aboutsummaryrefslogtreecommitdiff
path: root/opcodes/sh64-dis.c
blob: 2c760673bd20f9266f55e04c93b7533ee3a9486f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/* Disassemble SH64 instructions.
   Copyright (C) 2000, 2001 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include <stdio.h>

#include "dis-asm.h"
#include "sysdep.h"
#include "sh64-opc.h"
#include "libiberty.h"

/* We need to refer to the ELF header structure.  */
#include "elf-bfd.h"
#include "elf/sh.h"

#define ELF_MODE32_CODE_LABEL_P(SYM) \
 (((elf_symbol_type *) (SYM))->internal_elf_sym.st_other & STO_SH5_ISA32)

#define SAVED_MOVI_R(INFO) \
 (((struct sh64_disassemble_info *) ((INFO)->private_data))->address_reg)

#define SAVED_MOVI_IMM(INFO) \
 (((struct sh64_disassemble_info *) ((INFO)->private_data))->built_address)

struct sh64_disassemble_info
 {
   /* When we see a MOVI, we save the register and the value, and merge a
      subsequent SHORI and display the address, if there is one.  */
   unsigned int address_reg;
   bfd_signed_vma built_address;

   /* This is the range decriptor for the current address.  It is kept
      around for the next call.  */
   sh64_elf_crange crange;
 };

/* Each item in the table is a mask to indicate which bits to be set
   to determine an instruction's operator. 
   The index is as same as the instruction in the opcode table.
   Note that some archs have this as a field in the opcode table.  */
static unsigned long *shmedia_opcode_mask_table;

static void initialize_shmedia_opcode_mask_table PARAMS ((void));
static int print_insn_shmedia PARAMS ((bfd_vma, disassemble_info *));
static int print_insn_sh64x
  PARAMS ((bfd_vma, disassemble_info *,
	   int (*) PARAMS ((bfd_vma, struct disassemble_info *)),
	   enum bfd_endian));
static const char *creg_name PARAMS ((int));
static boolean init_sh64_disasm_info PARAMS ((struct disassemble_info *));
static enum sh64_elf_cr_type sh64_get_contents_type_disasm
  PARAMS ((bfd_vma, struct disassemble_info *));

/* Initialize the SH64 opcode mask table for each instruction in SHmedia
   mode.  */

static void
initialize_shmedia_opcode_mask_table ()
{
  int n_opc;
  int n;

  /* Calculate number of opcodes.  */
  for (n_opc = 0; shmedia_table[n_opc].name != NULL; n_opc++)
    ;

  shmedia_opcode_mask_table
    = xmalloc (sizeof (shmedia_opcode_mask_table[0]) * n_opc);

  for (n = 0; n < n_opc; n++)
    {
      int i;

      unsigned long mask = 0;

      for (i = 0; shmedia_table[n].arg[i] != A_NONE; i++)
	{
	  int offset = shmedia_table[n].nibbles[i];
	  int length;
	  
	  switch (shmedia_table[n].arg[i])
	    {
	    case A_GREG_M:
	    case A_GREG_N:
	    case A_GREG_D:
	    case A_CREG_K:
	    case A_CREG_J:
	    case A_FREG_G:
	    case A_FREG_H:
	    case A_FREG_F:
	    case A_DREG_G:
	    case A_DREG_H:
	    case A_DREG_F:
	    case A_FMREG_G:
	    case A_FMREG_H:
	    case A_FMREG_F:
	    case A_FPREG_G:
	    case A_FPREG_H:
	    case A_FPREG_F:
	    case A_FVREG_G:
	    case A_FVREG_H:
	    case A_FVREG_F:
	    case A_REUSE_PREV:
	      length = 6;
	      break;

	    case A_TREG_A:
	    case A_TREG_B:
	      length = 3;
	      break;

	    case A_IMMM:	
	      abort ();
	      break;

	    case A_IMMU5:
	      length = 5;
	      break;

	    case A_IMMS6:
	    case A_IMMU6:
	    case A_IMMS6BY32:
	      length = 6;
	      break;

	    case A_IMMS10:
	    case A_IMMS10BY1:
	    case A_IMMS10BY2:
	    case A_IMMS10BY4:
	    case A_IMMS10BY8:
	      length = 10;
	      break;

	    case A_IMMU16:
	    case A_IMMS16:
	    case A_PCIMMS16BY4:
	    case A_PCIMMS16BY4_PT:
	      length = 16;
	      break;

	    default:
	      abort ();
	      length = 0;
	      break;
	    }

	  if (length != 0)
	    mask |= (0xffffffff >> (32 - length)) << offset;
	}
      shmedia_opcode_mask_table[n] = 0xffffffff & ~mask;
    }
}

/* Get a predefined control-register-name, or return NULL.  */

const char *
creg_name (cregno)
     int cregno;
{
  const shmedia_creg_info *cregp;

  /* If control register usage is common enough, change this to search a
     hash-table.  */
  for (cregp = shmedia_creg_table; cregp->name != NULL; cregp++)
    {
      if (cregp->cregno == cregno)
	return cregp->name;
    }

  return NULL;
}

/* Main function to disassemble SHmedia instructions.  */

static int
print_insn_shmedia (memaddr, info)
     bfd_vma memaddr;
     struct disassemble_info *info;
{
  fprintf_ftype fprintf_fn = info->fprintf_func;
  void *stream = info->stream;

  unsigned char insn[4];
  unsigned long instruction;
  int status;
  int n;
  const shmedia_opcode_info *op;
  int i;
  unsigned int r = 0;
  long imm = 0;
  bfd_vma disp_pc_addr;

  status = info->read_memory_func (memaddr, insn, 4, info);

  /* If we can't read four bytes, something is wrong.  Display any data we
     can get as .byte:s.  */
  if (status != 0)
    {
      int i;

      for (i = 0; i < 3; i++)
	{
	  status = info->read_memory_func (memaddr + i, insn, 1, info);
	  if (status != 0)
	    break;
	  (*fprintf_fn) (stream, "%s0x%02x",
			 i == 0 ? ".byte " : ", ",
			 insn[0]);
	}

      return i ? i : -1;
    }

  /* Rearrange the bytes to make up an instruction.  */
  if (info->endian == BFD_ENDIAN_LITTLE)
    instruction = bfd_getl32 (insn);
  else
    instruction = bfd_getb32 (insn);

  /* FIXME: Searching could be implemented using a hash on relevant
     fields.  */
  for (n = 0, op = shmedia_table;
       op->name != NULL
       && ((instruction & shmedia_opcode_mask_table[n]) != op->opcode_base);
       n++, op++)
    ;

  /* FIXME: We should also check register number constraints.  */
  if (op->name == NULL)
    {
      fprintf_fn (stream, ".long 0x%08x", instruction);
      return 4;
    }

  fprintf_fn (stream, "%s\t", op->name);

  for (i = 0; i < 3 && op->arg[i] != A_NONE; i++)
    {
      unsigned long temp = instruction >> op->nibbles[i];
      int by_number = 0;

      if (i > 0 && op->arg[i] != A_REUSE_PREV)
	fprintf_fn (stream, ",");

      switch (op->arg[i])
	{
	case A_REUSE_PREV:
	  continue;

	case A_GREG_M:
	case A_GREG_N:
	case A_GREG_D:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "r%d", r);
	  break;

	case A_FVREG_F:
	case A_FVREG_G:
	case A_FVREG_H:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "fv%d", r);
	  break;

	case A_FPREG_F:
	case A_FPREG_G:
	case A_FPREG_H:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "fp%d", r);
	  break;

	case A_FMREG_F:
	case A_FMREG_G:
	case A_FMREG_H:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "mtrx%d", r);
	  break;

	case A_CREG_K:
	case A_CREG_J:
	  {
	    const char *name;
	    r = temp & 0x3f;

	    name = creg_name (r);

	    if (name != NULL)
	      fprintf_fn (stream, "%s", name);
	    else
	      fprintf_fn (stream, "cr%d", r);
	  }
	  break;

	case A_FREG_G:
	case A_FREG_H:
	case A_FREG_F:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "fr%d", r);
	  break;

	case A_DREG_G:
	case A_DREG_H:
	case A_DREG_F:
	  r = temp & 0x3f;
	  fprintf_fn (stream, "dr%d", r);
	  break;

	case A_TREG_A:
	case A_TREG_B:
	  r = temp & 0x7;
	  fprintf_fn (stream, "tr%d", r);
	  break;

	  /* A signed 6-bit number.  */
	case A_IMMS6:
	  imm = temp & 0x3f;
	  if (imm & (unsigned long) 0x20)
	    imm |= ~(unsigned long) 0x3f;
	  fprintf_fn (stream, "%d", imm);
	  break;

	  /* A signed 6-bit number, multiplied by 32 when used.  */
	case A_IMMS6BY32:
	  imm = temp & 0x3f;
	  if (imm & (unsigned long) 0x20)
	    imm |= ~(unsigned long) 0x3f;
	  fprintf_fn (stream, "%d", imm * 32);
	  break;

	  /* A signed 10-bit number, multiplied by 8 when used.  */
	case A_IMMS10BY8:
	  by_number++;
	  /* Fall through.  */

	  /* A signed 10-bit number, multiplied by 4 when used.  */
	case A_IMMS10BY4:
	  by_number++;
	  /* Fall through.  */

	  /* A signed 10-bit number, multiplied by 2 when used.  */
	case A_IMMS10BY2:
	  by_number++;
	  /* Fall through.  */

	  /* A signed 10-bit number.  */
	case A_IMMS10:
	case A_IMMS10BY1:
	  imm = temp & 0x3ff;
	  if (imm & (unsigned long) 0x200)
	    imm |= ~(unsigned long) 0x3ff;
	  imm <<= by_number;
	  fprintf_fn (stream, "%d", imm);
	  break;

	  /* A signed 16-bit number.  */
	case A_IMMS16:
	  imm = temp & 0xffff;
	  if (imm & (unsigned long) 0x8000)
	    imm |= ~((unsigned long) 0xffff);
	  fprintf_fn (stream, "%d", imm);
	  break;

	  /* A PC-relative signed 16-bit number, multiplied by 4 when
	     used.  */
	case A_PCIMMS16BY4:
	  imm = temp & 0xffff;	/* 16 bits */
	  if (imm & (unsigned long) 0x8000)
	    imm |= ~(unsigned long) 0xffff;
	  imm <<= 2;
	  disp_pc_addr = (bfd_vma) imm + memaddr;
	  (*info->print_address_func) (disp_pc_addr, info);
	  break;

	  /* An unsigned 5-bit number.  */
	case A_IMMU5:
	  imm = temp & 0x1f;
	  fprintf_fn (stream, "%d", imm);
	  break;

	  /* An unsigned 6-bit number.  */
	case A_IMMU6:
	  imm = temp & 0x3f;
	  fprintf_fn (stream, "%d", imm);
	  break;

	  /* An unsigned 16-bit number.  */
	case A_IMMU16:
	  imm = temp & 0xffff;
	  fprintf_fn (stream, "%d", imm);
	  break;

	default:
	  abort ();
	  break;
	}
    }

  /* FIXME: Looks like 32-bit values only are handled.
     FIXME: PC-relative numbers aren't handled correctly.  */
  if (op->opcode_base == (unsigned long) SHMEDIA_SHORI_OPC
      && SAVED_MOVI_R (info) == r)
    {
      asection *section = info->section;

      /* Most callers do not set the section field correctly yet.  Revert
	 to getting the section from symbols, if any. */
      if (section == NULL
	  && info->symbols != NULL
	  && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
	  && ! bfd_is_und_section (bfd_get_section (info->symbols[0]))
	  && ! bfd_is_abs_section (bfd_get_section (info->symbols[0])))
	section = bfd_get_section (info->symbols[0]);

      /* Only guess addresses when the contents of this section is fully
	 relocated.  Otherwise, the value will be zero or perhaps even
	 bogus.  */
      if (section == NULL
	  || section->owner == NULL
	  || elf_elfheader (section->owner)->e_type == ET_EXEC)
	{
	  bfd_signed_vma shori_addr;

	  shori_addr = SAVED_MOVI_IMM (info) << 16;
	  shori_addr |= imm;

	  fprintf_fn (stream, "\t! 0x");
	  (*info->print_address_func) (shori_addr, info);
	}
    }

  if (op->opcode_base == SHMEDIA_MOVI_OPC)
    {
      SAVED_MOVI_IMM (info) = imm;
      SAVED_MOVI_R (info) = r;
    }
  else
    {
      SAVED_MOVI_IMM (info) = 0;
      SAVED_MOVI_R (info) = 255;
    }

  return 4;
}

/* Check the type of contents about to be disassembled.  This is like
   sh64_get_contents_type (which may be called from here), except that it
   takes the same arguments as print_insn_* and does what can be done if
   no section is available.  */

static enum sh64_elf_cr_type
sh64_get_contents_type_disasm (memaddr, info)
     bfd_vma memaddr;
     struct disassemble_info *info;
{
  struct sh64_disassemble_info *sh64_infop = info->private_data;

  /* Perhaps we have a region from a previous probe and it still counts
     for this address?  */
  if (sh64_infop->crange.cr_type != CRT_NONE
      && memaddr >= sh64_infop->crange.cr_addr
      && memaddr < sh64_infop->crange.cr_addr + sh64_infop->crange.cr_size)
    return sh64_infop->crange.cr_type;

  /* If we have a section, try and use it.  */
  if (info->section
      && bfd_get_flavour (info->section->owner) == bfd_target_elf_flavour)
    {
      enum sh64_elf_cr_type cr_type
	= sh64_get_contents_type (info->section, memaddr,
				  &sh64_infop->crange);

      if (cr_type != CRT_NONE)
	return cr_type;
    }

  /* If we have symbols, we can try and get at a section from *that*.  */
  if (info->symbols != NULL
      && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
      && ! bfd_is_und_section (bfd_get_section (info->symbols[0]))
      && ! bfd_is_abs_section (bfd_get_section (info->symbols[0])))
    {
      enum sh64_elf_cr_type cr_type
	= sh64_get_contents_type (bfd_get_section (info->symbols[0]),
				  memaddr, &sh64_infop->crange);

      if (cr_type != CRT_NONE)
	return cr_type;
    }

  /* We can make a reasonable guess based on the st_other field of a
     symbol; for a BranchTarget this is marked as STO_SH5_ISA32 and then
     it's most probably code there.  */
  if (info->symbols
      && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
      && elf_symbol_from (bfd_asymbol_bfd (info->symbols[0]),
			  info->symbols[0])->internal_elf_sym.st_other
      == STO_SH5_ISA32)
    return CRT_SH5_ISA32;

  /* If all else fails, guess this is code and guess on the low bit set.  */
  return (memaddr & 1) == 1 ? CRT_SH5_ISA32 : CRT_SH5_ISA16;
}

/* Initialize static and dynamic disassembly state.  */

static boolean
init_sh64_disasm_info (info)
     struct disassemble_info *info;
{
  struct sh64_disassemble_info *sh64_infop
    = calloc (sizeof (*sh64_infop), 1);

  if (sh64_infop == NULL)
    return false;

  info->private_data = sh64_infop;

  SAVED_MOVI_IMM (info) = 0;
  SAVED_MOVI_R (info) = 255;

  if (shmedia_opcode_mask_table == NULL)
    initialize_shmedia_opcode_mask_table ();

  return true;
}

/* Main entry to disassemble SHmedia instructions, given an endian set in
   INFO.  Note that the simulator uses this as the main entry and does not
   use any of the functions further below.  */

int 
print_insn_sh64x_media (memaddr, info)
     bfd_vma memaddr;
     struct disassemble_info *info;
{
  if (info->private_data == NULL && ! init_sh64_disasm_info (info))
    return -1;

  /* Make reasonable output.  */
  info->bytes_per_line = 4;
  info->bytes_per_chunk = 4;

  return print_insn_shmedia (memaddr, info);
}

/* Main entry to disassemble SHcompact or SHmedia insns.  */

static int 
print_insn_sh64x (memaddr, info, pfun_compact, endian)
     bfd_vma memaddr;
     struct disassemble_info *info;
     int (*pfun_compact) PARAMS ((bfd_vma, struct disassemble_info *));
     enum bfd_endian endian;
{
  enum sh64_elf_cr_type cr_type;

  if (info->private_data == NULL && ! init_sh64_disasm_info (info))
    return -1;

  cr_type = sh64_get_contents_type_disasm (memaddr, info);
  if (cr_type != CRT_SH5_ISA16)
    {
      int length = 4 - (memaddr % 4);
      info->display_endian = endian;

      /* Only disassemble on four-byte boundaries.  Addresses that are not
	 a multiple of four can happen after a data region.  */
      if (cr_type == CRT_SH5_ISA32 && length == 4)
	return print_insn_sh64x_media (memaddr, info);

      /* We get CRT_DATA *only* for data regions in a mixed-contents
	 section.  For sections with data only, we get indication of one
	 of the ISA:s.  You may think that we shouldn't disassemble
	 section with only data if we can figure that out.  However, the
	 disassembly function is by default not called for data-only
	 sections, so if the user explicitly specified disassembly of a
	 data section, that's what we should do.  */
      if (cr_type == CRT_DATA || length != 4)
	{
	  int status;
	  unsigned char data[4];
	  struct sh64_disassemble_info *sh64_infop = info->private_data;

	  if (length == 4
	      && sh64_infop->crange.cr_type != CRT_NONE
	      && memaddr >= sh64_infop->crange.cr_addr
	      && memaddr < (sh64_infop->crange.cr_addr
			    + sh64_infop->crange.cr_size))
	    length
	      = (sh64_infop->crange.cr_addr
		 + sh64_infop->crange.cr_size - memaddr);

	  status
	    = (*info->read_memory_func) (memaddr, data,
					 length >= 4 ? 4 : length, info);

	  if (status == 0 && length >= 4)
	    {
	      (*info->fprintf_func) (info->stream, ".long 0x%08lx",
				     endian == BFD_ENDIAN_BIG
				     ? (long) (bfd_getb32 (data))
				     : (long) (bfd_getl32 (data)));
	      return 4;
	    }
	  else
	    {
	      int i;

	      for (i = 0; i < length; i++)
		{
		  status = info->read_memory_func (memaddr + i, data, 1, info);
		  if (status != 0)
		    break;
		  (*info->fprintf_func) (info->stream, "%s0x%02x",
					 i == 0 ? ".byte " : ", ",
					 data[0]);
		}

	      return i ? i : -1;
	    }
	}
    }

  return (*pfun_compact) (memaddr, info);
}

/* Main entry to disassemble SHcompact or SHmedia insns, big endian.  */

int 
print_insn_sh64 (memaddr, info)
     bfd_vma memaddr;
     struct disassemble_info *info;
{
  return
    print_insn_sh64x (memaddr, info, print_insn_sh, BFD_ENDIAN_BIG);
}

/* Main entry to disassemble SHcompact or SHmedia insns, little endian.  */

int 
print_insn_sh64l (memaddr, info)
     bfd_vma memaddr;
     struct disassemble_info *info;
{
  return
    print_insn_sh64x (memaddr, info, print_insn_shl, BFD_ENDIAN_LITTLE);
}