero doesn't work, just call the function. *
\***************************************************************************/
void
ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) ())
{
unsigned long when;
struct EventNode *event;
if (state->EventSet++ == 0)
state->Now = ARMul_Time (state);
when = (state->Now + delay) % EVENTLISTSIZE;
event = (struct EventNode *) malloc (sizeof (struct EventNode));
event->func = what;
event->next = *(state->EventPtr + when);
*(state->EventPtr + when) = event;
}
/***************************************************************************\
* This routine is called at the beginning of every cycle, to envoke *
* scheduled events. *
\***************************************************************************/
void
ARMul_EnvokeEvent (ARMul_State * state)
{
static unsigned long then;
then = state->Now;
state->Now = ARMul_Time (state) % EVENTLISTSIZE;
if (then < state->Now) /* schedule events */
EnvokeList (state, then, state->Now);
else if (then > state->Now)
{ /* need to wrap around the list */
EnvokeList (state, then, EVENTLISTSIZE - 1L);
EnvokeList (state, 0L, state->Now);
}
}
static void
EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
/* envokes all the entries in a range */
{
struct EventNode *anevent;
for (; from <= to; from++)
{
anevent = *(state->EventPtr + from);
while (anevent)
{
(anevent->func) (state);
state->EventSet--;
anevent = anevent->next;
}
*(state->EventPtr + from) = NULL;
}
}
/***************************************************************************\
* This routine is returns the number of clock ticks since the last reset. *
\***************************************************************************/
unsigned long
ARMul_Time (ARMul_State * state)
{
return (state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles);
}
|