aboutsummaryrefslogtreecommitdiff
path: root/sim/arm/armcopro.c
blob: 9227fc097acdda8b20a697914c147994d61dffe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
/*  armcopro.c -- co-processor interface:  ARM6 Instruction Emulator.
    Copyright (C) 1994, 2000 Advanced RISC Machines Ltd.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, see <http://www.gnu.org/licenses/>.  */

#include "armdefs.h"
#include "armos.h"
#include "armemu.h"
#include "ansidecl.h"
#include "iwmmxt.h"

/* Dummy Co-processors.  */

static unsigned
NoCoPro3R (ARMul_State * state ATTRIBUTE_UNUSED,
	   unsigned      a     ATTRIBUTE_UNUSED,
	   ARMword       b     ATTRIBUTE_UNUSED)
{
  return ARMul_CANT;
}

static unsigned
NoCoPro4R (ARMul_State * state ATTRIBUTE_UNUSED,
	   unsigned      a     ATTRIBUTE_UNUSED,
	   ARMword       b     ATTRIBUTE_UNUSED,
	   ARMword       c     ATTRIBUTE_UNUSED)
{
  return ARMul_CANT;
}

static unsigned
NoCoPro4W (ARMul_State * state ATTRIBUTE_UNUSED,
	   unsigned      a     ATTRIBUTE_UNUSED,
	   ARMword       b     ATTRIBUTE_UNUSED,
	   ARMword *     c     ATTRIBUTE_UNUSED)
{
  return ARMul_CANT;
}

/* The XScale Co-processors.  */

/* Coprocessor 15:  System Control.  */
static void     write_cp14_reg (unsigned, ARMword);
static ARMword  read_cp14_reg  (unsigned);

/* There are two sets of registers for copro 15.
   One set is available when opcode_2 is 0 and
   the other set when opcode_2 >= 1.  */
static ARMword XScale_cp15_opcode_2_is_0_Regs[16];
static ARMword XScale_cp15_opcode_2_is_not_0_Regs[16];
/* There are also a set of breakpoint registers
   which are accessed via CRm instead of opcode_2.  */
static ARMword XScale_cp15_DBR1;
static ARMword XScale_cp15_DBCON;
static ARMword XScale_cp15_IBCR0;
static ARMword XScale_cp15_IBCR1;

static unsigned
XScale_cp15_init (ARMul_State * state ATTRIBUTE_UNUSED)
{
  int i;

  for (i = 16; i--;)
    {
      XScale_cp15_opcode_2_is_0_Regs[i] = 0;
      XScale_cp15_opcode_2_is_not_0_Regs[i] = 0;
    }

  /* Initialise the processor ID.  */
  XScale_cp15_opcode_2_is_0_Regs[0] = 0x69052000;

  /* Initialise the cache type.  */
  XScale_cp15_opcode_2_is_not_0_Regs[0] = 0x0B1AA1AA;

  /* Initialise the ARM Control Register.  */
  XScale_cp15_opcode_2_is_0_Regs[1] = 0x00000078;

  return TRUE;
}

/* Check an access to a register.  */

static unsigned
check_cp15_access (ARMul_State * state,
		   unsigned      reg,
		   unsigned      CRm,
		   unsigned      opcode_1,
		   unsigned      opcode_2)
{
  /* Do not allow access to these register in USER mode.  */
  if (state->Mode == USER26MODE || state->Mode == USER32MODE)
    return ARMul_CANT;

  /* Opcode_1should be zero.  */
  if (opcode_1 != 0)
    return ARMul_CANT;

  /* Different register have different access requirements.  */
  switch (reg)
    {
    case 0:
    case 1:
      /* CRm must be 0.  Opcode_2 can be anything.  */
      if (CRm != 0)
	return ARMul_CANT;
      break;
    case 2:
    case 3:
      /* CRm must be 0.  Opcode_2 must be zero.  */
      if ((CRm != 0) || (opcode_2 != 0))
	return ARMul_CANT;
      break;
    case 4:
      /* Access not allowed.  */
      return ARMul_CANT;
    case 5:
    case 6:
      /* Opcode_2 must be zero.  CRm must be 0.  */
      if ((CRm != 0) || (opcode_2 != 0))
	return ARMul_CANT;
      break;
    case 7:
      /* Permissable combinations:
	   Opcode_2  CRm
	      0       5
	      0       6
	      0       7
	      1       5
	      1       6
	      1      10
	      4      10
	      5       2
	      6       5  */
      switch (opcode_2)
	{
	default:               return ARMul_CANT;
	case 6: if (CRm !=  5) return ARMul_CANT; break;
	case 5: if (CRm !=  2) return ARMul_CANT; break;
	case 4: if (CRm != 10) return ARMul_CANT; break;
	case 1: if ((CRm != 5) && (CRm != 6) && (CRm != 10)) return ARMul_CANT; break;
	case 0: if ((CRm < 5) || (CRm > 7)) return ARMul_CANT; break;
	}
      break;

    case 8:
      /* Permissable combinations:
	   Opcode_2  CRm
	      0       5
	      0       6
	      0       7
	      1       5
	      1       6  */
      if (opcode_2 > 1)
	return ARMul_CANT;
      if ((CRm < 5) || (CRm > 7))
	return ARMul_CANT;
      if (opcode_2 == 1 && CRm == 7)
	return ARMul_CANT;
      break;
    case 9:
      /* Opcode_2 must be zero or one.  CRm must be 1 or 2.  */
      if (   ((CRm != 0) && (CRm != 1))
	  || ((opcode_2 != 1) && (opcode_2 != 2)))
	return ARMul_CANT;
      break;
    case 10:
      /* Opcode_2 must be zero or one.  CRm must be 4 or 8.  */
      if (   ((CRm != 0) && (CRm != 1))
	  || ((opcode_2 != 4) && (opcode_2 != 8)))
	return ARMul_CANT;
      break;
    case 11:
      /* Access not allowed.  */
      return ARMul_CANT;
    case 12:
      /* Access not allowed.  */
      return ARMul_CANT;
    case 13:
      /* Opcode_2 must be zero.  CRm must be 0.  */
      if ((CRm != 0) || (opcode_2 != 0))
	return ARMul_CANT;
      break;
    case 14:
      /* Opcode_2 must be 0.  CRm must be 0, 3, 4, 8 or 9.  */
      if (opcode_2 != 0)
	return ARMul_CANT;

      if ((CRm != 0) && (CRm != 3) && (CRm != 4) && (CRm != 8) && (CRm != 9))
	return ARMul_CANT;
      break;
    case 15:
      /* Opcode_2 must be zero.  CRm must be 1.  */
      if ((CRm != 1) || (opcode_2 != 0))
	return ARMul_CANT;
      break;
    default:
      /* Should never happen.  */
      return ARMul_CANT;
    }

  return ARMul_DONE;
}

/* Store a value into one of coprocessor 15's registers.  */

static void
write_cp15_reg (ARMul_State * state,
		unsigned reg,
		unsigned opcode_2,
		unsigned CRm,
		ARMword  value)
{
  if (opcode_2)
    {
      switch (reg)
	{
	case 0: /* Cache Type.  */
	  /* Writes are not allowed.  */
	  return;

	case 1: /* Auxillary Control.  */
	  /* Only BITS (5, 4) and BITS (1, 0) can be written.  */
	  value &= 0x33;
	  break;

	default:
	  return;
	}

      XScale_cp15_opcode_2_is_not_0_Regs [reg] = value;
    }
  else
    {
      switch (reg)
	{
	case 0: /* ID.  */
	  /* Writes are not allowed.  */
	  return;

	case 1: /* ARM Control.  */
	  /* Only BITS (13, 11), BITS (9, 7) and BITS (2, 0) can be written.
	     BITS (31, 14) and BIT (10) write as zero, BITS (6, 3) write as one.  */
	  value &= 0x00003b87;
	  value |= 0x00000078;

          /* Change the endianness if necessary.  */
          if ((value & ARMul_CP15_R1_ENDIAN) !=
	      (XScale_cp15_opcode_2_is_0_Regs [reg] & ARMul_CP15_R1_ENDIAN))
	    {
	      state->bigendSig = value & ARMul_CP15_R1_ENDIAN;
	      /* Force ARMulator to notice these now.  */
	      state->Emulate = CHANGEMODE;
	    }
	  break;

	case 2: /* Translation Table Base.  */
	  /* Only BITS (31, 14) can be written.  */
	  value &= 0xffffc000;
	  break;

	case 3: /* Domain Access Control.  */
	  /* All bits writable.  */
	  break;

	case 5: /* Fault Status Register.  */
	  /* BITS (10, 9) and BITS (7, 0) can be written.  */
	  value &= 0x000006ff;
	  break;

	case 6: /* Fault Address Register.  */
	  /* All bits writable.  */
	  break;

	case 7: /* Cache Functions.  */
	case 8: /* TLB Operations.  */
	case 10: /* TLB Lock Down.  */
	  /* Ignore writes.  */
	  return;

	case 9: /* Data Cache Lock.  */
	  /* Only BIT (0) can be written.  */
	  value &= 0x1;
	  break;

	case 13: /* Process ID.  */
	  /* Only BITS (31, 25) are writable.  */
	  value &= 0xfe000000;
	  break;

	case 14: /* DBR0, DBR1, DBCON, IBCR0, IBCR1 */
	  /* All bits can be written.  Which register is accessed is
	     dependent upon CRm.  */
	  switch (CRm)
	    {
	    case 0: /* DBR0 */
	      break;
	    case 3: /* DBR1 */
	      XScale_cp15_DBR1 = value;
	      break;
	    case 4: /* DBCON */
	      XScale_cp15_DBCON = value;
	      break;
	    case 8: /* IBCR0 */
	      XScale_cp15_IBCR0 = value;
	      break;
	    case 9: /* IBCR1 */
	      XScale_cp15_IBCR1 = value;
	      break;
	    default:
	      return;
	    }
	  break;

	case 15: /* Coprpcessor Access Register.  */
	  /* Access is only valid if CRm == 1.  */
	  if (CRm != 1)
	    return;

	  /* Only BITS (13, 0) may be written.  */
	  value &= 0x00003fff;
	  break;

	default:
	  return;
	}

      XScale_cp15_opcode_2_is_0_Regs [reg] = value;
    }

  return;
}

/* Return the value in a cp15 register.  */

ARMword
read_cp15_reg (unsigned reg, unsigned opcode_2, unsigned CRm)
{
  if (opcode_2 == 0)
    {
      if (reg == 15 && CRm != 1)
	return 0;

      if (reg == 14)
	{
	  switch (CRm)
	    {
	    case 3: return XScale_cp15_DBR1;
	    case 4: return XScale_cp15_DBCON;
	    case 8: return XScale_cp15_IBCR0;
	    case 9: return XScale_cp15_IBCR1;
	    default:
	      break;
	    }
	}

      return XScale_cp15_opcode_2_is_0_Regs [reg];
    }
  else
    return XScale_cp15_opcode_2_is_not_0_Regs [reg];

  return 0;
}

static unsigned
XScale_cp15_MRC (ARMul_State * state,
		 unsigned      type ATTRIBUTE_UNUSED,
		 ARMword       instr,
		 ARMword *     value)
{
  unsigned opcode_2 = BITS (5, 7);
  unsigned CRm = BITS (0, 3);
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);

  if (result == ARMul_DONE)
    * value = read_cp15_reg (reg, opcode_2, CRm);

  return result;
}

static unsigned
XScale_cp15_MCR (ARMul_State * state,
		 unsigned      type ATTRIBUTE_UNUSED,
		 ARMword       instr,
		 ARMword       value)
{
  unsigned opcode_2 = BITS (5, 7);
  unsigned CRm = BITS (0, 3);
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);

  if (result == ARMul_DONE)
    write_cp15_reg (state, reg, opcode_2, CRm, value);

  return result;
}

static unsigned
XScale_cp15_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
		      unsigned      reg,
		      ARMword *     value)
{
  /* FIXME: Not sure what to do about the alternative register set
     here.  For now default to just accessing CRm == 0 registers.  */
  * value = read_cp15_reg (reg, 0, 0);

  return TRUE;
}

static unsigned
XScale_cp15_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
		       unsigned      reg,
		       ARMword       value)
{
  /* FIXME: Not sure what to do about the alternative register set
     here.  For now default to just accessing CRm == 0 registers.  */
  write_cp15_reg (state, reg, 0, 0, value);

  return TRUE;
}

/* Check for special XScale memory access features.  */

void
XScale_check_memacc (ARMul_State * state, ARMword * address, int store)
{
  ARMword dbcon, r0, r1;
  int e1, e0;

  if (!state->is_XScale)
    return;

  /* Check for PID-ification.
     XXX BTB access support will require this test failing.  */
  r0 = (read_cp15_reg (13, 0, 0) & 0xfe000000);
  if (r0 && (* address & 0xfe000000) == 0)
    * address |= r0;

  /* Check alignment fault enable/disable.  */
  if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN) && (* address & 3))
    {
      /* Set the FSR and FAR.
	 Do not use XScale_set_fsr_far as this checks the DCSR register.  */
      write_cp15_reg (state, 5, 0, 0, ARMul_CP15_R5_MMU_EXCPT);
      write_cp15_reg (state, 6, 0, 0, * address);

      ARMul_Abort (state, ARMul_DataAbortV);
    }

  if (XScale_debug_moe (state, -1))
    return;

  /* Check the data breakpoint registers.  */
  dbcon = read_cp15_reg (14, 0, 4);
  r0 = read_cp15_reg (14, 0, 0);
  r1 = read_cp15_reg (14, 0, 3);
  e0 = dbcon & ARMul_CP15_DBCON_E0;

  if (dbcon & ARMul_CP15_DBCON_M)
    {
      /* r1 is a inverse mask.  */
      if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
          && ((* address & ~r1) == (r0 & ~r1)))
	{
          XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
          ARMul_OSHandleSWI (state, SWI_Breakpoint);
	}
    }
  else
    {
      if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
              && ((* address & ~3) == (r0 & ~3)))
	{
          XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
          ARMul_OSHandleSWI (state, SWI_Breakpoint);
	}

      e1 = (dbcon & ARMul_CP15_DBCON_E1) >> 2;
      if (e1 != 0 && ((store && e1 != 3) || (!store && e1 != 1))
              && ((* address & ~3) == (r1 & ~3)))
	{
          XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
          ARMul_OSHandleSWI (state, SWI_Breakpoint);
	}
    }
}

/* Set the XScale FSR and FAR registers.  */

void
XScale_set_fsr_far (ARMul_State * state, ARMword fsr, ARMword far)
{
  if (!state->is_XScale || (read_cp14_reg (10) & (1UL << 31)) == 0)
    return;

  write_cp15_reg (state, 5, 0, 0, fsr);
  write_cp15_reg (state, 6, 0, 0, far);
}

/* Set the XScale debug `method of entry' if it is enabled.  */

int
XScale_debug_moe (ARMul_State * state, int moe)
{
  ARMword value;

  if (!state->is_XScale)
    return 1;

  value = read_cp14_reg (10);
  if (value & (1UL << 31))
    {
      if (moe != -1)
	{
          value &= ~0x1c;
          value |= moe;
	
          write_cp14_reg (10, value);
	}
      return 1;
    }
  return 0;
}

/* Coprocessor 13:  Interrupt Controller and Bus Controller.  */

/* There are two sets of registers for copro 13.
   One set (of three registers) is available when CRm is 0
   and the other set (of six registers) when CRm is 1.  */

static ARMword XScale_cp13_CR0_Regs[16];
static ARMword XScale_cp13_CR1_Regs[16];

static unsigned
XScale_cp13_init (ARMul_State * state ATTRIBUTE_UNUSED)
{
  int i;

  for (i = 16; i--;)
    {
      XScale_cp13_CR0_Regs[i] = 0;
      XScale_cp13_CR1_Regs[i] = 0;
    }

  return TRUE;
}

/* Check an access to a register.  */

static unsigned
check_cp13_access (ARMul_State * state,
		   unsigned      reg,
		   unsigned      CRm,
		   unsigned      opcode_1,
		   unsigned      opcode_2)
{
  /* Do not allow access to these registers in USER mode.  */
  if (state->Mode == USER26MODE || state->Mode == USER32MODE)
    return ARMul_CANT;

  /* The opcodes should be zero.  */
  if ((opcode_1 != 0) || (opcode_2 != 0))
    return ARMul_CANT;

  /* Do not allow access to these register if bit
     13 of coprocessor 15's register 15 is zero.  */
  if (! CP_ACCESS_ALLOWED (state, 13))
    return ARMul_CANT;

  /* Registers 0, 4 and 8 are defined when CRm == 0.
     Registers 0, 1, 4, 5, 6, 7, 8 are defined when CRm == 1.
     For all other CRm values undefined behaviour results.  */
  if (CRm == 0)
    {
      if (reg == 0 || reg == 4 || reg == 8)
	return ARMul_DONE;
    }
  else if (CRm == 1)
    {
      if (reg == 0 || reg == 1 || (reg >= 4 && reg <= 8))
	return ARMul_DONE;
    }

  return ARMul_CANT;
}

/* Store a value into one of coprocessor 13's registers.  */

static void
write_cp13_reg (unsigned reg, unsigned CRm, ARMword value)
{
  switch (CRm)
    {
    case 0:
      switch (reg)
	{
	case 0: /* INTCTL */
	  /* Only BITS (3:0) can be written.  */
	  value &= 0xf;
	  break;

	case 4: /* INTSRC */
	  /* No bits may be written.  */
	  return;

	case 8: /* INTSTR */
	  /* Only BITS (1:0) can be written.  */
	  value &= 0x3;
	  break;

	default:
	  /* Should not happen.  Ignore any writes to unimplemented registers.  */
	  return;
	}

      XScale_cp13_CR0_Regs [reg] = value;
      break;

    case 1:
      switch (reg)
	{
	case 0: /* BCUCTL */
	  /* Only BITS (30:28) and BITS (3:0) can be written.
	     BIT(31) is write ignored.  */
	  value &= 0x7000000f;
	  value |= XScale_cp13_CR1_Regs[0] & (1UL << 31);
	  break;

	case 1: /* BCUMOD */
	  /* Only bit 0 is accecssible.  */
	  value &= 1;
	  value |= XScale_cp13_CR1_Regs[1] & ~ 1;
	  break;

	case 4: /* ELOG0 */
	case 5: /* ELOG1 */
	case 6: /* ECAR0 */
	case 7: /* ECAR1 */
	  /* No bits can be written.  */
	  return;

	case 8: /* ECTST */
	  /* Only BITS (7:0) can be written.  */
	  value &= 0xff;
	  break;

	default:
	  /* Should not happen.  Ignore any writes to unimplemented registers.  */
	  return;
	}

      XScale_cp13_CR1_Regs [reg] = value;
      break;

    default:
      /* Should not happen.  */
      break;
    }

  return;
}

/* Return the value in a cp13 register.  */

static ARMword
read_cp13_reg (unsigned reg, unsigned CRm)
{
  if (CRm == 0)
    return XScale_cp13_CR0_Regs [reg];
  else if (CRm == 1)
    return XScale_cp13_CR1_Regs [reg];

  return 0;
}

static unsigned
XScale_cp13_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
{
  unsigned reg = BITS (12, 15);
  unsigned result;

  result = check_cp13_access (state, reg, 0, 0, 0);

  if (result == ARMul_DONE && type == ARMul_DATA)
    write_cp13_reg (reg, 0, data);

  return result;
}

static unsigned
XScale_cp13_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
{
  unsigned reg = BITS (12, 15);
  unsigned result;

  result = check_cp13_access (state, reg, 0, 0, 0);

  if (result == ARMul_DONE && type == ARMul_DATA)
    * data = read_cp13_reg (reg, 0);

  return result;
}

static unsigned
XScale_cp13_MRC (ARMul_State * state,
		 unsigned      type ATTRIBUTE_UNUSED,
		 ARMword       instr,
		 ARMword *     value)
{
  unsigned CRm = BITS (0, 3);
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));

  if (result == ARMul_DONE)
    * value = read_cp13_reg (reg, CRm);

  return result;
}

static unsigned
XScale_cp13_MCR (ARMul_State * state,
		 unsigned      type ATTRIBUTE_UNUSED,
		 ARMword       instr,
		 ARMword       value)
{
  unsigned CRm = BITS (0, 3);
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));

  if (result == ARMul_DONE)
    write_cp13_reg (reg, CRm, value);

  return result;
}

static unsigned
XScale_cp13_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
		      unsigned      reg,
		      ARMword *     value)
{
  /* FIXME: Not sure what to do about the alternative register set
     here.  For now default to just accessing CRm == 0 registers.  */
  * value = read_cp13_reg (reg, 0);

  return TRUE;
}

static unsigned
XScale_cp13_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
		       unsigned      reg,
		       ARMword       value)
{
  /* FIXME: Not sure what to do about the alternative register set
     here.  For now default to just accessing CRm == 0 registers.  */
  write_cp13_reg (reg, 0, value);

  return TRUE;
}

/* Coprocessor 14:  Performance Monitoring,  Clock and Power management,
   Software Debug.  */

static ARMword XScale_cp14_Regs[16];

static unsigned
XScale_cp14_init (ARMul_State * state ATTRIBUTE_UNUSED)
{
  int i;

  for (i = 16; i--;)
    XScale_cp14_Regs[i] = 0;

  return TRUE;
}

/* Check an access to a register.  */

static unsigned
check_cp14_access (ARMul_State * state,
		   unsigned      reg,
		   unsigned      CRm,
		   unsigned      opcode1,
		   unsigned      opcode2)
{
  /* Not allowed to access these register in USER mode.  */
  if (state->Mode == USER26MODE || state->Mode == USER32MODE)
    return ARMul_CANT;

  /* CRm should be zero.  */
  if (CRm != 0)
    return ARMul_CANT;

  /* OPcodes should be zero.  */
  if (opcode1 != 0 || opcode2 != 0)
    return ARMul_CANT;

  /* Accessing registers 4 or 5 has unpredicatable results.  */
  if (reg >= 4 && reg <= 5)
    return ARMul_CANT;

  return ARMul_DONE;
}

/* Store a value into one of coprocessor 14's registers.  */

static void
write_cp14_reg (unsigned reg, ARMword value)
{
  switch (reg)
    {
    case 0: /* PMNC */
      /* Only BITS (27:12), BITS (10:8) and BITS (6:0) can be written.  */
      value &= 0x0ffff77f;

      /* Reset the clock counter if necessary.  */
      if (value & ARMul_CP14_R0_CLKRST)
        XScale_cp14_Regs [1] = 0;
      break;

    case 4:
    case 5:
      /* We should not normally reach this code.  The debugger interface
	 can bypass the normal checks though, so it could happen.  */
      value = 0;
      break;

    case 6: /* CCLKCFG */
      /* Only BITS (3:0) can be written.  */
      value &= 0xf;
      break;

    case 7: /* PWRMODE */
      /* Although BITS (1:0) can be written with non-zero values, this would
	 have the side effect of putting the processor to sleep.  Thus in
	 order for the register to be read again, it would have to go into
	 ACTIVE mode, which means that any read will see these bits as zero.

	 Rather than trying to implement complex reset-to-zero-upon-read logic
	 we just override the write value with zero.  */
      value = 0;
      break;

    case 10: /* DCSR */
      /* Only BITS (31:30), BITS (23:22), BITS (20:16) and BITS (5:0) can
	 be written.  */
      value &= 0xc0df003f;
      break;

    case 11: /* TBREG */
      /* No writes are permitted.  */
      value = 0;
      break;

    case 14: /* TXRXCTRL */
      /* Only BITS (31:30) can be written.  */
      value &= 0xc0000000;
      break;

    default:
      /* All bits can be written.  */
      break;
    }

  XScale_cp14_Regs [reg] = value;
}

/* Return the value in a cp14 register.  Not a static function since
   it is used by the code to emulate the BKPT instruction in armemu.c.  */

ARMword
read_cp14_reg (unsigned reg)
{
  return XScale_cp14_Regs [reg];
}

static unsigned
XScale_cp14_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
{
  unsigned reg = BITS (12, 15);
  unsigned result;

  result = check_cp14_access (state, reg, 0, 0, 0);

  if (result == ARMul_DONE && type == ARMul_DATA)
    write_cp14_reg (reg, data);

  return result;
}

static unsigned
XScale_cp14_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
{
  unsigned reg = BITS (12, 15);
  unsigned result;

  result = check_cp14_access (state, reg, 0, 0, 0);

  if (result == ARMul_DONE && type == ARMul_DATA)
    * data = read_cp14_reg (reg);

  return result;
}

static unsigned
XScale_cp14_MRC
(
 ARMul_State * state,
 unsigned      type ATTRIBUTE_UNUSED,
 ARMword       instr,
 ARMword *     value
)
{
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));

  if (result == ARMul_DONE)
    * value = read_cp14_reg (reg);

  return result;
}

static unsigned
XScale_cp14_MCR
(
 ARMul_State * state,
 unsigned      type ATTRIBUTE_UNUSED,
 ARMword       instr,
 ARMword       value
)
{
  unsigned reg = BITS (16, 19);
  unsigned result;

  result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));

  if (result == ARMul_DONE)
    write_cp14_reg (reg, value);

  return result;
}

static unsigned
XScale_cp14_read_reg
(
 ARMul_State * state ATTRIBUTE_UNUSED,
 unsigned      reg,
 ARMword *     value
)
{
  * value = read_cp14_reg (reg);

  return TRUE;
}

static unsigned
XScale_cp14_write_reg
(
 ARMul_State * state ATTRIBUTE_UNUSED,
 unsigned      reg,
 ARMword       value
)
{
  write_cp14_reg (reg, value);

  return TRUE;
}

/* Here's ARMulator's MMU definition.  A few things to note:
   1) It has eight registers, but only two are defined.
   2) You can only access its registers with MCR and MRC.
   3) MMU Register 0 (ID) returns 0x41440110
   4) Register 1 only has 4 bits defined.  Bits 0 to 3 are unused, bit 4
      controls 32/26 bit program space, bit 5 controls 32/26 bit data space,
      bit 6 controls late abort timimg and bit 7 controls big/little endian.  */

static ARMword MMUReg[8];

static unsigned
MMUInit (ARMul_State * state)
{
  MMUReg[1] = state->prog32Sig << 4 |
    state->data32Sig << 5 | state->lateabtSig << 6 | state->bigendSig << 7;

  ARMul_ConsolePrint (state, ", MMU present");

  return TRUE;
}

static unsigned
MMUMRC (ARMul_State * state ATTRIBUTE_UNUSED,
	unsigned      type ATTRIBUTE_UNUSED,
	ARMword       instr,
	ARMword *     value)
{
  int reg = BITS (16, 19) & 7;

  if (reg == 0)
    *value = 0x41440110;
  else
    *value = MMUReg[reg];

  return ARMul_DONE;
}

static unsigned
MMUMCR (ARMul_State * state,
	unsigned      type ATTRIBUTE_UNUSED,
	ARMword       instr,
	ARMword       value)
{
  int reg = BITS (16, 19) & 7;

  MMUReg[reg] = value;

  if (reg == 1)
    {
      ARMword p,d,l,b;

      p = state->prog32Sig;
      d = state->data32Sig;
      l = state->lateabtSig;
      b = state->bigendSig;

      state->prog32Sig  = value >> 4 & 1;
      state->data32Sig  = value >> 5 & 1;
      state->lateabtSig = value >> 6 & 1;
      state->bigendSig  = value >> 7 & 1;

      if (   p != state->prog32Sig
	  || d != state->data32Sig
	  || l != state->lateabtSig
	  || b != state->bigendSig)
	/* Force ARMulator to notice these now.  */
	state->Emulate = CHANGEMODE;
    }

  return ARMul_DONE;
}

static unsigned
MMURead (ARMul_State * state ATTRIBUTE_UNUSED, unsigned reg, ARMword * value)
{
  if (reg == 0)
    *value = 0x41440110;
  else if (reg < 8)
    *value = MMUReg[reg];

  return TRUE;
}

static unsigned
MMUWrite (ARMul_State * state, unsigned reg, ARMword value)
{
  if (reg < 8)
    MMUReg[reg] = value;

  if (reg == 1)
    {
      ARMword p,d,l,b;

      p = state->prog32Sig;
      d = state->data32Sig;
      l = state->lateabtSig;
      b = state->bigendSig;

      state->prog32Sig  = value >> 4 & 1;
      state->data32Sig  = value >> 5 & 1;
      state->lateabtSig = value >> 6 & 1;
      state->bigendSig  = value >> 7 & 1;

      if (   p != state->prog32Sig
	  || d != state->data32Sig
	  || l != state->lateabtSig
	  || b != state->bigendSig)
	/* Force ARMulator to notice these now.  */	
	state->Emulate = CHANGEMODE;
    }

  return TRUE;
}


/* What follows is the Validation Suite Coprocessor.  It uses two
   co-processor numbers (4 and 5) and has the follwing functionality.
   Sixteen registers.  Both co-processor nuimbers can be used in an MCR
   and MRC to access these registers.  CP 4 can LDC and STC to and from
   the registers.  CP 4 and CP 5 CDP 0 will busy wait for the number of
   cycles specified by a CP register.  CP 5 CDP 1 issues a FIQ after a
   number of cycles (specified in a CP register), CDP 2 issues an IRQW
   in the same way, CDP 3 and 4 turn of the FIQ and IRQ source, and CDP 5
   stores a 32 bit time value in a CP register (actually it's the total
   number of N, S, I, C and F cyles).  */

static ARMword ValReg[16];

static unsigned
ValLDC (ARMul_State * state ATTRIBUTE_UNUSED,
	unsigned      type,
	ARMword       instr,
	ARMword        data)
{
  static unsigned words;

  if (type != ARMul_DATA)
    words = 0;
  else
    {
      ValReg[BITS (12, 15)] = data;

      if (BIT (22))
	/* It's a long access, get two words.  */
	if (words++ != 4)
	  return ARMul_INC;
    }

  return ARMul_DONE;
}

static unsigned
ValSTC (ARMul_State * state ATTRIBUTE_UNUSED,
	unsigned      type,
	ARMword       instr,
	ARMword *     data)
{
  static unsigned words;

  if (type != ARMul_DATA)
    words = 0;
  else
    {
      * data = ValReg[BITS (12, 15)];

      if (BIT (22))
	/* It's a long access, get two words.  */
	if (words++ != 4)
	  return ARMul_INC;
    }

  return ARMul_DONE;
}

static unsigned
ValMRC (ARMul_State * state ATTRIBUTE_UNUSED,
	unsigned      type  ATTRIBUTE_UNUSED,
	ARMword       instr,
	ARMword *     value)
{
  *value = ValReg[BITS (16, 19)];

  return ARMul_DONE;
}

static unsigned
ValMCR (ARMul_State * state ATTRIBUTE_UNUSED,
	unsigned      type  ATTRIBUTE_UNUSED,
	ARMword       instr,
	ARMword       value)
{
  ValReg[BITS (16, 19)] = value;

  return ARMul_DONE;
}

static unsigned
ValCDP (ARMul_State * state, unsigned type, ARMword instr)
{
  static unsigned long finish = 0;

  if (BITS (20, 23) != 0)
    return ARMul_CANT;

  if (type == ARMul_FIRST)
    {
      ARMword howlong;

      howlong = ValReg[BITS (0, 3)];

      /* First cycle of a busy wait.  */
      finish = ARMul_Time (state) + howlong;

      return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
    }
  else if (type == ARMul_BUSY)
    {
      if (ARMul_Time (state) >= finish)
	return ARMul_DONE;
      else
	return ARMul_BUSY;
    }

  return ARMul_CANT;
}

static unsigned
DoAFIQ (ARMul_State * state)
{
  state->NfiqSig = LOW;
  state->Exception++;
  return 0;
}

static unsigned
DoAIRQ (ARMul_State * state)
{
  state->NirqSig = LOW;
  state->Exception++;
  return 0;
}

static unsigned
IntCDP (ARMul_State * state, unsigned type, ARMword instr)
{
  static unsigned long finish;
  ARMword howlong;

  howlong = ValReg[BITS (0, 3)];

  switch ((int) BITS (20, 23))
    {
    case 0:
      if (type == ARMul_FIRST)
	{
	  /* First cycle of a busy wait.  */
	  finish = ARMul_Time (state) + howlong;

	  return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
	}
      else if (type == ARMul_BUSY)
	{
	  if (ARMul_Time (state) >= finish)
	    return ARMul_DONE;
	  else
	    return ARMul_BUSY;
	}
      return ARMul_DONE;

    case 1:
      if (howlong == 0)
	ARMul_Abort (state, ARMul_FIQV);
      else
	ARMul_ScheduleEvent (state, howlong, DoAFIQ);
      return ARMul_DONE;

    case 2:
      if (howlong == 0)
	ARMul_Abort (state, ARMul_IRQV);
      else
	ARMul_ScheduleEvent (state, howlong, DoAIRQ);
      return ARMul_DONE;

    case 3:
      state->NfiqSig = HIGH;
      state->Exception--;
      return ARMul_DONE;

    case 4:
      state->NirqSig = HIGH;
      state->Exception--;
      return ARMul_DONE;

    case 5:
      ValReg[BITS (0, 3)] = ARMul_Time (state);
      return ARMul_DONE;
    }

  return ARMul_CANT;
}

/* Install co-processor instruction handlers in this routine.  */

unsigned
ARMul_CoProInit (ARMul_State * state)
{
  unsigned int i;

  /* Initialise tham all first.  */
  for (i = 0; i < 16; i++)
    ARMul_CoProDetach (state, i);

  /* Install CoPro Instruction handlers here.
     The format is:
     ARMul_CoProAttach (state, CP Number, Init routine, Exit routine
                        LDC routine, STC routine, MRC routine, MCR routine,
                        CDP routine, Read Reg routine, Write Reg routine).  */
  if (state->is_ep9312)
    {
      ARMul_CoProAttach (state, 4, NULL, NULL, DSPLDC4, DSPSTC4,
			 DSPMRC4, DSPMCR4, DSPCDP4, NULL, NULL);
      ARMul_CoProAttach (state, 5, NULL, NULL, DSPLDC5, DSPSTC5,
			 DSPMRC5, DSPMCR5, DSPCDP5, NULL, NULL);
      ARMul_CoProAttach (state, 6, NULL, NULL, NULL, NULL,
			 DSPMRC6, DSPMCR6, DSPCDP6, NULL, NULL);
    }
  else
    {
      ARMul_CoProAttach (state, 4, NULL, NULL, ValLDC, ValSTC,
			 ValMRC, ValMCR, ValCDP, NULL, NULL);

      ARMul_CoProAttach (state, 5, NULL, NULL, NULL, NULL,
			 ValMRC, ValMCR, IntCDP, NULL, NULL);
    }

  if (state->is_XScale)
    {
      ARMul_CoProAttach (state, 13, XScale_cp13_init, NULL,
			 XScale_cp13_LDC, XScale_cp13_STC, XScale_cp13_MRC,
			 XScale_cp13_MCR, NULL, XScale_cp13_read_reg,
			 XScale_cp13_write_reg);

      ARMul_CoProAttach (state, 14, XScale_cp14_init, NULL,
			 XScale_cp14_LDC, XScale_cp14_STC, XScale_cp14_MRC,
			 XScale_cp14_MCR, NULL, XScale_cp14_read_reg,
			 XScale_cp14_write_reg);

      ARMul_CoProAttach (state, 15, XScale_cp15_init, NULL,
			 NULL, NULL, XScale_cp15_MRC, XScale_cp15_MCR,
			 NULL, XScale_cp15_read_reg, XScale_cp15_write_reg);
    }
  else
    {
      ARMul_CoProAttach (state, 15, MMUInit, NULL, NULL, NULL,
			 MMUMRC, MMUMCR, NULL, MMURead, MMUWrite);
    }

  if (state->is_iWMMXt)
    {
      ARMul_CoProAttach (state, 0, NULL, NULL, IwmmxtLDC, IwmmxtSTC,
			 NULL, NULL, IwmmxtCDP, NULL, NULL);

      ARMul_CoProAttach (state, 1, NULL, NULL, NULL, NULL,
			 IwmmxtMRC, IwmmxtMCR, IwmmxtCDP, NULL, NULL);
    }

  /* No handlers below here.  */

  /* Call all the initialisation routines.  */
  for (i = 0; i < 16; i++)
    if (state->CPInit[i])
      (state->CPInit[i]) (state);

  return TRUE;
}

/* Install co-processor finalisation routines in this routine.  */

void
ARMul_CoProExit (ARMul_State * state)
{
  register unsigned i;

  for (i = 0; i < 16; i++)
    if (state->CPExit[i])
      (state->CPExit[i]) (state);

  for (i = 0; i < 16; i++)	/* Detach all handlers.  */
    ARMul_CoProDetach (state, i);
}

/* Routines to hook Co-processors into ARMulator.  */

void
ARMul_CoProAttach (ARMul_State *    state,
		   unsigned         number,
		   ARMul_CPInits *  init,
		   ARMul_CPExits *  exit,
		   ARMul_LDCs *     ldc,
		   ARMul_STCs *     stc,
		   ARMul_MRCs *     mrc,
		   ARMul_MCRs *     mcr,
		   ARMul_CDPs *     cdp,
		   ARMul_CPReads *  read,
		   ARMul_CPWrites * write)
{
  if (init != NULL)
    state->CPInit[number] = init;
  if (exit != NULL)
    state->CPExit[number] = exit;
  if (ldc != NULL)
    state->LDC[number] = ldc;
  if (stc != NULL)
    state->STC[number] = stc;
  if (mrc != NULL)
    state->MRC[number] = mrc;
  if (mcr != NULL)
    state->MCR[number] = mcr;
  if (cdp != NULL)
    state->CDP[number] = cdp;
  if (read != NULL)
    state->CPRead[number] = read;
  if (write != NULL)
    state->CPWrite[number] = write;
}

void
ARMul_CoProDetach (ARMul_State * state, unsigned number)
{
  ARMul_CoProAttach (state, number, NULL, NULL,
		     NoCoPro4R, NoCoPro4W, NoCoPro4W, NoCoPro4R,
		     NoCoPro3R, NULL, NULL);

  state->CPInit[number] = NULL;
  state->CPExit[number] = NULL;
  state->CPRead[number] = NULL;
  state->CPWrite[number] = NULL;
}