aboutsummaryrefslogtreecommitdiff
path: root/opcodes/aarch64-opc.c
blob: cb310dcefb0337829f411d3b5e7ed65ff5fb506a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
/* aarch64-opc.c -- AArch64 opcode support.
   Copyright (C) 2009-2020 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of the GNU opcodes library.

   This library is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   It is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING3. If not,
   see <http://www.gnu.org/licenses/>.  */

#include "sysdep.h"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include "bfd_stdint.h"
#include <stdarg.h>
#include <inttypes.h>

#include "opintl.h"
#include "libiberty.h"

#include "aarch64-opc.h"

#ifdef DEBUG_AARCH64
int debug_dump = FALSE;
#endif /* DEBUG_AARCH64 */

/* The enumeration strings associated with each value of a 5-bit SVE
   pattern operand.  A null entry indicates a reserved meaning.  */
const char *const aarch64_sve_pattern_array[32] = {
  /* 0-7.  */
  "pow2",
  "vl1",
  "vl2",
  "vl3",
  "vl4",
  "vl5",
  "vl6",
  "vl7",
  /* 8-15.  */
  "vl8",
  "vl16",
  "vl32",
  "vl64",
  "vl128",
  "vl256",
  0,
  0,
  /* 16-23.  */
  0,
  0,
  0,
  0,
  0,
  0,
  0,
  0,
  /* 24-31.  */
  0,
  0,
  0,
  0,
  0,
  "mul4",
  "mul3",
  "all"
};

/* The enumeration strings associated with each value of a 4-bit SVE
   prefetch operand.  A null entry indicates a reserved meaning.  */
const char *const aarch64_sve_prfop_array[16] = {
  /* 0-7.  */
  "pldl1keep",
  "pldl1strm",
  "pldl2keep",
  "pldl2strm",
  "pldl3keep",
  "pldl3strm",
  0,
  0,
  /* 8-15.  */
  "pstl1keep",
  "pstl1strm",
  "pstl2keep",
  "pstl2strm",
  "pstl3keep",
  "pstl3strm",
  0,
  0
};

/* Helper functions to determine which operand to be used to encode/decode
   the size:Q fields for AdvSIMD instructions.  */

static inline bfd_boolean
vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
{
  return ((qualifier >= AARCH64_OPND_QLF_V_8B
	  && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
	  : FALSE);
}

static inline bfd_boolean
fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
{
  return ((qualifier >= AARCH64_OPND_QLF_S_B
	  && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
	  : FALSE);
}

enum data_pattern
{
  DP_UNKNOWN,
  DP_VECTOR_3SAME,
  DP_VECTOR_LONG,
  DP_VECTOR_WIDE,
  DP_VECTOR_ACROSS_LANES,
};

static const char significant_operand_index [] =
{
  0,	/* DP_UNKNOWN, by default using operand 0.  */
  0,	/* DP_VECTOR_3SAME */
  1,	/* DP_VECTOR_LONG */
  2,	/* DP_VECTOR_WIDE */
  1,	/* DP_VECTOR_ACROSS_LANES */
};

/* Given a sequence of qualifiers in QUALIFIERS, determine and return
   the data pattern.
   N.B. QUALIFIERS is a possible sequence of qualifiers each of which
   corresponds to one of a sequence of operands.  */

static enum data_pattern
get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
{
  if (vector_qualifier_p (qualifiers[0]) == TRUE)
    {
      /* e.g. v.4s, v.4s, v.4s
	   or v.4h, v.4h, v.h[3].  */
      if (qualifiers[0] == qualifiers[1]
	  && vector_qualifier_p (qualifiers[2]) == TRUE
	  && (aarch64_get_qualifier_esize (qualifiers[0])
	      == aarch64_get_qualifier_esize (qualifiers[1]))
	  && (aarch64_get_qualifier_esize (qualifiers[0])
	      == aarch64_get_qualifier_esize (qualifiers[2])))
	return DP_VECTOR_3SAME;
      /* e.g. v.8h, v.8b, v.8b.
           or v.4s, v.4h, v.h[2].
	   or v.8h, v.16b.  */
      if (vector_qualifier_p (qualifiers[1]) == TRUE
	  && aarch64_get_qualifier_esize (qualifiers[0]) != 0
	  && (aarch64_get_qualifier_esize (qualifiers[0])
	      == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
	return DP_VECTOR_LONG;
      /* e.g. v.8h, v.8h, v.8b.  */
      if (qualifiers[0] == qualifiers[1]
	  && vector_qualifier_p (qualifiers[2]) == TRUE
	  && aarch64_get_qualifier_esize (qualifiers[0]) != 0
	  && (aarch64_get_qualifier_esize (qualifiers[0])
	      == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
	  && (aarch64_get_qualifier_esize (qualifiers[0])
	      == aarch64_get_qualifier_esize (qualifiers[1])))
	return DP_VECTOR_WIDE;
    }
  else if (fp_qualifier_p (qualifiers[0]) == TRUE)
    {
      /* e.g. SADDLV <V><d>, <Vn>.<T>.  */
      if (vector_qualifier_p (qualifiers[1]) == TRUE
	  && qualifiers[2] == AARCH64_OPND_QLF_NIL)
	return DP_VECTOR_ACROSS_LANES;
    }

  return DP_UNKNOWN;
}

/* Select the operand to do the encoding/decoding of the 'size:Q' fields in
   the AdvSIMD instructions.  */
/* N.B. it is possible to do some optimization that doesn't call
   get_data_pattern each time when we need to select an operand.  We can
   either buffer the caculated the result or statically generate the data,
   however, it is not obvious that the optimization will bring significant
   benefit.  */

int
aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
{
  return
    significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
}

const aarch64_field fields[] =
{
    {  0,  0 },	/* NIL.  */
    {  0,  4 },	/* cond2: condition in truly conditional-executed inst.  */
    {  0,  4 },	/* nzcv: flag bit specifier, encoded in the "nzcv" field.  */
    {  5,  5 },	/* defgh: d:e:f:g:h bits in AdvSIMD modified immediate.  */
    { 16,  3 },	/* abc: a:b:c bits in AdvSIMD modified immediate.  */
    {  5, 19 },	/* imm19: e.g. in CBZ.  */
    {  5, 19 },	/* immhi: e.g. in ADRP.  */
    { 29,  2 },	/* immlo: e.g. in ADRP.  */
    { 22,  2 },	/* size: in most AdvSIMD and floating-point instructions.  */
    { 10,  2 },	/* vldst_size: size field in the AdvSIMD load/store inst.  */
    { 29,  1 },	/* op: in AdvSIMD modified immediate instructions.  */
    { 30,  1 },	/* Q: in most AdvSIMD instructions.  */
    {  0,  5 },	/* Rt: in load/store instructions.  */
    {  0,  5 },	/* Rd: in many integer instructions.  */
    {  5,  5 },	/* Rn: in many integer instructions.  */
    { 10,  5 },	/* Rt2: in load/store pair instructions.  */
    { 10,  5 },	/* Ra: in fp instructions.  */
    {  5,  3 },	/* op2: in the system instructions.  */
    {  8,  4 },	/* CRm: in the system instructions.  */
    { 12,  4 },	/* CRn: in the system instructions.  */
    { 16,  3 },	/* op1: in the system instructions.  */
    { 19,  2 },	/* op0: in the system instructions.  */
    { 10,  3 },	/* imm3: in add/sub extended reg instructions.  */
    { 12,  4 },	/* cond: condition flags as a source operand.  */
    { 12,  4 },	/* opcode: in advsimd load/store instructions.  */
    { 12,  4 },	/* cmode: in advsimd modified immediate instructions.  */
    { 13,  3 },	/* asisdlso_opcode: opcode in advsimd ld/st single element.  */
    { 13,  2 },	/* len: in advsimd tbl/tbx instructions.  */
    { 16,  5 },	/* Rm: in ld/st reg offset and some integer inst.  */
    { 16,  5 },	/* Rs: in load/store exclusive instructions.  */
    { 13,  3 },	/* option: in ld/st reg offset + add/sub extended reg inst.  */
    { 12,  1 },	/* S: in load/store reg offset instructions.  */
    { 21,  2 },	/* hw: in move wide constant instructions.  */
    { 22,  2 },	/* opc: in load/store reg offset instructions.  */
    { 23,  1 },	/* opc1: in load/store reg offset instructions.  */
    { 22,  2 },	/* shift: in add/sub reg/imm shifted instructions.  */
    { 22,  2 },	/* type: floating point type field in fp data inst.  */
    { 30,  2 },	/* ldst_size: size field in ld/st reg offset inst.  */
    { 10,  6 },	/* imm6: in add/sub reg shifted instructions.  */
    { 15,  6 },	/* imm6_2: in rmif instructions.  */
    { 11,  4 },	/* imm4: in advsimd ext and advsimd ins instructions.  */
    {  0,  4 },	/* imm4_2: in rmif instructions.  */
    { 10,  4 },	/* imm4_3: in adddg/subg instructions.  */
    { 16,  5 },	/* imm5: in conditional compare (immediate) instructions.  */
    { 15,  7 },	/* imm7: in load/store pair pre/post index instructions.  */
    { 13,  8 },	/* imm8: in floating-point scalar move immediate inst.  */
    { 12,  9 },	/* imm9: in load/store pre/post index instructions.  */
    { 10, 12 },	/* imm12: in ld/st unsigned imm or add/sub shifted inst.  */
    {  5, 14 },	/* imm14: in test bit and branch instructions.  */
    {  5, 16 },	/* imm16: in exception instructions.  */
    {  0, 16 },	/* imm16_2: in udf instruction. */
    {  0, 26 },	/* imm26: in unconditional branch instructions.  */
    { 10,  6 },	/* imms: in bitfield and logical immediate instructions.  */
    { 16,  6 },	/* immr: in bitfield and logical immediate instructions.  */
    { 16,  3 },	/* immb: in advsimd shift by immediate instructions.  */
    { 19,  4 },	/* immh: in advsimd shift by immediate instructions.  */
    { 22,  1 },	/* S: in LDRAA and LDRAB instructions.  */
    { 22,  1 },	/* N: in logical (immediate) instructions.  */
    { 11,  1 },	/* index: in ld/st inst deciding the pre/post-index.  */
    { 24,  1 },	/* index2: in ld/st pair inst deciding the pre/post-index.  */
    { 31,  1 },	/* sf: in integer data processing instructions.  */
    { 30,  1 },	/* lse_size: in LSE extension atomic instructions.  */
    { 11,  1 },	/* H: in advsimd scalar x indexed element instructions.  */
    { 21,  1 },	/* L: in advsimd scalar x indexed element instructions.  */
    { 20,  1 },	/* M: in advsimd scalar x indexed element instructions.  */
    { 31,  1 },	/* b5: in the test bit and branch instructions.  */
    { 19,  5 },	/* b40: in the test bit and branch instructions.  */
    { 10,  6 },	/* scale: in the fixed-point scalar to fp converting inst.  */
    {  4,  1 }, /* SVE_M_4: Merge/zero select, bit 4.  */
    { 14,  1 }, /* SVE_M_14: Merge/zero select, bit 14.  */
    { 16,  1 }, /* SVE_M_16: Merge/zero select, bit 16.  */
    { 17,  1 }, /* SVE_N: SVE equivalent of N.  */
    {  0,  4 }, /* SVE_Pd: p0-p15, bits [3,0].  */
    { 10,  3 }, /* SVE_Pg3: p0-p7, bits [12,10].  */
    {  5,  4 }, /* SVE_Pg4_5: p0-p15, bits [8,5].  */
    { 10,  4 }, /* SVE_Pg4_10: p0-p15, bits [13,10].  */
    { 16,  4 }, /* SVE_Pg4_16: p0-p15, bits [19,16].  */
    { 16,  4 }, /* SVE_Pm: p0-p15, bits [19,16].  */
    {  5,  4 }, /* SVE_Pn: p0-p15, bits [8,5].  */
    {  0,  4 }, /* SVE_Pt: p0-p15, bits [3,0].  */
    {  5,  5 }, /* SVE_Rm: SVE alternative position for Rm.  */
    { 16,  5 }, /* SVE_Rn: SVE alternative position for Rn.  */
    {  0,  5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0].  */
    {  5,  5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5].  */
    {  5,  5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5].  */
    {  5,  5 }, /* SVE_Za_5: SVE vector register, bits [9,5].  */
    { 16,  5 }, /* SVE_Za_16: SVE vector register, bits [20,16].  */
    {  0,  5 }, /* SVE_Zd: SVE vector register. bits [4,0].  */
    {  5,  5 }, /* SVE_Zm_5: SVE vector register, bits [9,5].  */
    { 16,  5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
    {  5,  5 }, /* SVE_Zn: SVE vector register, bits [9,5].  */
    {  0,  5 }, /* SVE_Zt: SVE vector register, bits [4,0].  */
    {  5,  1 }, /* SVE_i1: single-bit immediate.  */
    { 22,  1 }, /* SVE_i3h: high bit of 3-bit immediate.  */
    { 11,  1 }, /* SVE_i3l: low bit of 3-bit immediate.  */
    { 19,  2 }, /* SVE_i3h2: two high bits of 3bit immediate, bits [20,19].  */
    { 20,  1 }, /* SVE_i2h: high bit of 2bit immediate, bits.  */
    { 16,  3 }, /* SVE_imm3: 3-bit immediate field.  */
    { 16,  4 }, /* SVE_imm4: 4-bit immediate field.  */
    {  5,  5 }, /* SVE_imm5: 5-bit immediate field.  */
    { 16,  5 }, /* SVE_imm5b: secondary 5-bit immediate field.  */
    { 16,  6 }, /* SVE_imm6: 6-bit immediate field.  */
    { 14,  7 }, /* SVE_imm7: 7-bit immediate field.  */
    {  5,  8 }, /* SVE_imm8: 8-bit immediate field.  */
    {  5,  9 }, /* SVE_imm9: 9-bit immediate field.  */
    { 11,  6 }, /* SVE_immr: SVE equivalent of immr.  */
    {  5,  6 }, /* SVE_imms: SVE equivalent of imms.  */
    { 10,  2 }, /* SVE_msz: 2-bit shift amount for ADR.  */
    {  5,  5 }, /* SVE_pattern: vector pattern enumeration.  */
    {  0,  4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD].  */
    { 16,  1 }, /* SVE_rot1: 1-bit rotation amount.  */
    { 10,  2 }, /* SVE_rot2: 2-bit rotation amount.  */
    { 10,  1 }, /* SVE_rot3: 1-bit rotation amount at bit 10.  */
    { 22,  1 }, /* SVE_sz: 1-bit element size select.  */
    { 17,  2 }, /* SVE_size: 2-bit element size, bits [18,17].  */
    { 30,  1 }, /* SVE_sz2: 1-bit element size select.  */
    { 16,  4 }, /* SVE_tsz: triangular size select.  */
    { 22,  2 }, /* SVE_tszh: triangular size select high, bits [23,22].  */
    {  8,  2 }, /* SVE_tszl_8: triangular size select low, bits [9,8].  */
    { 19,  2 }, /* SVE_tszl_19: triangular size select low, bits [20,19].  */
    { 14,  1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14).  */
    { 22,  1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22).  */
    { 11,  2 }, /* rotate1: FCMLA immediate rotate.  */
    { 13,  2 }, /* rotate2: Indexed element FCMLA immediate rotate.  */
    { 12,  1 }, /* rotate3: FCADD immediate rotate.  */
    { 12,  2 }, /* SM3: Indexed element SM3 2 bits index immediate.  */
    { 22,  1 }, /* sz: 1-bit element size select.  */
    { 10,  2 }, /* CRm_dsb_nxs: 2-bit imm. encoded in CRm<3:2>.  */
};

enum aarch64_operand_class
aarch64_get_operand_class (enum aarch64_opnd type)
{
  return aarch64_operands[type].op_class;
}

const char *
aarch64_get_operand_name (enum aarch64_opnd type)
{
  return aarch64_operands[type].name;
}

/* Get operand description string.
   This is usually for the diagnosis purpose.  */
const char *
aarch64_get_operand_desc (enum aarch64_opnd type)
{
  return aarch64_operands[type].desc;
}

/* Table of all conditional affixes.  */
const aarch64_cond aarch64_conds[16] =
{
  {{"eq", "none"}, 0x0},
  {{"ne", "any"}, 0x1},
  {{"cs", "hs", "nlast"}, 0x2},
  {{"cc", "lo", "ul", "last"}, 0x3},
  {{"mi", "first"}, 0x4},
  {{"pl", "nfrst"}, 0x5},
  {{"vs"}, 0x6},
  {{"vc"}, 0x7},
  {{"hi", "pmore"}, 0x8},
  {{"ls", "plast"}, 0x9},
  {{"ge", "tcont"}, 0xa},
  {{"lt", "tstop"}, 0xb},
  {{"gt"}, 0xc},
  {{"le"}, 0xd},
  {{"al"}, 0xe},
  {{"nv"}, 0xf},
};

const aarch64_cond *
get_cond_from_value (aarch64_insn value)
{
  assert (value < 16);
  return &aarch64_conds[(unsigned int) value];
}

const aarch64_cond *
get_inverted_cond (const aarch64_cond *cond)
{
  return &aarch64_conds[cond->value ^ 0x1];
}

/* Table describing the operand extension/shifting operators; indexed by
   enum aarch64_modifier_kind.

   The value column provides the most common values for encoding modifiers,
   which enables table-driven encoding/decoding for the modifiers.  */
const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
{
    {"none", 0x0},
    {"msl",  0x0},
    {"ror",  0x3},
    {"asr",  0x2},
    {"lsr",  0x1},
    {"lsl",  0x0},
    {"uxtb", 0x0},
    {"uxth", 0x1},
    {"uxtw", 0x2},
    {"uxtx", 0x3},
    {"sxtb", 0x4},
    {"sxth", 0x5},
    {"sxtw", 0x6},
    {"sxtx", 0x7},
    {"mul", 0x0},
    {"mul vl", 0x0},
    {NULL, 0},
};

enum aarch64_modifier_kind
aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
{
  return desc - aarch64_operand_modifiers;
}

aarch64_insn
aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
{
  return aarch64_operand_modifiers[kind].value;
}

enum aarch64_modifier_kind
aarch64_get_operand_modifier_from_value (aarch64_insn value,
					 bfd_boolean extend_p)
{
  if (extend_p == TRUE)
    return AARCH64_MOD_UXTB + value;
  else
    return AARCH64_MOD_LSL - value;
}

bfd_boolean
aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
{
  return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
    ? TRUE : FALSE;
}

static inline bfd_boolean
aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
{
  return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
    ? TRUE : FALSE;
}

const struct aarch64_name_value_pair aarch64_barrier_options[16] =
{
    { "#0x00", 0x0 },
    { "oshld", 0x1 },
    { "oshst", 0x2 },
    { "osh",   0x3 },
    { "#0x04", 0x4 },
    { "nshld", 0x5 },
    { "nshst", 0x6 },
    { "nsh",   0x7 },
    { "#0x08", 0x8 },
    { "ishld", 0x9 },
    { "ishst", 0xa },
    { "ish",   0xb },
    { "#0x0c", 0xc },
    { "ld",    0xd },
    { "st",    0xe },
    { "sy",    0xf },
};

const struct aarch64_name_value_pair aarch64_barrier_dsb_nxs_options[4] =
{                       /*  CRm<3:2>  #imm  */
    { "oshnxs", 16 },    /*    00       16   */
    { "nshnxs", 20 },    /*    01       20   */
    { "ishnxs", 24 },    /*    10       24   */
    { "synxs",  28 },    /*    11       28   */
};

/* Table describing the operands supported by the aliases of the HINT
   instruction.

   The name column is the operand that is accepted for the alias.  The value
   column is the hint number of the alias.  The list of operands is terminated
   by NULL in the name column.  */

const struct aarch64_name_value_pair aarch64_hint_options[] =
{
  /* BTI.  This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET.  */
  { " ",	HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) },
  { "csync",	HINT_OPD_CSYNC },	/* PSB CSYNC.  */
  { "c",	HINT_OPD_C },		/* BTI C.  */
  { "j",	HINT_OPD_J },		/* BTI J.  */
  { "jc",	HINT_OPD_JC },		/* BTI JC.  */
  { NULL,	HINT_OPD_NULL },
};

/* op -> op:       load = 0 instruction = 1 store = 2
   l  -> level:    1-3
   t  -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1   */
#define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
const struct aarch64_name_value_pair aarch64_prfops[32] =
{
  { "pldl1keep", B(0, 1, 0) },
  { "pldl1strm", B(0, 1, 1) },
  { "pldl2keep", B(0, 2, 0) },
  { "pldl2strm", B(0, 2, 1) },
  { "pldl3keep", B(0, 3, 0) },
  { "pldl3strm", B(0, 3, 1) },
  { NULL, 0x06 },
  { NULL, 0x07 },
  { "plil1keep", B(1, 1, 0) },
  { "plil1strm", B(1, 1, 1) },
  { "plil2keep", B(1, 2, 0) },
  { "plil2strm", B(1, 2, 1) },
  { "plil3keep", B(1, 3, 0) },
  { "plil3strm", B(1, 3, 1) },
  { NULL, 0x0e },
  { NULL, 0x0f },
  { "pstl1keep", B(2, 1, 0) },
  { "pstl1strm", B(2, 1, 1) },
  { "pstl2keep", B(2, 2, 0) },
  { "pstl2strm", B(2, 2, 1) },
  { "pstl3keep", B(2, 3, 0) },
  { "pstl3strm", B(2, 3, 1) },
  { NULL, 0x16 },
  { NULL, 0x17 },
  { NULL, 0x18 },
  { NULL, 0x19 },
  { NULL, 0x1a },
  { NULL, 0x1b },
  { NULL, 0x1c },
  { NULL, 0x1d },
  { NULL, 0x1e },
  { NULL, 0x1f },
};
#undef B

/* Utilities on value constraint.  */

static inline int
value_in_range_p (int64_t value, int low, int high)
{
  return (value >= low && value <= high) ? 1 : 0;
}

/* Return true if VALUE is a multiple of ALIGN.  */
static inline int
value_aligned_p (int64_t value, int align)
{
  return (value % align) == 0;
}

/* A signed value fits in a field.  */
static inline int
value_fit_signed_field_p (int64_t value, unsigned width)
{
  assert (width < 32);
  if (width < sizeof (value) * 8)
    {
      int64_t lim = (uint64_t) 1 << (width - 1);
      if (value >= -lim && value < lim)
	return 1;
    }
  return 0;
}

/* An unsigned value fits in a field.  */
static inline int
value_fit_unsigned_field_p (int64_t value, unsigned width)
{
  assert (width < 32);
  if (width < sizeof (value) * 8)
    {
      int64_t lim = (uint64_t) 1 << width;
      if (value >= 0 && value < lim)
	return 1;
    }
  return 0;
}

/* Return 1 if OPERAND is SP or WSP.  */
int
aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
{
  return ((aarch64_get_operand_class (operand->type)
	   == AARCH64_OPND_CLASS_INT_REG)
	  && operand_maybe_stack_pointer (aarch64_operands + operand->type)
	  && operand->reg.regno == 31);
}

/* Return 1 if OPERAND is XZR or WZP.  */
int
aarch64_zero_register_p (const aarch64_opnd_info *operand)
{
  return ((aarch64_get_operand_class (operand->type)
	   == AARCH64_OPND_CLASS_INT_REG)
	  && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
	  && operand->reg.regno == 31);
}

/* Return true if the operand *OPERAND that has the operand code
   OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
   qualified by the qualifier TARGET.  */

static inline int
operand_also_qualified_p (const struct aarch64_opnd_info *operand,
			  aarch64_opnd_qualifier_t target)
{
  switch (operand->qualifier)
    {
    case AARCH64_OPND_QLF_W:
      if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
	return 1;
      break;
    case AARCH64_OPND_QLF_X:
      if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
	return 1;
      break;
    case AARCH64_OPND_QLF_WSP:
      if (target == AARCH64_OPND_QLF_W
	  && operand_maybe_stack_pointer (aarch64_operands + operand->type))
	return 1;
      break;
    case AARCH64_OPND_QLF_SP:
      if (target == AARCH64_OPND_QLF_X
	  && operand_maybe_stack_pointer (aarch64_operands + operand->type))
	return 1;
      break;
    default:
      break;
    }

  return 0;
}

/* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
   for operand KNOWN_IDX, return the expected qualifier for operand IDX.

   Return NIL if more than one expected qualifiers are found.  */

aarch64_opnd_qualifier_t
aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
				int idx,
				const aarch64_opnd_qualifier_t known_qlf,
				int known_idx)
{
  int i, saved_i;

  /* Special case.

     When the known qualifier is NIL, we have to assume that there is only
     one qualifier sequence in the *QSEQ_LIST and return the corresponding
     qualifier directly.  One scenario is that for instruction
	PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
     which has only one possible valid qualifier sequence
	NIL, S_D
     the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
     determine the correct relocation type (i.e. LDST64_LO12) for PRFM.

     Because the qualifier NIL has dual roles in the qualifier sequence:
     it can mean no qualifier for the operand, or the qualifer sequence is
     not in use (when all qualifiers in the sequence are NILs), we have to
     handle this special case here.  */
  if (known_qlf == AARCH64_OPND_NIL)
    {
      assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
      return qseq_list[0][idx];
    }

  for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
    {
      if (qseq_list[i][known_idx] == known_qlf)
	{
	  if (saved_i != -1)
	    /* More than one sequences are found to have KNOWN_QLF at
	       KNOWN_IDX.  */
	    return AARCH64_OPND_NIL;
	  saved_i = i;
	}
    }

  return qseq_list[saved_i][idx];
}

enum operand_qualifier_kind
{
  OQK_NIL,
  OQK_OPD_VARIANT,
  OQK_VALUE_IN_RANGE,
  OQK_MISC,
};

/* Operand qualifier description.  */
struct operand_qualifier_data
{
  /* The usage of the three data fields depends on the qualifier kind.  */
  int data0;
  int data1;
  int data2;
  /* Description.  */
  const char *desc;
  /* Kind.  */
  enum operand_qualifier_kind kind;
};

/* Indexed by the operand qualifier enumerators.  */
struct operand_qualifier_data aarch64_opnd_qualifiers[] =
{
  {0, 0, 0, "NIL", OQK_NIL},

  /* Operand variant qualifiers.
     First 3 fields:
     element size, number of elements and common value for encoding.  */

  {4, 1, 0x0, "w", OQK_OPD_VARIANT},
  {8, 1, 0x1, "x", OQK_OPD_VARIANT},
  {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
  {8, 1, 0x1, "sp", OQK_OPD_VARIANT},

  {1, 1, 0x0, "b", OQK_OPD_VARIANT},
  {2, 1, 0x1, "h", OQK_OPD_VARIANT},
  {4, 1, 0x2, "s", OQK_OPD_VARIANT},
  {8, 1, 0x3, "d", OQK_OPD_VARIANT},
  {16, 1, 0x4, "q", OQK_OPD_VARIANT},
  {4, 1, 0x0, "4b", OQK_OPD_VARIANT},
  {4, 1, 0x0, "2h", OQK_OPD_VARIANT},

  {1, 4, 0x0, "4b", OQK_OPD_VARIANT},
  {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
  {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
  {2, 2, 0x0, "2h", OQK_OPD_VARIANT},
  {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
  {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
  {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
  {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
  {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
  {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
  {16, 1, 0x8, "1q", OQK_OPD_VARIANT},

  {0, 0, 0, "z", OQK_OPD_VARIANT},
  {0, 0, 0, "m", OQK_OPD_VARIANT},

  /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc).  */
  {16, 0, 0, "tag", OQK_OPD_VARIANT},

  /* Qualifiers constraining the value range.
     First 3 fields:
     Lower bound, higher bound, unused.  */

  {0, 15, 0, "CR",       OQK_VALUE_IN_RANGE},
  {0,  7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
  {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
  {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
  {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
  {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
  {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},

  /* Qualifiers for miscellaneous purpose.
     First 3 fields:
     unused, unused and unused.  */

  {0, 0, 0, "lsl", 0},
  {0, 0, 0, "msl", 0},

  {0, 0, 0, "retrieving", 0},
};

static inline bfd_boolean
operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
{
  return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
    ? TRUE : FALSE;
}

static inline bfd_boolean
qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
{
  return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
    ? TRUE : FALSE;
}

const char*
aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
{
  return aarch64_opnd_qualifiers[qualifier].desc;
}

/* Given an operand qualifier, return the expected data element size
   of a qualified operand.  */
unsigned char
aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
{
  assert (operand_variant_qualifier_p (qualifier) == TRUE);
  return aarch64_opnd_qualifiers[qualifier].data0;
}

unsigned char
aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
{
  assert (operand_variant_qualifier_p (qualifier) == TRUE);
  return aarch64_opnd_qualifiers[qualifier].data1;
}

aarch64_insn
aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
{
  assert (operand_variant_qualifier_p (qualifier) == TRUE);
  return aarch64_opnd_qualifiers[qualifier].data2;
}

static int
get_lower_bound (aarch64_opnd_qualifier_t qualifier)
{
  assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
  return aarch64_opnd_qualifiers[qualifier].data0;
}

static int
get_upper_bound (aarch64_opnd_qualifier_t qualifier)
{
  assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
  return aarch64_opnd_qualifiers[qualifier].data1;
}

#ifdef DEBUG_AARCH64
void
aarch64_verbose (const char *str, ...)
{
  va_list ap;
  va_start (ap, str);
  printf ("#### ");
  vprintf (str, ap);
  printf ("\n");
  va_end (ap);
}

static inline void
dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
{
  int i;
  printf ("#### \t");
  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
    printf ("%s,", aarch64_get_qualifier_name (*qualifier));
  printf ("\n");
}

static void
dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
		       const aarch64_opnd_qualifier_t *qualifier)
{
  int i;
  aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];

  aarch64_verbose ("dump_match_qualifiers:");
  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
    curr[i] = opnd[i].qualifier;
  dump_qualifier_sequence (curr);
  aarch64_verbose ("against");
  dump_qualifier_sequence (qualifier);
}
#endif /* DEBUG_AARCH64 */

/* This function checks if the given instruction INSN is a destructive
   instruction based on the usage of the registers.  It does not recognize
   unary destructive instructions.  */
bfd_boolean
aarch64_is_destructive_by_operands (const aarch64_opcode *opcode)
{
  int i = 0;
  const enum aarch64_opnd *opnds = opcode->operands;

  if (opnds[0] == AARCH64_OPND_NIL)
    return FALSE;

  while (opnds[++i] != AARCH64_OPND_NIL)
    if (opnds[i] == opnds[0])
      return TRUE;

  return FALSE;
}

/* TODO improve this, we can have an extra field at the runtime to
   store the number of operands rather than calculating it every time.  */

int
aarch64_num_of_operands (const aarch64_opcode *opcode)
{
  int i = 0;
  const enum aarch64_opnd *opnds = opcode->operands;
  while (opnds[i++] != AARCH64_OPND_NIL)
    ;
  --i;
  assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
  return i;
}

/* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
   If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.

   N.B. on the entry, it is very likely that only some operands in *INST
   have had their qualifiers been established.

   If STOP_AT is not -1, the function will only try to match
   the qualifier sequence for operands before and including the operand
   of index STOP_AT; and on success *RET will only be filled with the first
   (STOP_AT+1) qualifiers.

   A couple examples of the matching algorithm:

   X,W,NIL should match
   X,W,NIL

   NIL,NIL should match
   X  ,NIL

   Apart from serving the main encoding routine, this can also be called
   during or after the operand decoding.  */

int
aarch64_find_best_match (const aarch64_inst *inst,
			 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
			 int stop_at, aarch64_opnd_qualifier_t *ret)
{
  int found = 0;
  int i, num_opnds;
  const aarch64_opnd_qualifier_t *qualifiers;

  num_opnds = aarch64_num_of_operands (inst->opcode);
  if (num_opnds == 0)
    {
      DEBUG_TRACE ("SUCCEED: no operand");
      return 1;
    }

  if (stop_at < 0 || stop_at >= num_opnds)
    stop_at = num_opnds - 1;

  /* For each pattern.  */
  for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
    {
      int j;
      qualifiers = *qualifiers_list;

      /* Start as positive.  */
      found = 1;

      DEBUG_TRACE ("%d", i);
#ifdef DEBUG_AARCH64
      if (debug_dump)
	dump_match_qualifiers (inst->operands, qualifiers);
#endif

      /* Most opcodes has much fewer patterns in the list.
	 First NIL qualifier indicates the end in the list.   */
      if (empty_qualifier_sequence_p (qualifiers) == TRUE)
	{
	  DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
	  if (i)
	    found = 0;
	  break;
	}

      for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
	{
	  if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
	    {
	      /* Either the operand does not have qualifier, or the qualifier
		 for the operand needs to be deduced from the qualifier
		 sequence.
		 In the latter case, any constraint checking related with
		 the obtained qualifier should be done later in
		 operand_general_constraint_met_p.  */
	      continue;
	    }
	  else if (*qualifiers != inst->operands[j].qualifier)
	    {
	      /* Unless the target qualifier can also qualify the operand
		 (which has already had a non-nil qualifier), non-equal
		 qualifiers are generally un-matched.  */
	      if (operand_also_qualified_p (inst->operands + j, *qualifiers))
		continue;
	      else
		{
		  found = 0;
		  break;
		}
	    }
	  else
	    continue;	/* Equal qualifiers are certainly matched.  */
	}

      /* Qualifiers established.  */
      if (found == 1)
	break;
    }

  if (found == 1)
    {
      /* Fill the result in *RET.  */
      int j;
      qualifiers = *qualifiers_list;

      DEBUG_TRACE ("complete qualifiers using list %d", i);
#ifdef DEBUG_AARCH64
      if (debug_dump)
	dump_qualifier_sequence (qualifiers);
#endif

      for (j = 0; j <= stop_at; ++j, ++qualifiers)
	ret[j] = *qualifiers;
      for (; j < AARCH64_MAX_OPND_NUM; ++j)
	ret[j] = AARCH64_OPND_QLF_NIL;

      DEBUG_TRACE ("SUCCESS");
      return 1;
    }

  DEBUG_TRACE ("FAIL");
  return 0;
}

/* Operand qualifier matching and resolving.

   Return 1 if the operand qualifier(s) in *INST match one of the qualifier
   sequences in INST->OPCODE->qualifiers_list; otherwise return 0.

   if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
   succeeds.  */

static int
match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
{
  int i, nops;
  aarch64_opnd_qualifier_seq_t qualifiers;

  if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
			       qualifiers))
    {
      DEBUG_TRACE ("matching FAIL");
      return 0;
    }

  if (inst->opcode->flags & F_STRICT)
    {
      /* Require an exact qualifier match, even for NIL qualifiers.  */
      nops = aarch64_num_of_operands (inst->opcode);
      for (i = 0; i < nops; ++i)
	if (inst->operands[i].qualifier != qualifiers[i])
	  return FALSE;
    }

  /* Update the qualifiers.  */
  if (update_p == TRUE)
    for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
      {
	if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
	  break;
	DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
			"update %s with %s for operand %d",
			aarch64_get_qualifier_name (inst->operands[i].qualifier),
			aarch64_get_qualifier_name (qualifiers[i]), i);
	inst->operands[i].qualifier = qualifiers[i];
      }

  DEBUG_TRACE ("matching SUCCESS");
  return 1;
}

/* Return TRUE if VALUE is a wide constant that can be moved into a general
   register by MOVZ.

   IS32 indicates whether value is a 32-bit immediate or not.
   If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
   amount will be returned in *SHIFT_AMOUNT.  */

bfd_boolean
aarch64_wide_constant_p (uint64_t value, int is32, unsigned int *shift_amount)
{
  int amount;

  DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);

  if (is32)
    {
      /* Allow all zeros or all ones in top 32-bits, so that
	 32-bit constant expressions like ~0x80000000 are
	 permitted.  */
      if (value >> 32 != 0 && value >> 32 != 0xffffffff)
	/* Immediate out of range.  */
	return FALSE;
      value &= 0xffffffff;
    }

  /* first, try movz then movn */
  amount = -1;
  if ((value & ((uint64_t) 0xffff << 0)) == value)
    amount = 0;
  else if ((value & ((uint64_t) 0xffff << 16)) == value)
    amount = 16;
  else if (!is32 && (value & ((uint64_t) 0xffff << 32)) == value)
    amount = 32;
  else if (!is32 && (value & ((uint64_t) 0xffff << 48)) == value)
    amount = 48;

  if (amount == -1)
    {
      DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
      return FALSE;
    }

  if (shift_amount != NULL)
    *shift_amount = amount;

  DEBUG_TRACE ("exit TRUE with amount %d", amount);

  return TRUE;
}

/* Build the accepted values for immediate logical SIMD instructions.

   The standard encodings of the immediate value are:
     N      imms     immr         SIMD size  R             S
     1      ssssss   rrrrrr       64      UInt(rrrrrr)  UInt(ssssss)
     0      0sssss   0rrrrr       32      UInt(rrrrr)   UInt(sssss)
     0      10ssss   00rrrr       16      UInt(rrrr)    UInt(ssss)
     0      110sss   000rrr       8       UInt(rrr)     UInt(sss)
     0      1110ss   0000rr       4       UInt(rr)      UInt(ss)
     0      11110s   00000r       2       UInt(r)       UInt(s)
   where all-ones value of S is reserved.

   Let's call E the SIMD size.

   The immediate value is: S+1 bits '1' rotated to the right by R.

   The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
   (remember S != E - 1).  */

#define TOTAL_IMM_NB  5334

typedef struct
{
  uint64_t imm;
  aarch64_insn encoding;
} simd_imm_encoding;

static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];

static int
simd_imm_encoding_cmp(const void *i1, const void *i2)
{
  const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
  const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;

  if (imm1->imm < imm2->imm)
    return -1;
  if (imm1->imm > imm2->imm)
    return +1;
  return 0;
}

/* immediate bitfield standard encoding
   imm13<12> imm13<5:0> imm13<11:6> SIMD size R      S
   1         ssssss     rrrrrr      64        rrrrrr ssssss
   0         0sssss     0rrrrr      32        rrrrr  sssss
   0         10ssss     00rrrr      16        rrrr   ssss
   0         110sss     000rrr      8         rrr    sss
   0         1110ss     0000rr      4         rr     ss
   0         11110s     00000r      2         r      s  */
static inline int
encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
{
  return (is64 << 12) | (r << 6) | s;
}

static void
build_immediate_table (void)
{
  uint32_t log_e, e, s, r, s_mask;
  uint64_t mask, imm;
  int nb_imms;
  int is64;

  nb_imms = 0;
  for (log_e = 1; log_e <= 6; log_e++)
    {
      /* Get element size.  */
      e = 1u << log_e;
      if (log_e == 6)
	{
	  is64 = 1;
	  mask = 0xffffffffffffffffull;
	  s_mask = 0;
	}
      else
	{
	  is64 = 0;
	  mask = (1ull << e) - 1;
	  /* log_e  s_mask
	     1     ((1 << 4) - 1) << 2 = 111100
	     2     ((1 << 3) - 1) << 3 = 111000
	     3     ((1 << 2) - 1) << 4 = 110000
	     4     ((1 << 1) - 1) << 5 = 100000
	     5     ((1 << 0) - 1) << 6 = 000000  */
	  s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
	}
      for (s = 0; s < e - 1; s++)
	for (r = 0; r < e; r++)
	  {
	    /* s+1 consecutive bits to 1 (s < 63) */
	    imm = (1ull << (s + 1)) - 1;
	    /* rotate right by r */
	    if (r != 0)
	      imm = (imm >> r) | ((imm << (e - r)) & mask);
	    /* replicate the constant depending on SIMD size */
	    switch (log_e)
	      {
	      case 1: imm = (imm <<  2) | imm;
		/* Fall through.  */
	      case 2: imm = (imm <<  4) | imm;
		/* Fall through.  */
	      case 3: imm = (imm <<  8) | imm;
		/* Fall through.  */
	      case 4: imm = (imm << 16) | imm;
		/* Fall through.  */
	      case 5: imm = (imm << 32) | imm;
		/* Fall through.  */
	      case 6: break;
	      default: abort ();
	      }
	    simd_immediates[nb_imms].imm = imm;
	    simd_immediates[nb_imms].encoding =
	      encode_immediate_bitfield(is64, s | s_mask, r);
	    nb_imms++;
	  }
    }
  assert (nb_imms == TOTAL_IMM_NB);
  qsort(simd_immediates, nb_imms,
	sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
}

/* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
   be accepted by logical (immediate) instructions
   e.g. ORR <Xd|SP>, <Xn>, #<imm>.

   ESIZE is the number of bytes in the decoded immediate value.
   If ENCODING is not NULL, on the return of TRUE, the standard encoding for
   VALUE will be returned in *ENCODING.  */

bfd_boolean
aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding)
{
  simd_imm_encoding imm_enc;
  const simd_imm_encoding *imm_encoding;
  static bfd_boolean initialized = FALSE;
  uint64_t upper;
  int i;

  DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value,
	       value, esize);

  if (!initialized)
    {
      build_immediate_table ();
      initialized = TRUE;
    }

  /* Allow all zeros or all ones in top bits, so that
     constant expressions like ~1 are permitted.  */
  upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
  if ((value & ~upper) != value && (value | upper) != value)
    return FALSE;

  /* Replicate to a full 64-bit value.  */
  value &= ~upper;
  for (i = esize * 8; i < 64; i *= 2)
    value |= (value << i);

  imm_enc.imm = value;
  imm_encoding = (const simd_imm_encoding *)
    bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
            sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
  if (imm_encoding == NULL)
    {
      DEBUG_TRACE ("exit with FALSE");
      return FALSE;
    }
  if (encoding != NULL)
    *encoding = imm_encoding->encoding;
  DEBUG_TRACE ("exit with TRUE");
  return TRUE;
}

/* If 64-bit immediate IMM is in the format of
   "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
   where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
   of value "abcdefgh".  Otherwise return -1.  */
int
aarch64_shrink_expanded_imm8 (uint64_t imm)
{
  int i, ret;
  uint32_t byte;

  ret = 0;
  for (i = 0; i < 8; i++)
    {
      byte = (imm >> (8 * i)) & 0xff;
      if (byte == 0xff)
	ret |= 1 << i;
      else if (byte != 0x00)
	return -1;
    }
  return ret;
}

/* Utility inline functions for operand_general_constraint_met_p.  */

static inline void
set_error (aarch64_operand_error *mismatch_detail,
	   enum aarch64_operand_error_kind kind, int idx,
	   const char* error)
{
  if (mismatch_detail == NULL)
    return;
  mismatch_detail->kind = kind;
  mismatch_detail->index = idx;
  mismatch_detail->error = error;
}

static inline void
set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
		  const char* error)
{
  if (mismatch_detail == NULL)
    return;
  set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
}

static inline void
set_out_of_range_error (aarch64_operand_error *mismatch_detail,
			int idx, int lower_bound, int upper_bound,
			const char* error)
{
  if (mismatch_detail == NULL)
    return;
  set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
  mismatch_detail->data[0] = lower_bound;
  mismatch_detail->data[1] = upper_bound;
}

static inline void
set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
			    int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("immediate value"));
}

static inline void
set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
			       int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("immediate offset"));
}

static inline void
set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
			      int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("register number"));
}

static inline void
set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
				 int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("register element index"));
}

static inline void
set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
				   int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("shift amount"));
}

/* Report that the MUL modifier in operand IDX should be in the range
   [LOWER_BOUND, UPPER_BOUND].  */
static inline void
set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail,
				   int idx, int lower_bound, int upper_bound)
{
  if (mismatch_detail == NULL)
    return;
  set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
			  _("multiplier"));
}

static inline void
set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
		     int alignment)
{
  if (mismatch_detail == NULL)
    return;
  set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
  mismatch_detail->data[0] = alignment;
}

static inline void
set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
		    int expected_num)
{
  if (mismatch_detail == NULL)
    return;
  set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
  mismatch_detail->data[0] = expected_num;
}

static inline void
set_other_error (aarch64_operand_error *mismatch_detail, int idx,
		 const char* error)
{
  if (mismatch_detail == NULL)
    return;
  set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
}

/* General constraint checking based on operand code.

   Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
   as the IDXth operand of opcode OPCODE.  Otherwise return 0.

   This function has to be called after the qualifiers for all operands
   have been resolved.

   Mismatching error message is returned in *MISMATCH_DETAIL upon request,
   i.e. when MISMATCH_DETAIL is non-NULL.  This avoids the generation
   of error message during the disassembling where error message is not
   wanted.  We avoid the dynamic construction of strings of error messages
   here (i.e. in libopcodes), as it is costly and complicated; instead, we
   use a combination of error code, static string and some integer data to
   represent an error.  */

static int
operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
				  enum aarch64_opnd type,
				  const aarch64_opcode *opcode,
				  aarch64_operand_error *mismatch_detail)
{
  unsigned num, modifiers, shift;
  unsigned char size;
  int64_t imm, min_value, max_value;
  uint64_t uvalue, mask;
  const aarch64_opnd_info *opnd = opnds + idx;
  aarch64_opnd_qualifier_t qualifier = opnd->qualifier;

  assert (opcode->operands[idx] == opnd->type && opnd->type == type);

  switch (aarch64_operands[type].op_class)
    {
    case AARCH64_OPND_CLASS_INT_REG:
      /* Check pair reg constraints for cas* instructions.  */
      if (type == AARCH64_OPND_PAIRREG)
	{
	  assert (idx == 1 || idx == 3);
	  if (opnds[idx - 1].reg.regno % 2 != 0)
	    {
	      set_syntax_error (mismatch_detail, idx - 1,
				_("reg pair must start from even reg"));
	      return 0;
	    }
	  if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
	    {
	      set_syntax_error (mismatch_detail, idx,
				_("reg pair must be contiguous"));
	      return 0;
	    }
	  break;
	}

      /* <Xt> may be optional in some IC and TLBI instructions.  */
      if (type == AARCH64_OPND_Rt_SYS)
	{
	  assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
			       == AARCH64_OPND_CLASS_SYSTEM));
	  if (opnds[1].present
	      && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
	    {
	      set_other_error (mismatch_detail, idx, _("extraneous register"));
	      return 0;
	    }
	  if (!opnds[1].present
	      && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
	    {
	      set_other_error (mismatch_detail, idx, _("missing register"));
	      return 0;
	    }
	}
      switch (qualifier)
	{
	case AARCH64_OPND_QLF_WSP:
	case AARCH64_OPND_QLF_SP:
	  if (!aarch64_stack_pointer_p (opnd))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("stack pointer register expected"));
	      return 0;
	    }
	  break;
	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_SVE_REG:
      switch (type)
	{
	case AARCH64_OPND_SVE_Zm3_INDEX:
	case AARCH64_OPND_SVE_Zm3_22_INDEX:
	case AARCH64_OPND_SVE_Zm3_11_INDEX:
	case AARCH64_OPND_SVE_Zm4_11_INDEX:
	case AARCH64_OPND_SVE_Zm4_INDEX:
	  size = get_operand_fields_width (get_operand_from_code (type));
	  shift = get_operand_specific_data (&aarch64_operands[type]);
	  mask = (1 << shift) - 1;
	  if (opnd->reg.regno > mask)
	    {
	      assert (mask == 7 || mask == 15);
	      set_other_error (mismatch_detail, idx,
			       mask == 15
			       ? _("z0-z15 expected")
			       : _("z0-z7 expected"));
	      return 0;
	    }
	  mask = (1u << (size - shift)) - 1;
	  if (!value_in_range_p (opnd->reglane.index, 0, mask))
	    {
	      set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, mask);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_Zn_INDEX:
	  size = aarch64_get_qualifier_esize (opnd->qualifier);
	  if (!value_in_range_p (opnd->reglane.index, 0, 64 / size - 1))
	    {
	      set_elem_idx_out_of_range_error (mismatch_detail, idx,
					       0, 64 / size - 1);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ZnxN:
	case AARCH64_OPND_SVE_ZtxN:
	  if (opnd->reglist.num_regs != get_opcode_dependent_value (opcode))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid register list"));
	      return 0;
	    }
	  break;

	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_PRED_REG:
      if (opnd->reg.regno >= 8
	  && get_operand_fields_width (get_operand_from_code (type)) == 3)
	{
	  set_other_error (mismatch_detail, idx, _("p0-p7 expected"));
	  return 0;
	}
      break;

    case AARCH64_OPND_CLASS_COND:
      if (type == AARCH64_OPND_COND1
	  && (opnds[idx].cond->value & 0xe) == 0xe)
	{
	  /* Not allow AL or NV.  */
	  set_syntax_error (mismatch_detail, idx, NULL);
	}
      break;

    case AARCH64_OPND_CLASS_ADDRESS:
      /* Check writeback.  */
      switch (opcode->iclass)
	{
	case ldst_pos:
	case ldst_unscaled:
	case ldstnapair_offs:
	case ldstpair_off:
	case ldst_unpriv:
	  if (opnd->addr.writeback == 1)
	    {
	      set_syntax_error (mismatch_detail, idx,
				_("unexpected address writeback"));
	      return 0;
	    }
	  break;
	case ldst_imm10:
	  if (opnd->addr.writeback == 1 && opnd->addr.preind != 1)
	    {
	      set_syntax_error (mismatch_detail, idx,
				_("unexpected address writeback"));
	      return 0;
	    }
	  break;
	case ldst_imm9:
	case ldstpair_indexed:
	case asisdlsep:
	case asisdlsop:
	  if (opnd->addr.writeback == 0)
	    {
	      set_syntax_error (mismatch_detail, idx,
				_("address writeback expected"));
	      return 0;
	    }
	  break;
	default:
	  assert (opnd->addr.writeback == 0);
	  break;
	}
      switch (type)
	{
	case AARCH64_OPND_ADDR_SIMM7:
	  /* Scaled signed 7 bits immediate offset.  */
	  /* Get the size of the data element that is accessed, which may be
	     different from that of the source register size,
	     e.g. in strb/ldrb.  */
	  size = aarch64_get_qualifier_esize (opnd->qualifier);
	  if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx,
					     -64 * size, 63 * size);
	      return 0;
	    }
	  if (!value_aligned_p (opnd->addr.offset.imm, size))
	    {
	      set_unaligned_error (mismatch_detail, idx, size);
	      return 0;
	    }
	  break;
	case AARCH64_OPND_ADDR_OFFSET:
	case AARCH64_OPND_ADDR_SIMM9:
	  /* Unscaled signed 9 bits immediate offset.  */
	  if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_ADDR_SIMM9_2:
	  /* Unscaled signed 9 bits immediate offset, which has to be negative
	     or unaligned.  */
	  size = aarch64_get_qualifier_esize (qualifier);
	  if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
	       && !value_aligned_p (opnd->addr.offset.imm, size))
	      || value_in_range_p (opnd->addr.offset.imm, -256, -1))
	    return 1;
	  set_other_error (mismatch_detail, idx,
			   _("negative or unaligned offset expected"));
	  return 0;

	case AARCH64_OPND_ADDR_SIMM10:
	  /* Scaled signed 10 bits immediate offset.  */
	  if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088);
	      return 0;
	    }
	  if (!value_aligned_p (opnd->addr.offset.imm, 8))
	    {
	      set_unaligned_error (mismatch_detail, idx, 8);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_ADDR_SIMM11:
	  /* Signed 11 bits immediate offset (multiple of 16).  */
	  if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008);
	      return 0;
	    }

	  if (!value_aligned_p (opnd->addr.offset.imm, 16))
	    {
	      set_unaligned_error (mismatch_detail, idx, 16);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_ADDR_SIMM13:
	  /* Signed 13 bits immediate offset (multiple of 16).  */
	  if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080);
	      return 0;
	    }

	  if (!value_aligned_p (opnd->addr.offset.imm, 16))
	    {
	      set_unaligned_error (mismatch_detail, idx, 16);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SIMD_ADDR_POST:
	  /* AdvSIMD load/store multiple structures, post-index.  */
	  assert (idx == 1);
	  if (opnd->addr.offset.is_reg)
	    {
	      if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
		return 1;
	      else
		{
		  set_other_error (mismatch_detail, idx,
				   _("invalid register offset"));
		  return 0;
		}
	    }
	  else
	    {
	      const aarch64_opnd_info *prev = &opnds[idx-1];
	      unsigned num_bytes; /* total number of bytes transferred.  */
	      /* The opcode dependent area stores the number of elements in
		 each structure to be loaded/stored.  */
	      int is_ld1r = get_opcode_dependent_value (opcode) == 1;
	      if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
		/* Special handling of loading single structure to all lane.  */
		num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
		  * aarch64_get_qualifier_esize (prev->qualifier);
	      else
		num_bytes = prev->reglist.num_regs
		  * aarch64_get_qualifier_esize (prev->qualifier)
		  * aarch64_get_qualifier_nelem (prev->qualifier);
	      if ((int) num_bytes != opnd->addr.offset.imm)
		{
		  set_other_error (mismatch_detail, idx,
				   _("invalid post-increment amount"));
		  return 0;
		}
	    }
	  break;

	case AARCH64_OPND_ADDR_REGOFF:
	  /* Get the size of the data element that is accessed, which may be
	     different from that of the source register size,
	     e.g. in strb/ldrb.  */
	  size = aarch64_get_qualifier_esize (opnd->qualifier);
	  /* It is either no shift or shift by the binary logarithm of SIZE.  */
	  if (opnd->shifter.amount != 0
	      && opnd->shifter.amount != (int)get_logsz (size))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid shift amount"));
	      return 0;
	    }
	  /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
	     operators.  */
	  switch (opnd->shifter.kind)
	    {
	    case AARCH64_MOD_UXTW:
	    case AARCH64_MOD_LSL:
	    case AARCH64_MOD_SXTW:
	    case AARCH64_MOD_SXTX: break;
	    default:
	      set_other_error (mismatch_detail, idx,
			       _("invalid extend/shift operator"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_ADDR_UIMM12:
	  imm = opnd->addr.offset.imm;
	  /* Get the size of the data element that is accessed, which may be
	     different from that of the source register size,
	     e.g. in strb/ldrb.  */
	  size = aarch64_get_qualifier_esize (qualifier);
	  if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx,
					     0, 4095 * size);
	      return 0;
	    }
	  if (!value_aligned_p (opnd->addr.offset.imm, size))
	    {
	      set_unaligned_error (mismatch_detail, idx, size);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_ADDR_PCREL14:
	case AARCH64_OPND_ADDR_PCREL19:
	case AARCH64_OPND_ADDR_PCREL21:
	case AARCH64_OPND_ADDR_PCREL26:
	  imm = opnd->imm.value;
	  if (operand_need_shift_by_two (get_operand_from_code (type)))
	    {
	      /* The offset value in a PC-relative branch instruction is alway
		 4-byte aligned and is encoded without the lowest 2 bits.  */
	      if (!value_aligned_p (imm, 4))
		{
		  set_unaligned_error (mismatch_detail, idx, 4);
		  return 0;
		}
	      /* Right shift by 2 so that we can carry out the following check
		 canonically.  */
	      imm >>= 2;
	    }
	  size = get_operand_fields_width (get_operand_from_code (type));
	  if (!value_fit_signed_field_p (imm, size))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate out of range"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
	  min_value = -8;
	  max_value = 7;
	sve_imm_offset_vl:
	  assert (!opnd->addr.offset.is_reg);
	  assert (opnd->addr.preind);
	  num = 1 + get_operand_specific_data (&aarch64_operands[type]);
	  min_value *= num;
	  max_value *= num;
	  if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present)
	      || (opnd->shifter.operator_present
		  && opnd->shifter.kind != AARCH64_MOD_MUL_VL))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid addressing mode"));
	      return 0;
	    }
	  if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx,
					     min_value, max_value);
	      return 0;
	    }
	  if (!value_aligned_p (opnd->addr.offset.imm, num))
	    {
	      set_unaligned_error (mismatch_detail, idx, num);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
	  min_value = -32;
	  max_value = 31;
	  goto sve_imm_offset_vl;

	case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
	  min_value = -256;
	  max_value = 255;
	  goto sve_imm_offset_vl;

	case AARCH64_OPND_SVE_ADDR_RI_U6:
	case AARCH64_OPND_SVE_ADDR_RI_U6x2:
	case AARCH64_OPND_SVE_ADDR_RI_U6x4:
	case AARCH64_OPND_SVE_ADDR_RI_U6x8:
	  min_value = 0;
	  max_value = 63;
	sve_imm_offset:
	  assert (!opnd->addr.offset.is_reg);
	  assert (opnd->addr.preind);
	  num = 1 << get_operand_specific_data (&aarch64_operands[type]);
	  min_value *= num;
	  max_value *= num;
	  if (opnd->shifter.operator_present
	      || opnd->shifter.amount_present)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid addressing mode"));
	      return 0;
	    }
	  if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
	    {
	      set_offset_out_of_range_error (mismatch_detail, idx,
					     min_value, max_value);
	      return 0;
	    }
	  if (!value_aligned_p (opnd->addr.offset.imm, num))
	    {
	      set_unaligned_error (mismatch_detail, idx, num);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ADDR_RI_S4x16:
	case AARCH64_OPND_SVE_ADDR_RI_S4x32:
	  min_value = -8;
	  max_value = 7;
	  goto sve_imm_offset;

	case AARCH64_OPND_SVE_ADDR_ZX:
	  /* Everything is already ensured by parse_operands or
	     aarch64_ext_sve_addr_rr_lsl (because this is a very specific
	     argument type).  */
	  assert (opnd->addr.offset.is_reg);
	  assert (opnd->addr.preind);
	  assert ((aarch64_operands[type].flags & OPD_F_NO_ZR) == 0);
	  assert (opnd->shifter.kind == AARCH64_MOD_LSL);
	  assert (opnd->shifter.operator_present == 0);
	  break;

	case AARCH64_OPND_SVE_ADDR_R:
	case AARCH64_OPND_SVE_ADDR_RR:
	case AARCH64_OPND_SVE_ADDR_RR_LSL1:
	case AARCH64_OPND_SVE_ADDR_RR_LSL2:
	case AARCH64_OPND_SVE_ADDR_RR_LSL3:
	case AARCH64_OPND_SVE_ADDR_RX:
	case AARCH64_OPND_SVE_ADDR_RX_LSL1:
	case AARCH64_OPND_SVE_ADDR_RX_LSL2:
	case AARCH64_OPND_SVE_ADDR_RX_LSL3:
	case AARCH64_OPND_SVE_ADDR_RZ:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
	  modifiers = 1 << AARCH64_MOD_LSL;
	sve_rr_operand:
	  assert (opnd->addr.offset.is_reg);
	  assert (opnd->addr.preind);
	  if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0
	      && opnd->addr.offset.regno == 31)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("index register xzr is not allowed"));
	      return 0;
	    }
	  if (((1 << opnd->shifter.kind) & modifiers) == 0
	      || (opnd->shifter.amount
		  != get_operand_specific_data (&aarch64_operands[type])))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid addressing mode"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
	  modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW);
	  goto sve_rr_operand;

	case AARCH64_OPND_SVE_ADDR_ZI_U5:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
	  min_value = 0;
	  max_value = 31;
	  goto sve_imm_offset;

	case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
	  modifiers = 1 << AARCH64_MOD_LSL;
	sve_zz_operand:
	  assert (opnd->addr.offset.is_reg);
	  assert (opnd->addr.preind);
	  if (((1 << opnd->shifter.kind) & modifiers) == 0
	      || opnd->shifter.amount < 0
	      || opnd->shifter.amount > 3)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid addressing mode"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
	  modifiers = (1 << AARCH64_MOD_SXTW);
	  goto sve_zz_operand;

	case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
	  modifiers = 1 << AARCH64_MOD_UXTW;
	  goto sve_zz_operand;

	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_SIMD_REGLIST:
      if (type == AARCH64_OPND_LEt)
	{
	  /* Get the upper bound for the element index.  */
	  num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
	  if (!value_in_range_p (opnd->reglist.index, 0, num))
	    {
	      set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
	      return 0;
	    }
	}
      /* The opcode dependent area stores the number of elements in
	 each structure to be loaded/stored.  */
      num = get_opcode_dependent_value (opcode);
      switch (type)
	{
	case AARCH64_OPND_LVt:
	  assert (num >= 1 && num <= 4);
	  /* Unless LD1/ST1, the number of registers should be equal to that
	     of the structure elements.  */
	  if (num != 1 && opnd->reglist.num_regs != num)
	    {
	      set_reg_list_error (mismatch_detail, idx, num);
	      return 0;
	    }
	  break;
	case AARCH64_OPND_LVt_AL:
	case AARCH64_OPND_LEt:
	  assert (num >= 1 && num <= 4);
	  /* The number of registers should be equal to that of the structure
	     elements.  */
	  if (opnd->reglist.num_regs != num)
	    {
	      set_reg_list_error (mismatch_detail, idx, num);
	      return 0;
	    }
	  break;
	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_IMMEDIATE:
      /* Constraint check on immediate operand.  */
      imm = opnd->imm.value;
      /* E.g. imm_0_31 constrains value to be 0..31.  */
      if (qualifier_value_in_range_constraint_p (qualifier)
	  && !value_in_range_p (imm, get_lower_bound (qualifier),
				get_upper_bound (qualifier)))
	{
	  set_imm_out_of_range_error (mismatch_detail, idx,
				      get_lower_bound (qualifier),
				      get_upper_bound (qualifier));
	  return 0;
	}

      switch (type)
	{
	case AARCH64_OPND_AIMM:
	  if (opnd->shifter.kind != AARCH64_MOD_LSL)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid shift operator"));
	      return 0;
	    }
	  if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("shift amount must be 0 or 12"));
	      return 0;
	    }
	  if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate out of range"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_HALF:
	  assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
	  if (opnd->shifter.kind != AARCH64_MOD_LSL)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid shift operator"));
	      return 0;
	    }
	  size = aarch64_get_qualifier_esize (opnds[0].qualifier);
	  if (!value_aligned_p (opnd->shifter.amount, 16))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("shift amount must be a multiple of 16"));
	      return 0;
	    }
	  if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
	    {
	      set_sft_amount_out_of_range_error (mismatch_detail, idx,
						 0, size * 8 - 16);
	      return 0;
	    }
	  if (opnd->imm.value < 0)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("negative immediate value not allowed"));
	      return 0;
	    }
	  if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate out of range"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_IMM_MOV:
	    {
	      int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
	      imm = opnd->imm.value;
	      assert (idx == 1);
	      switch (opcode->op)
		{
		case OP_MOV_IMM_WIDEN:
		  imm = ~imm;
		  /* Fall through.  */
		case OP_MOV_IMM_WIDE:
		  if (!aarch64_wide_constant_p (imm, esize == 4, NULL))
		    {
		      set_other_error (mismatch_detail, idx,
				       _("immediate out of range"));
		      return 0;
		    }
		  break;
		case OP_MOV_IMM_LOG:
		  if (!aarch64_logical_immediate_p (imm, esize, NULL))
		    {
		      set_other_error (mismatch_detail, idx,
				       _("immediate out of range"));
		      return 0;
		    }
		  break;
		default:
		  assert (0);
		  return 0;
		}
	    }
	  break;

	case AARCH64_OPND_NZCV:
	case AARCH64_OPND_CCMP_IMM:
	case AARCH64_OPND_EXCEPTION:
	case AARCH64_OPND_UNDEFINED:
	case AARCH64_OPND_TME_UIMM16:
	case AARCH64_OPND_UIMM4:
	case AARCH64_OPND_UIMM4_ADDG:
	case AARCH64_OPND_UIMM7:
	case AARCH64_OPND_UIMM3_OP1:
	case AARCH64_OPND_UIMM3_OP2:
	case AARCH64_OPND_SVE_UIMM3:
	case AARCH64_OPND_SVE_UIMM7:
	case AARCH64_OPND_SVE_UIMM8:
	case AARCH64_OPND_SVE_UIMM8_53:
	  size = get_operand_fields_width (get_operand_from_code (type));
	  assert (size < 32);
	  if (!value_fit_unsigned_field_p (opnd->imm.value, size))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 0,
					  (1u << size) - 1);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_UIMM10:
	  /* Scaled unsigned 10 bits immediate offset.  */
	  if (!value_in_range_p (opnd->imm.value, 0, 1008))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008);
	      return 0;
	    }

	  if (!value_aligned_p (opnd->imm.value, 16))
	    {
	      set_unaligned_error (mismatch_detail, idx, 16);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SIMM5:
	case AARCH64_OPND_SVE_SIMM5:
	case AARCH64_OPND_SVE_SIMM5B:
	case AARCH64_OPND_SVE_SIMM6:
	case AARCH64_OPND_SVE_SIMM8:
	  size = get_operand_fields_width (get_operand_from_code (type));
	  assert (size < 32);
	  if (!value_fit_signed_field_p (opnd->imm.value, size))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx,
					  -(1 << (size - 1)),
					  (1 << (size - 1)) - 1);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_WIDTH:
	  assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
		  && opnds[0].type == AARCH64_OPND_Rd);
	  size = get_upper_bound (qualifier);
	  if (opnd->imm.value + opnds[idx-1].imm.value > size)
	    /* lsb+width <= reg.size  */
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 1,
					  size - opnds[idx-1].imm.value);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_LIMM:
	case AARCH64_OPND_SVE_LIMM:
	  {
	    int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
	    uint64_t uimm = opnd->imm.value;
	    if (opcode->op == OP_BIC)
	      uimm = ~uimm;
	    if (!aarch64_logical_immediate_p (uimm, esize, NULL))
	      {
		set_other_error (mismatch_detail, idx,
				 _("immediate out of range"));
		return 0;
	      }
	  }
	  break;

	case AARCH64_OPND_IMM0:
	case AARCH64_OPND_FPIMM0:
	  if (opnd->imm.value != 0)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate zero expected"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_IMM_ROT1:
	case AARCH64_OPND_IMM_ROT2:
	case AARCH64_OPND_SVE_IMM_ROT2:
	  if (opnd->imm.value != 0
	      && opnd->imm.value != 90
	      && opnd->imm.value != 180
	      && opnd->imm.value != 270)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("rotate expected to be 0, 90, 180 or 270"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_IMM_ROT3:
	case AARCH64_OPND_SVE_IMM_ROT1:
	case AARCH64_OPND_SVE_IMM_ROT3:
	  if (opnd->imm.value != 90 && opnd->imm.value != 270)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("rotate expected to be 90 or 270"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SHLL_IMM:
	  assert (idx == 2);
	  size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
	  if (opnd->imm.value != size)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid shift amount"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_IMM_VLSL:
	  size = aarch64_get_qualifier_esize (qualifier);
	  if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 0,
					  size * 8 - 1);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_IMM_VLSR:
	  size = aarch64_get_qualifier_esize (qualifier);
	  if (!value_in_range_p (opnd->imm.value, 1, size * 8))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SIMD_IMM:
	case AARCH64_OPND_SIMD_IMM_SFT:
	  /* Qualifier check.  */
	  switch (qualifier)
	    {
	    case AARCH64_OPND_QLF_LSL:
	      if (opnd->shifter.kind != AARCH64_MOD_LSL)
		{
		  set_other_error (mismatch_detail, idx,
				   _("invalid shift operator"));
		  return 0;
		}
	      break;
	    case AARCH64_OPND_QLF_MSL:
	      if (opnd->shifter.kind != AARCH64_MOD_MSL)
		{
		  set_other_error (mismatch_detail, idx,
				   _("invalid shift operator"));
		  return 0;
		}
	      break;
	    case AARCH64_OPND_QLF_NIL:
	      if (opnd->shifter.kind != AARCH64_MOD_NONE)
		{
		  set_other_error (mismatch_detail, idx,
				   _("shift is not permitted"));
		  return 0;
		}
	      break;
	    default:
	      assert (0);
	      return 0;
	    }
	  /* Is the immediate valid?  */
	  assert (idx == 1);
	  if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
	    {
	      /* uimm8 or simm8 */
	      if (!value_in_range_p (opnd->imm.value, -128, 255))
		{
		  set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
		  return 0;
		}
	    }
	  else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
	    {
	      /* uimm64 is not
		 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
		 ffffffffgggggggghhhhhhhh'.  */
	      set_other_error (mismatch_detail, idx,
			       _("invalid value for immediate"));
	      return 0;
	    }
	  /* Is the shift amount valid?  */
	  switch (opnd->shifter.kind)
	    {
	    case AARCH64_MOD_LSL:
	      size = aarch64_get_qualifier_esize (opnds[0].qualifier);
	      if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
		{
		  set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
						     (size - 1) * 8);
		  return 0;
		}
	      if (!value_aligned_p (opnd->shifter.amount, 8))
		{
		  set_unaligned_error (mismatch_detail, idx, 8);
		  return 0;
		}
	      break;
	    case AARCH64_MOD_MSL:
	      /* Only 8 and 16 are valid shift amount.  */
	      if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
		{
		  set_other_error (mismatch_detail, idx,
				   _("shift amount must be 0 or 16"));
		  return 0;
		}
	      break;
	    default:
	      if (opnd->shifter.kind != AARCH64_MOD_NONE)
		{
		  set_other_error (mismatch_detail, idx,
				   _("invalid shift operator"));
		  return 0;
		}
	      break;
	    }
	  break;

	case AARCH64_OPND_FPIMM:
	case AARCH64_OPND_SIMD_FPIMM:
	case AARCH64_OPND_SVE_FPIMM8:
	  if (opnd->imm.is_fp == 0)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("floating-point immediate expected"));
	      return 0;
	    }
	  /* The value is expected to be an 8-bit floating-point constant with
	     sign, 3-bit exponent and normalized 4 bits of precision, encoded
	     in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
	     instruction).  */
	  if (!value_in_range_p (opnd->imm.value, 0, 255))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate out of range"));
	      return 0;
	    }
	  if (opnd->shifter.kind != AARCH64_MOD_NONE)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid shift operator"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_AIMM:
	  min_value = 0;
	sve_aimm:
	  assert (opnd->shifter.kind == AARCH64_MOD_LSL);
	  size = aarch64_get_qualifier_esize (opnds[0].qualifier);
	  mask = ~((uint64_t) -1 << (size * 4) << (size * 4));
	  uvalue = opnd->imm.value;
	  shift = opnd->shifter.amount;
	  if (size == 1)
	    {
	      if (shift != 0)
		{
		  set_other_error (mismatch_detail, idx,
				   _("no shift amount allowed for"
				     " 8-bit constants"));
		  return 0;
		}
	    }
	  else
	    {
	      if (shift != 0 && shift != 8)
		{
		  set_other_error (mismatch_detail, idx,
				   _("shift amount must be 0 or 8"));
		  return 0;
		}
	      if (shift == 0 && (uvalue & 0xff) == 0)
		{
		  shift = 8;
		  uvalue = (int64_t) uvalue / 256;
		}
	    }
	  mask >>= shift;
	  if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("immediate too big for element size"));
	      return 0;
	    }
	  uvalue = (uvalue - min_value) & mask;
	  if (uvalue > 0xff)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("invalid arithmetic immediate"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_ASIMM:
	  min_value = -128;
	  goto sve_aimm;

	case AARCH64_OPND_SVE_I1_HALF_ONE:
	  assert (opnd->imm.is_fp);
	  if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("floating-point value must be 0.5 or 1.0"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_I1_HALF_TWO:
	  assert (opnd->imm.is_fp);
	  if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("floating-point value must be 0.5 or 2.0"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_I1_ZERO_ONE:
	  assert (opnd->imm.is_fp);
	  if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("floating-point value must be 0.0 or 1.0"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_INV_LIMM:
	  {
	    int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
	    uint64_t uimm = ~opnd->imm.value;
	    if (!aarch64_logical_immediate_p (uimm, esize, NULL))
	      {
		set_other_error (mismatch_detail, idx,
				 _("immediate out of range"));
		return 0;
	      }
	  }
	  break;

	case AARCH64_OPND_SVE_LIMM_MOV:
	  {
	    int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
	    uint64_t uimm = opnd->imm.value;
	    if (!aarch64_logical_immediate_p (uimm, esize, NULL))
	      {
		set_other_error (mismatch_detail, idx,
				 _("immediate out of range"));
		return 0;
	      }
	    if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize))
	      {
		set_other_error (mismatch_detail, idx,
				 _("invalid replicated MOV immediate"));
		return 0;
	      }
	  }
	  break;

	case AARCH64_OPND_SVE_PATTERN_SCALED:
	  assert (opnd->shifter.kind == AARCH64_MOD_MUL);
	  if (!value_in_range_p (opnd->shifter.amount, 1, 16))
	    {
	      set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_SHLIMM_PRED:
	case AARCH64_OPND_SVE_SHLIMM_UNPRED:
	case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
	  size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
	  if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx,
					  0, 8 * size - 1);
	      return 0;
	    }
	  break;

	case AARCH64_OPND_SVE_SHRIMM_PRED:
	case AARCH64_OPND_SVE_SHRIMM_UNPRED:
	case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
	  num = (type == AARCH64_OPND_SVE_SHRIMM_UNPRED_22) ? 2 : 1;
	  size = aarch64_get_qualifier_esize (opnds[idx - num].qualifier);
	  if (!value_in_range_p (opnd->imm.value, 1, 8 * size))
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 1, 8*size);
	      return 0;
	    }
	  break;

	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_SYSTEM:
      switch (type)
	{
	case AARCH64_OPND_PSTATEFIELD:
	  assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
	  /* MSR UAO, #uimm4
	     MSR PAN, #uimm4
	     MSR SSBS,#uimm4
	     The immediate must be #0 or #1.  */
	  if ((opnd->pstatefield == 0x03	/* UAO.  */
	       || opnd->pstatefield == 0x04	/* PAN.  */
	       || opnd->pstatefield == 0x19     /* SSBS.  */
	       || opnd->pstatefield == 0x1a)	/* DIT.  */
	      && opnds[1].imm.value > 1)
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
	      return 0;
	    }
	  /* MSR SPSel, #uimm4
	     Uses uimm4 as a control value to select the stack pointer: if
	     bit 0 is set it selects the current exception level's stack
	     pointer, if bit 0 is clear it selects shared EL0 stack pointer.
	     Bits 1 to 3 of uimm4 are reserved and should be zero.  */
	  if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
	    {
	      set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
	      return 0;
	    }
	  break;
	default:
	  break;
	}
      break;

    case AARCH64_OPND_CLASS_SIMD_ELEMENT:
      /* Get the upper bound for the element index.  */
      if (opcode->op == OP_FCMLA_ELEM)
	/* FCMLA index range depends on the vector size of other operands
	   and is halfed because complex numbers take two elements.  */
	num = aarch64_get_qualifier_nelem (opnds[0].qualifier)
	      * aarch64_get_qualifier_esize (opnds[0].qualifier) / 2;
      else
	num = 16;
      num = num / aarch64_get_qualifier_esize (qualifier) - 1;
      assert (aarch64_get_qualifier_nelem (qualifier) == 1);

      /* Index out-of-range.  */
      if (!value_in_range_p (opnd->reglane.index, 0, num))
	{
	  set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
	  return 0;
	}
      /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
	 <Vm>	Is the vector register (V0-V31) or (V0-V15), whose
	 number is encoded in "size:M:Rm":
	 size	<Vm>
	 00		RESERVED
	 01		0:Rm
	 10		M:Rm
	 11		RESERVED  */
      if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H
	  && !value_in_range_p (opnd->reglane.regno, 0, 15))
	{
	  set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
	  return 0;
	}
      break;

    case AARCH64_OPND_CLASS_MODIFIED_REG:
      assert (idx == 1 || idx == 2);
      switch (type)
	{
	case AARCH64_OPND_Rm_EXT:
	  if (!aarch64_extend_operator_p (opnd->shifter.kind)
	      && opnd->shifter.kind != AARCH64_MOD_LSL)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("extend operator expected"));
	      return 0;
	    }
	  /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
	     (i.e. SP), in which case it defaults to LSL. The LSL alias is
	     only valid when "Rd" or "Rn" is '11111', and is preferred in that
	     case.  */
	  if (!aarch64_stack_pointer_p (opnds + 0)
	      && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
	    {
	      if (!opnd->shifter.operator_present)
		{
		  set_other_error (mismatch_detail, idx,
				   _("missing extend operator"));
		  return 0;
		}
	      else if (opnd->shifter.kind == AARCH64_MOD_LSL)
		{
		  set_other_error (mismatch_detail, idx,
				   _("'LSL' operator not allowed"));
		  return 0;
		}
	    }
	  assert (opnd->shifter.operator_present	/* Default to LSL.  */
		  || opnd->shifter.kind == AARCH64_MOD_LSL);
	  if (!value_in_range_p (opnd->shifter.amount, 0, 4))
	    {
	      set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
	      return 0;
	    }
	  /* In the 64-bit form, the final register operand is written as Wm
	     for all but the (possibly omitted) UXTX/LSL and SXTX
	     operators.
	     N.B. GAS allows X register to be used with any operator as a
	     programming convenience.  */
	  if (qualifier == AARCH64_OPND_QLF_X
	      && opnd->shifter.kind != AARCH64_MOD_LSL
	      && opnd->shifter.kind != AARCH64_MOD_UXTX
	      && opnd->shifter.kind != AARCH64_MOD_SXTX)
	    {
	      set_other_error (mismatch_detail, idx, _("W register expected"));
	      return 0;
	    }
	  break;

	case AARCH64_OPND_Rm_SFT:
	  /* ROR is not available to the shifted register operand in
	     arithmetic instructions.  */
	  if (!aarch64_shift_operator_p (opnd->shifter.kind))
	    {
	      set_other_error (mismatch_detail, idx,
			       _("shift operator expected"));
	      return 0;
	    }
	  if (opnd->shifter.kind == AARCH64_MOD_ROR
	      && opcode->iclass != log_shift)
	    {
	      set_other_error (mismatch_detail, idx,
			       _("'ROR' operator not allowed"));
	      return 0;
	    }
	  num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
	  if (!value_in_range_p (opnd->shifter.amount, 0, num))
	    {
	      set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
	      return 0;
	    }
	  break;

	default:
	  break;
	}
      break;

    default:
      break;
    }

  return 1;
}

/* Main entrypoint for the operand constraint checking.

   Return 1 if operands of *INST meet the constraint applied by the operand
   codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
   not NULL, return the detail of the error in *MISMATCH_DETAIL.  N.B. when
   adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
   with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
   error kind when it is notified that an instruction does not pass the check).

   Un-determined operand qualifiers may get established during the process.  */

int
aarch64_match_operands_constraint (aarch64_inst *inst,
				   aarch64_operand_error *mismatch_detail)
{
  int i;

  DEBUG_TRACE ("enter");

  /* Check for cases where a source register needs to be the same as the
     destination register.  Do this before matching qualifiers since if
     an instruction has both invalid tying and invalid qualifiers,
     the error about qualifiers would suggest several alternative
     instructions that also have invalid tying.  */
  i = inst->opcode->tied_operand;
  if (i > 0 && (inst->operands[0].reg.regno != inst->operands[i].reg.regno))
    {
      if (mismatch_detail)
	{
	  mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND;
	  mismatch_detail->index = i;
	  mismatch_detail->error = NULL;
	}
      return 0;
    }

  /* Match operands' qualifier.
     *INST has already had qualifier establish for some, if not all, of
     its operands; we need to find out whether these established
     qualifiers match one of the qualifier sequence in
     INST->OPCODE->QUALIFIERS_LIST.  If yes, we will assign each operand
     with the corresponding qualifier in such a sequence.
     Only basic operand constraint checking is done here; the more thorough
     constraint checking will carried out by operand_general_constraint_met_p,
     which has be to called after this in order to get all of the operands'
     qualifiers established.  */
  if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
    {
      DEBUG_TRACE ("FAIL on operand qualifier matching");
      if (mismatch_detail)
	{
	  /* Return an error type to indicate that it is the qualifier
	     matching failure; we don't care about which operand as there
	     are enough information in the opcode table to reproduce it.  */
	  mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
	  mismatch_detail->index = -1;
	  mismatch_detail->error = NULL;
	}
      return 0;
    }

  /* Match operands' constraint.  */
  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
    {
      enum aarch64_opnd type = inst->opcode->operands[i];
      if (type == AARCH64_OPND_NIL)
	break;
      if (inst->operands[i].skip)
	{
	  DEBUG_TRACE ("skip the incomplete operand %d", i);
	  continue;
	}
      if (operand_general_constraint_met_p (inst->operands, i, type,
					    inst->opcode, mismatch_detail) == 0)
	{
	  DEBUG_TRACE ("FAIL on operand %d", i);
	  return 0;
	}
    }

  DEBUG_TRACE ("PASS");

  return 1;
}

/* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
   Also updates the TYPE of each INST->OPERANDS with the corresponding
   value of OPCODE->OPERANDS.

   Note that some operand qualifiers may need to be manually cleared by
   the caller before it further calls the aarch64_opcode_encode; by
   doing this, it helps the qualifier matching facilities work
   properly.  */

const aarch64_opcode*
aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
{
  int i;
  const aarch64_opcode *old = inst->opcode;

  inst->opcode = opcode;

  /* Update the operand types.  */
  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
    {
      inst->operands[i].type = opcode->operands[i];
      if (opcode->operands[i] == AARCH64_OPND_NIL)
	break;
    }

  DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);

  return old;
}

int
aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
{
  int i;
  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
    if (operands[i] == operand)
      return i;
    else if (operands[i] == AARCH64_OPND_NIL)
      break;
  return -1;
}

/* R0...R30, followed by FOR31.  */
#define BANK(R, FOR31) \
  { R  (0), R  (1), R  (2), R  (3), R  (4), R  (5), R  (6), R  (7), \
    R  (8), R  (9), R (10), R (11), R (12), R (13), R (14), R (15), \
    R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
    R (24), R (25), R (26), R (27), R (28), R (29), R (30),  FOR31 }
/* [0][0]  32-bit integer regs with sp   Wn
   [0][1]  64-bit integer regs with sp   Xn  sf=1
   [1][0]  32-bit integer regs with #0   Wn
   [1][1]  64-bit integer regs with #0   Xn  sf=1 */
static const char *int_reg[2][2][32] = {
#define R32(X) "w" #X
#define R64(X) "x" #X
  { BANK (R32, "wsp"), BANK (R64, "sp") },
  { BANK (R32, "wzr"), BANK (R64, "xzr") }
#undef R64
#undef R32
};

/* Names of the SVE vector registers, first with .S suffixes,
   then with .D suffixes.  */

static const char *sve_reg[2][32] = {
#define ZS(X) "z" #X ".s"
#define ZD(X) "z" #X ".d"
  BANK (ZS, ZS (31)), BANK (ZD, ZD (31))
#undef ZD
#undef ZS
};
#undef BANK

/* Return the integer register name.
   if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg.  */

static inline const char *
get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
{
  const int has_zr = sp_reg_p ? 0 : 1;
  const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
  return int_reg[has_zr][is_64][regno];
}

/* Like get_int_reg_name, but IS_64 is always 1.  */

static inline const char *
get_64bit_int_reg_name (int regno, int sp_reg_p)
{
  const int has_zr = sp_reg_p ? 0 : 1;
  return int_reg[has_zr][1][regno];
}

/* Get the name of the integer offset register in OPND, using the shift type
   to decide whether it's a word or doubleword.  */

static inline const char *
get_offset_int_reg_name (const aarch64_opnd_info *opnd)
{
  switch (opnd->shifter.kind)
    {
    case AARCH64_MOD_UXTW:
    case AARCH64_MOD_SXTW:
      return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0);

    case AARCH64_MOD_LSL:
    case AARCH64_MOD_SXTX:
      return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0);

    default:
      abort ();
    }
}

/* Get the name of the SVE vector offset register in OPND, using the operand
   qualifier to decide whether the suffix should be .S or .D.  */

static inline const char *
get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier)
{
  assert (qualifier == AARCH64_OPND_QLF_S_S
	  || qualifier == AARCH64_OPND_QLF_S_D);
  return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno];
}

/* Types for expanding an encoded 8-bit value to a floating-point value.  */

typedef union
{
  uint64_t i;
  double   d;
} double_conv_t;

typedef union
{
  uint32_t i;
  float    f;
} single_conv_t;

typedef union
{
  uint32_t i;
  float    f;
} half_conv_t;

/* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
   normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
   (depending on the type of the instruction).  IMM8 will be expanded to a
   single-precision floating-point value (SIZE == 4) or a double-precision
   floating-point value (SIZE == 8).  A half-precision floating-point value
   (SIZE == 2) is expanded to a single-precision floating-point value.  The
   expanded value is returned.  */

static uint64_t
expand_fp_imm (int size, uint32_t imm8)
{
  uint64_t imm = 0;
  uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;

  imm8_7 = (imm8 >> 7) & 0x01;	/* imm8<7>   */
  imm8_6_0 = imm8 & 0x7f;	/* imm8<6:0> */
  imm8_6 = imm8_6_0 >> 6;	/* imm8<6>   */
  imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
    | (imm8_6 << 1) | imm8_6;	/* Replicate(imm8<6>,4) */
  if (size == 8)
    {
      imm = (imm8_7 << (63-32))		/* imm8<7>  */
	| ((imm8_6 ^ 1) << (62-32))	/* NOT(imm8<6)	*/
	| (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
	| (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
	| (imm8_6_0 << (48-32));	/* imm8<6>:imm8<5:0>    */
      imm <<= 32;
    }
  else if (size == 4 || size == 2)
    {
      imm = (imm8_7 << 31)	/* imm8<7>              */
	| ((imm8_6 ^ 1) << 30)	/* NOT(imm8<6>)         */
	| (imm8_6_repl4 << 26)	/* Replicate(imm8<6>,4) */
	| (imm8_6_0 << 19);	/* imm8<6>:imm8<5:0>    */
    }
  else
    {
      /* An unsupported size.  */
      assert (0);
    }

  return imm;
}

/* Produce the string representation of the register list operand *OPND
   in the buffer pointed by BUF of size SIZE.  PREFIX is the part of
   the register name that comes before the register number, such as "v".  */
static void
print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd,
		     const char *prefix)
{
  const int num_regs = opnd->reglist.num_regs;
  const int first_reg = opnd->reglist.first_regno;
  const int last_reg = (first_reg + num_regs - 1) & 0x1f;
  const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
  char tb[8];	/* Temporary buffer.  */

  assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
  assert (num_regs >= 1 && num_regs <= 4);

  /* Prepare the index if any.  */
  if (opnd->reglist.has_index)
    /* PR 21096: The %100 is to silence a warning about possible truncation.  */
    snprintf (tb, 8, "[%" PRIi64 "]", (opnd->reglist.index % 100));
  else
    tb[0] = '\0';

  /* The hyphenated form is preferred for disassembly if there are
     more than two registers in the list, and the register numbers
     are monotonically increasing in increments of one.  */
  if (num_regs > 2 && last_reg > first_reg)
    snprintf (buf, size, "{%s%d.%s-%s%d.%s}%s", prefix, first_reg, qlf_name,
	      prefix, last_reg, qlf_name, tb);
  else
    {
      const int reg0 = first_reg;
      const int reg1 = (first_reg + 1) & 0x1f;
      const int reg2 = (first_reg + 2) & 0x1f;
      const int reg3 = (first_reg + 3) & 0x1f;

      switch (num_regs)
	{
	case 1:
	  snprintf (buf, size, "{%s%d.%s}%s", prefix, reg0, qlf_name, tb);
	  break;
	case 2:
	  snprintf (buf, size, "{%s%d.%s, %s%d.%s}%s", prefix, reg0, qlf_name,
		    prefix, reg1, qlf_name, tb);
	  break;
	case 3:
	  snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s}%s",
		    prefix, reg0, qlf_name, prefix, reg1, qlf_name,
		    prefix, reg2, qlf_name, tb);
	  break;
	case 4:
	  snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s, %s%d.%s}%s",
		    prefix, reg0, qlf_name, prefix, reg1, qlf_name,
		    prefix, reg2, qlf_name, prefix, reg3, qlf_name, tb);
	  break;
	}
    }
}

/* Print the register+immediate address in OPND to BUF, which has SIZE
   characters.  BASE is the name of the base register.  */

static void
print_immediate_offset_address (char *buf, size_t size,
				const aarch64_opnd_info *opnd,
				const char *base)
{
  if (opnd->addr.writeback)
    {
      if (opnd->addr.preind)
        {
	  if (opnd->type == AARCH64_OPND_ADDR_SIMM10 && !opnd->addr.offset.imm)
            snprintf (buf, size, "[%s]!", base);
          else
	    snprintf (buf, size, "[%s, #%d]!", base, opnd->addr.offset.imm);
        }
      else
	snprintf (buf, size, "[%s], #%d", base, opnd->addr.offset.imm);
    }
  else
    {
      if (opnd->shifter.operator_present)
	{
	  assert (opnd->shifter.kind == AARCH64_MOD_MUL_VL);
	  snprintf (buf, size, "[%s, #%d, mul vl]",
		    base, opnd->addr.offset.imm);
	}
      else if (opnd->addr.offset.imm)
	snprintf (buf, size, "[%s, #%d]", base, opnd->addr.offset.imm);
      else
	snprintf (buf, size, "[%s]", base);
    }
}

/* Produce the string representation of the register offset address operand
   *OPND in the buffer pointed by BUF of size SIZE.  BASE and OFFSET are
   the names of the base and offset registers.  */
static void
print_register_offset_address (char *buf, size_t size,
			       const aarch64_opnd_info *opnd,
			       const char *base, const char *offset)
{
  char tb[16];			/* Temporary buffer.  */
  bfd_boolean print_extend_p = TRUE;
  bfd_boolean print_amount_p = TRUE;
  const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;

  if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
				|| !opnd->shifter.amount_present))
    {
      /* Not print the shift/extend amount when the amount is zero and
         when it is not the special case of 8-bit load/store instruction.  */
      print_amount_p = FALSE;
      /* Likewise, no need to print the shift operator LSL in such a
	 situation.  */
      if (opnd->shifter.kind == AARCH64_MOD_LSL)
	print_extend_p = FALSE;
    }

  /* Prepare for the extend/shift.  */
  if (print_extend_p)
    {
      if (print_amount_p)
	snprintf (tb, sizeof (tb), ", %s #%" PRIi64, shift_name,
  /* PR 21096: The %100 is to silence a warning about possible truncation.  */
		  (opnd->shifter.amount % 100));
      else
	snprintf (tb, sizeof (tb), ", %s", shift_name);
    }
  else
    tb[0] = '\0';

  snprintf (buf, size, "[%s, %s%s]", base, offset, tb);
}

/* Generate the string representation of the operand OPNDS[IDX] for OPCODE
   in *BUF.  The caller should pass in the maximum size of *BUF in SIZE.
   PC, PCREL_P and ADDRESS are used to pass in and return information about
   the PC-relative address calculation, where the PC value is passed in
   PC.  If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
   will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
   calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.

   The function serves both the disassembler and the assembler diagnostics
   issuer, which is the reason why it lives in this file.  */

void
aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
		       const aarch64_opcode *opcode,
		       const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
		       bfd_vma *address, char** notes,
		       aarch64_feature_set features)
{
  unsigned int i, num_conds;
  const char *name = NULL;
  const aarch64_opnd_info *opnd = opnds + idx;
  enum aarch64_modifier_kind kind;
  uint64_t addr, enum_value;

  buf[0] = '\0';
  if (pcrel_p)
    *pcrel_p = 0;

  switch (opnd->type)
    {
    case AARCH64_OPND_Rd:
    case AARCH64_OPND_Rn:
    case AARCH64_OPND_Rm:
    case AARCH64_OPND_Rt:
    case AARCH64_OPND_Rt2:
    case AARCH64_OPND_Rs:
    case AARCH64_OPND_Ra:
    case AARCH64_OPND_Rt_SYS:
    case AARCH64_OPND_PAIRREG:
    case AARCH64_OPND_SVE_Rm:
      /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
	 the <ic_op>, therefore we use opnd->present to override the
	 generic optional-ness information.  */
      if (opnd->type == AARCH64_OPND_Rt_SYS)
	{
	  if (!opnd->present)
	    break;
	}
      /* Omit the operand, e.g. RET.  */
      else if (optional_operand_p (opcode, idx)
	       && (opnd->reg.regno
		   == get_optional_operand_default_value (opcode)))
	break;
      assert (opnd->qualifier == AARCH64_OPND_QLF_W
	      || opnd->qualifier == AARCH64_OPND_QLF_X);
      snprintf (buf, size, "%s",
		get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
      break;

    case AARCH64_OPND_Rd_SP:
    case AARCH64_OPND_Rn_SP:
    case AARCH64_OPND_Rt_SP:
    case AARCH64_OPND_SVE_Rn_SP:
    case AARCH64_OPND_Rm_SP:
      assert (opnd->qualifier == AARCH64_OPND_QLF_W
	      || opnd->qualifier == AARCH64_OPND_QLF_WSP
	      || opnd->qualifier == AARCH64_OPND_QLF_X
	      || opnd->qualifier == AARCH64_OPND_QLF_SP);
      snprintf (buf, size, "%s",
		get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
      break;

    case AARCH64_OPND_Rm_EXT:
      kind = opnd->shifter.kind;
      assert (idx == 1 || idx == 2);
      if ((aarch64_stack_pointer_p (opnds)
	   || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
	  && ((opnd->qualifier == AARCH64_OPND_QLF_W
	       && opnds[0].qualifier == AARCH64_OPND_QLF_W
	       && kind == AARCH64_MOD_UXTW)
	      || (opnd->qualifier == AARCH64_OPND_QLF_X
		  && kind == AARCH64_MOD_UXTX)))
	{
	  /* 'LSL' is the preferred form in this case.  */
	  kind = AARCH64_MOD_LSL;
	  if (opnd->shifter.amount == 0)
	    {
	      /* Shifter omitted.  */
	      snprintf (buf, size, "%s",
			get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
	      break;
	    }
	}
      if (opnd->shifter.amount)
	snprintf (buf, size, "%s, %s #%" PRIi64,
		  get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
		  aarch64_operand_modifiers[kind].name,
		  opnd->shifter.amount);
      else
	snprintf (buf, size, "%s, %s",
		  get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
		  aarch64_operand_modifiers[kind].name);
      break;

    case AARCH64_OPND_Rm_SFT:
      assert (opnd->qualifier == AARCH64_OPND_QLF_W
	      || opnd->qualifier == AARCH64_OPND_QLF_X);
      if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
	snprintf (buf, size, "%s",
		  get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
      else
	snprintf (buf, size, "%s, %s #%" PRIi64,
		  get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
		  aarch64_operand_modifiers[opnd->shifter.kind].name,
		  opnd->shifter.amount);
      break;

    case AARCH64_OPND_Fd:
    case AARCH64_OPND_Fn:
    case AARCH64_OPND_Fm:
    case AARCH64_OPND_Fa:
    case AARCH64_OPND_Ft:
    case AARCH64_OPND_Ft2:
    case AARCH64_OPND_Sd:
    case AARCH64_OPND_Sn:
    case AARCH64_OPND_Sm:
    case AARCH64_OPND_SVE_VZn:
    case AARCH64_OPND_SVE_Vd:
    case AARCH64_OPND_SVE_Vm:
    case AARCH64_OPND_SVE_Vn:
      snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
		opnd->reg.regno);
      break;

    case AARCH64_OPND_Va:
    case AARCH64_OPND_Vd:
    case AARCH64_OPND_Vn:
    case AARCH64_OPND_Vm:
      snprintf (buf, size, "v%d.%s", opnd->reg.regno,
		aarch64_get_qualifier_name (opnd->qualifier));
      break;

    case AARCH64_OPND_Ed:
    case AARCH64_OPND_En:
    case AARCH64_OPND_Em:
    case AARCH64_OPND_Em16:
    case AARCH64_OPND_SM3_IMM2:
      snprintf (buf, size, "v%d.%s[%" PRIi64 "]", opnd->reglane.regno,
		aarch64_get_qualifier_name (opnd->qualifier),
		opnd->reglane.index);
      break;

    case AARCH64_OPND_VdD1:
    case AARCH64_OPND_VnD1:
      snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
      break;

    case AARCH64_OPND_LVn:
    case AARCH64_OPND_LVt:
    case AARCH64_OPND_LVt_AL:
    case AARCH64_OPND_LEt:
      print_register_list (buf, size, opnd, "v");
      break;

    case AARCH64_OPND_SVE_Pd:
    case AARCH64_OPND_SVE_Pg3:
    case AARCH64_OPND_SVE_Pg4_5:
    case AARCH64_OPND_SVE_Pg4_10:
    case AARCH64_OPND_SVE_Pg4_16:
    case AARCH64_OPND_SVE_Pm:
    case AARCH64_OPND_SVE_Pn:
    case AARCH64_OPND_SVE_Pt:
      if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
	snprintf (buf, size, "p%d", opnd->reg.regno);
      else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
	       || opnd->qualifier == AARCH64_OPND_QLF_P_M)
	snprintf (buf, size, "p%d/%s", opnd->reg.regno,
		  aarch64_get_qualifier_name (opnd->qualifier));
      else
	snprintf (buf, size, "p%d.%s", opnd->reg.regno,
		  aarch64_get_qualifier_name (opnd->qualifier));
      break;

    case AARCH64_OPND_SVE_Za_5:
    case AARCH64_OPND_SVE_Za_16:
    case AARCH64_OPND_SVE_Zd:
    case AARCH64_OPND_SVE_Zm_5:
    case AARCH64_OPND_SVE_Zm_16:
    case AARCH64_OPND_SVE_Zn:
    case AARCH64_OPND_SVE_Zt:
      if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
	snprintf (buf, size, "z%d", opnd->reg.regno);
      else
	snprintf (buf, size, "z%d.%s", opnd->reg.regno,
		  aarch64_get_qualifier_name (opnd->qualifier));
      break;

    case AARCH64_OPND_SVE_ZnxN:
    case AARCH64_OPND_SVE_ZtxN:
      print_register_list (buf, size, opnd, "z");
      break;

    case AARCH64_OPND_SVE_Zm3_INDEX:
    case AARCH64_OPND_SVE_Zm3_22_INDEX:
    case AARCH64_OPND_SVE_Zm3_11_INDEX:
    case AARCH64_OPND_SVE_Zm4_11_INDEX:
    case AARCH64_OPND_SVE_Zm4_INDEX:
    case AARCH64_OPND_SVE_Zn_INDEX:
      snprintf (buf, size, "z%d.%s[%" PRIi64 "]", opnd->reglane.regno,
		aarch64_get_qualifier_name (opnd->qualifier),
		opnd->reglane.index);
      break;

    case AARCH64_OPND_CRn:
    case AARCH64_OPND_CRm:
      snprintf (buf, size, "C%" PRIi64, opnd->imm.value);
      break;

    case AARCH64_OPND_IDX:
    case AARCH64_OPND_MASK:
    case AARCH64_OPND_IMM:
    case AARCH64_OPND_IMM_2:
    case AARCH64_OPND_WIDTH:
    case AARCH64_OPND_UIMM3_OP1:
    case AARCH64_OPND_UIMM3_OP2:
    case AARCH64_OPND_BIT_NUM:
    case AARCH64_OPND_IMM_VLSL:
    case AARCH64_OPND_IMM_VLSR:
    case AARCH64_OPND_SHLL_IMM:
    case AARCH64_OPND_IMM0:
    case AARCH64_OPND_IMMR:
    case AARCH64_OPND_IMMS:
    case AARCH64_OPND_UNDEFINED:
    case AARCH64_OPND_FBITS:
    case AARCH64_OPND_TME_UIMM16:
    case AARCH64_OPND_SIMM5:
    case AARCH64_OPND_SVE_SHLIMM_PRED:
    case AARCH64_OPND_SVE_SHLIMM_UNPRED:
    case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
    case AARCH64_OPND_SVE_SHRIMM_PRED:
    case AARCH64_OPND_SVE_SHRIMM_UNPRED:
    case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
    case AARCH64_OPND_SVE_SIMM5:
    case AARCH64_OPND_SVE_SIMM5B:
    case AARCH64_OPND_SVE_SIMM6:
    case AARCH64_OPND_SVE_SIMM8:
    case AARCH64_OPND_SVE_UIMM3:
    case AARCH64_OPND_SVE_UIMM7:
    case AARCH64_OPND_SVE_UIMM8:
    case AARCH64_OPND_SVE_UIMM8_53:
    case AARCH64_OPND_IMM_ROT1:
    case AARCH64_OPND_IMM_ROT2:
    case AARCH64_OPND_IMM_ROT3:
    case AARCH64_OPND_SVE_IMM_ROT1:
    case AARCH64_OPND_SVE_IMM_ROT2:
    case AARCH64_OPND_SVE_IMM_ROT3:
      snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
      break;

    case AARCH64_OPND_SVE_I1_HALF_ONE:
    case AARCH64_OPND_SVE_I1_HALF_TWO:
    case AARCH64_OPND_SVE_I1_ZERO_ONE:
      {
	single_conv_t c;
	c.i = opnd->imm.value;
	snprintf (buf, size, "#%.1f", c.f);
	break;
      }

    case AARCH64_OPND_SVE_PATTERN:
      if (optional_operand_p (opcode, idx)
	  && opnd->imm.value == get_optional_operand_default_value (opcode))
	break;
      enum_value = opnd->imm.value;
      assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
      if (aarch64_sve_pattern_array[enum_value])
	snprintf (buf, size, "%s", aarch64_sve_pattern_array[enum_value]);
      else
	snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
      break;

    case AARCH64_OPND_SVE_PATTERN_SCALED:
      if (optional_operand_p (opcode, idx)
	  && !opnd->shifter.operator_present
	  && opnd->imm.value == get_optional_operand_default_value (opcode))
	break;
      enum_value = opnd->imm.value;
      assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
      if (aarch64_sve_pattern_array[opnd->imm.value])
	snprintf (buf, size, "%s", aarch64_sve_pattern_array[opnd->imm.value]);
      else
	snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
      if (opnd->shifter.operator_present)
	{
	  size_t len = strlen (buf);
	  snprintf (buf + len, size - len, ", %s #%" PRIi64,
		    aarch64_operand_modifiers[opnd->shifter.kind].name,
		    opnd->shifter.amount);
	}
      break;

    case AARCH64_OPND_SVE_PRFOP:
      enum_value = opnd->imm.value;
      assert (enum_value < ARRAY_SIZE (aarch64_sve_prfop_array));
      if (aarch64_sve_prfop_array[enum_value])
	snprintf (buf, size, "%s", aarch64_sve_prfop_array[enum_value]);
      else
	snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
      break;

    case AARCH64_OPND_IMM_MOV:
      switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
	{
	case 4:	/* e.g. MOV Wd, #<imm32>.  */
	    {
	      int imm32 = opnd->imm.value;
	      snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
	    }
	  break;
	case 8:	/* e.g. MOV Xd, #<imm64>.  */
	  snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
		    opnd->imm.value, opnd->imm.value);
	  break;
	default: assert (0);
	}
      break;

    case AARCH64_OPND_FPIMM0:
      snprintf (buf, size, "#0.0");
      break;

    case AARCH64_OPND_LIMM:
    case AARCH64_OPND_AIMM:
    case AARCH64_OPND_HALF:
    case AARCH64_OPND_SVE_INV_LIMM:
    case AARCH64_OPND_SVE_LIMM:
    case AARCH64_OPND_SVE_LIMM_MOV:
      if (opnd->shifter.amount)
	snprintf (buf, size, "#0x%" PRIx64 ", lsl #%" PRIi64, opnd->imm.value,
		  opnd->shifter.amount);
      else
	snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
      break;

    case AARCH64_OPND_SIMD_IMM:
    case AARCH64_OPND_SIMD_IMM_SFT:
      if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
	  || opnd->shifter.kind == AARCH64_MOD_NONE)
	snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
      else
	snprintf (buf, size, "#0x%" PRIx64 ", %s #%" PRIi64, opnd->imm.value,
		  aarch64_operand_modifiers[opnd->shifter.kind].name,
		  opnd->shifter.amount);
      break;

    case AARCH64_OPND_SVE_AIMM:
    case AARCH64_OPND_SVE_ASIMM:
      if (opnd->shifter.amount)
	snprintf (buf, size, "#%" PRIi64 ", lsl #%" PRIi64, opnd->imm.value,
		  opnd->shifter.amount);
      else
	snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
      break;

    case AARCH64_OPND_FPIMM:
    case AARCH64_OPND_SIMD_FPIMM:
    case AARCH64_OPND_SVE_FPIMM8:
      switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
	{
	case 2:	/* e.g. FMOV <Hd>, #<imm>.  */
	    {
	      half_conv_t c;
	      c.i = expand_fp_imm (2, opnd->imm.value);
	      snprintf (buf, size,  "#%.18e", c.f);
	    }
	  break;
	case 4:	/* e.g. FMOV <Vd>.4S, #<imm>.  */
	    {
	      single_conv_t c;
	      c.i = expand_fp_imm (4, opnd->imm.value);
	      snprintf (buf, size,  "#%.18e", c.f);
	    }
	  break;
	case 8:	/* e.g. FMOV <Sd>, #<imm>.  */
	    {
	      double_conv_t c;
	      c.i = expand_fp_imm (8, opnd->imm.value);
	      snprintf (buf, size,  "#%.18e", c.d);
	    }
	  break;
	default: assert (0);
	}
      break;

    case AARCH64_OPND_CCMP_IMM:
    case AARCH64_OPND_NZCV:
    case AARCH64_OPND_EXCEPTION:
    case AARCH64_OPND_UIMM4:
    case AARCH64_OPND_UIMM4_ADDG:
    case AARCH64_OPND_UIMM7:
    case AARCH64_OPND_UIMM10:
      if (optional_operand_p (opcode, idx) == TRUE
	  && (opnd->imm.value ==
	      (int64_t) get_optional_operand_default_value (opcode)))
	/* Omit the operand, e.g. DCPS1.  */
	break;
      snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
      break;

    case AARCH64_OPND_COND:
    case AARCH64_OPND_COND1:
      snprintf (buf, size, "%s", opnd->cond->names[0]);
      num_conds = ARRAY_SIZE (opnd->cond->names);
      for (i = 1; i < num_conds && opnd->cond->names[i]; ++i)
	{
	  size_t len = strlen (buf);
	  if (i == 1)
	    snprintf (buf + len, size - len, "  // %s = %s",
		      opnd->cond->names[0], opnd->cond->names[i]);
	  else
	    snprintf (buf + len, size - len, ", %s",
		      opnd->cond->names[i]);
	}
      break;

    case AARCH64_OPND_ADDR_ADRP:
      addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
	+ opnd->imm.value;
      if (pcrel_p)
	*pcrel_p = 1;
      if (address)
	*address = addr;
      /* This is not necessary during the disassembling, as print_address_func
	 in the disassemble_info will take care of the printing.  But some
	 other callers may be still interested in getting the string in *STR,
	 so here we do snprintf regardless.  */
      snprintf (buf, size, "#0x%" PRIx64, addr);
      break;

    case AARCH64_OPND_ADDR_PCREL14:
    case AARCH64_OPND_ADDR_PCREL19:
    case AARCH64_OPND_ADDR_PCREL21:
    case AARCH64_OPND_ADDR_PCREL26:
      addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
      if (pcrel_p)
	*pcrel_p = 1;
      if (address)
	*address = addr;
      /* This is not necessary during the disassembling, as print_address_func
	 in the disassemble_info will take care of the printing.  But some
	 other callers may be still interested in getting the string in *STR,
	 so here we do snprintf regardless.  */
      snprintf (buf, size, "#0x%" PRIx64, addr);
      break;

    case AARCH64_OPND_ADDR_SIMPLE:
    case AARCH64_OPND_SIMD_ADDR_SIMPLE:
    case AARCH64_OPND_SIMD_ADDR_POST:
      name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
      if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
	{
	  if (opnd->addr.offset.is_reg)
	    snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
	  else
	    snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
	}
      else
	snprintf (buf, size, "[%s]", name);
      break;

    case AARCH64_OPND_ADDR_REGOFF:
    case AARCH64_OPND_SVE_ADDR_R:
    case AARCH64_OPND_SVE_ADDR_RR:
    case AARCH64_OPND_SVE_ADDR_RR_LSL1:
    case AARCH64_OPND_SVE_ADDR_RR_LSL2:
    case AARCH64_OPND_SVE_ADDR_RR_LSL3:
    case AARCH64_OPND_SVE_ADDR_RX:
    case AARCH64_OPND_SVE_ADDR_RX_LSL1:
    case AARCH64_OPND_SVE_ADDR_RX_LSL2:
    case AARCH64_OPND_SVE_ADDR_RX_LSL3:
      print_register_offset_address
	(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
	 get_offset_int_reg_name (opnd));
      break;

    case AARCH64_OPND_SVE_ADDR_ZX:
      print_register_offset_address
	(buf, size, opnd,
	 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
	 get_64bit_int_reg_name (opnd->addr.offset.regno, 0));
      break;

    case AARCH64_OPND_SVE_ADDR_RZ:
    case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
    case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
    case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
    case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
      print_register_offset_address
	(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
	 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
      break;

    case AARCH64_OPND_ADDR_SIMM7:
    case AARCH64_OPND_ADDR_SIMM9:
    case AARCH64_OPND_ADDR_SIMM9_2:
    case AARCH64_OPND_ADDR_SIMM10:
    case AARCH64_OPND_ADDR_SIMM11:
    case AARCH64_OPND_ADDR_SIMM13:
    case AARCH64_OPND_ADDR_OFFSET:
    case AARCH64_OPND_SVE_ADDR_RI_S4x16:
    case AARCH64_OPND_SVE_ADDR_RI_S4x32:
    case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
    case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
    case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
    case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
    case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
    case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
    case AARCH64_OPND_SVE_ADDR_RI_U6:
    case AARCH64_OPND_SVE_ADDR_RI_U6x2:
    case AARCH64_OPND_SVE_ADDR_RI_U6x4:
    case AARCH64_OPND_SVE_ADDR_RI_U6x8:
      print_immediate_offset_address
	(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1));
      break;

    case AARCH64_OPND_SVE_ADDR_ZI_U5:
    case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
    case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
    case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
      print_immediate_offset_address
	(buf, size, opnd,
	 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier));
      break;

    case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
    case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
    case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
      print_register_offset_address
	(buf, size, opnd,
	 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
	 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
      break;

    case AARCH64_OPND_ADDR_UIMM12:
      name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
      if (opnd->addr.offset.imm)
	snprintf (buf, size, "[%s, #%d]", name, opnd->addr.offset.imm);
      else
	snprintf (buf, size, "[%s]", name);
      break;

    case AARCH64_OPND_SYSREG:
      for (i = 0; aarch64_sys_regs[i].name; ++i)
	{
	  const aarch64_sys_reg *sr = aarch64_sys_regs + i;

	  bfd_boolean exact_match
	    = (!(sr->flags & (F_REG_READ | F_REG_WRITE))
	    || (sr->flags & opnd->sysreg.flags) == opnd->sysreg.flags)
	    && AARCH64_CPU_HAS_FEATURE (features, sr->features);

	  /* Try and find an exact match, But if that fails, return the first
	     partial match that was found.  */
	  if (aarch64_sys_regs[i].value == opnd->sysreg.value
	      && ! aarch64_sys_reg_deprecated_p (aarch64_sys_regs[i].flags)
	      && (name == NULL || exact_match))
	    {
	      name = aarch64_sys_regs[i].name;
	      if (exact_match)
		{
		  if (notes)
		    *notes = NULL;
		  break;
		}

	      /* If we didn't match exactly, that means the presense of a flag
		 indicates what we didn't want for this instruction.  e.g. If
		 F_REG_READ is there, that means we were looking for a write
		 register.  See aarch64_ext_sysreg.  */
	      if (aarch64_sys_regs[i].flags & F_REG_WRITE)
		*notes = _("reading from a write-only register");
	      else if (aarch64_sys_regs[i].flags & F_REG_READ)
		*notes = _("writing to a read-only register");
	    }
	}

      if (name)
	snprintf (buf, size, "%s", name);
      else
	{
	  /* Implementation defined system register.  */
	  unsigned int value = opnd->sysreg.value;
	  snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
		    (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
		    value & 0x7);
	}
      break;

    case AARCH64_OPND_PSTATEFIELD:
      for (i = 0; aarch64_pstatefields[i].name; ++i)
	if (aarch64_pstatefields[i].value == opnd->pstatefield)
	  break;
      assert (aarch64_pstatefields[i].name);
      snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
      break;

    case AARCH64_OPND_SYSREG_AT:
    case AARCH64_OPND_SYSREG_DC:
    case AARCH64_OPND_SYSREG_IC:
    case AARCH64_OPND_SYSREG_TLBI:
    case AARCH64_OPND_SYSREG_SR:
      snprintf (buf, size, "%s", opnd->sysins_op->name);
      break;

    case AARCH64_OPND_BARRIER:
    case AARCH64_OPND_BARRIER_DSB_NXS:
      snprintf (buf, size, "%s", opnd->barrier->name);
      break;

    case AARCH64_OPND_BARRIER_ISB:
      /* Operand can be omitted, e.g. in DCPS1.  */
      if (! optional_operand_p (opcode, idx)
	  || (opnd->barrier->value
	      != get_optional_operand_default_value (opcode)))
	snprintf (buf, size, "#0x%x", opnd->barrier->value);
      break;

    case AARCH64_OPND_PRFOP:
      if (opnd->prfop->name != NULL)
	snprintf (buf, size, "%s", opnd->prfop->name);
      else
	snprintf (buf, size, "#0x%02x", opnd->prfop->value);
      break;

    case AARCH64_OPND_BARRIER_PSB:
      snprintf (buf, size, "csync");
      break;

    case AARCH64_OPND_BTI_TARGET:
      if ((HINT_FLAG (opnd->hint_option->value) & HINT_OPD_F_NOPRINT) == 0)
	snprintf (buf, size, "%s", opnd->hint_option->name);
      break;

    default:
      assert (0);
    }
}

#define CPENC(op0,op1,crn,crm,op2) \
  ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
  /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
#define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
  /* for 3.9.10 System Instructions */
#define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))

#define C0  0
#define C1  1
#define C2  2
#define C3  3
#define C4  4
#define C5  5
#define C6  6
#define C7  7
#define C8  8
#define C9  9
#define C10 10
#define C11 11
#define C12 12
#define C13 13
#define C14 14
#define C15 15

#define SYSREG(name, encoding, flags, features) \
  { name, encoding, flags, features }

#define SR_CORE(n,e,f) SYSREG (n,e,f,0)

#define SR_FEAT(n,e,f,feat) \
  SYSREG ((n), (e), (f) | F_ARCHEXT, AARCH64_FEATURE_##feat)

#define SR_FEAT2(n,e,f,fe1,fe2) \
  SYSREG ((n), (e), (f) | F_ARCHEXT, \
	  AARCH64_FEATURE_##fe1 | AARCH64_FEATURE_##fe2)

#define SR_RNG(n,e,f)	 SR_FEAT2(n,e,f,RNG,V8_5)
#define SR_V8_1_A(n,e,f) SR_FEAT2(n,e,f,V8_A,V8_1)
#define SR_V8_4_A(n,e,f) SR_FEAT2(n,e,f,V8_A,V8_4)

#define SR_V8_A(n,e,f)	  SR_FEAT (n,e,f,V8_A)
#define SR_V8_R(n,e,f)	  SR_FEAT (n,e,f,V8_R)
#define SR_V8_1(n,e,f)	  SR_FEAT (n,e,f,V8_1)
#define SR_V8_2(n,e,f)	  SR_FEAT (n,e,f,V8_2)
#define SR_V8_3(n,e,f)	  SR_FEAT (n,e,f,V8_3)
#define SR_V8_4(n,e,f)	  SR_FEAT (n,e,f,V8_4)
#define SR_V8_4(n,e,f)	  SR_FEAT (n,e,f,V8_4)
#define SR_PAN(n,e,f)	  SR_FEAT (n,e,f,PAN)
#define SR_RAS(n,e,f)	  SR_FEAT (n,e,f,RAS)
#define SR_SSBS(n,e,f)	  SR_FEAT (n,e,f,SSBS)
#define SR_SVE(n,e,f)	  SR_FEAT (n,e,f,SVE)
#define SR_ID_PFR2(n,e,f) SR_FEAT (n,e,f,ID_PFR2)
#define SR_PROFILE(n,e,f) SR_FEAT (n,e,f,PROFILE)
#define SR_MEMTAG(n,e,f)  SR_FEAT (n,e,f,MEMTAG)
#define SR_SCXTNUM(n,e,f) SR_FEAT (n,e,f,SCXTNUM)

#define SR_EXPAND_ELx(f,x) \
  f (x, 1),  \
  f (x, 2),  \
  f (x, 3),  \
  f (x, 4),  \
  f (x, 5),  \
  f (x, 6),  \
  f (x, 7),  \
  f (x, 8),  \
  f (x, 9),  \
  f (x, 10), \
  f (x, 11), \
  f (x, 12), \
  f (x, 13), \
  f (x, 14), \
  f (x, 15),

#define SR_EXPAND_EL12(f) \
  SR_EXPAND_ELx (f,1) \
  SR_EXPAND_ELx (f,2)

/* TODO there is one more issues need to be resolved
   1. handle cpu-implementation-defined system registers.

   Note that the F_REG_{READ,WRITE} flags mean read-only and write-only
   respectively.  If neither of these are set then the register is read-write.  */
const aarch64_sys_reg aarch64_sys_regs [] =
{
  SR_CORE ("spsr_el1",		CPEN_ (0,C0,0),		0), /* = spsr_svc.  */
  SR_V8_1 ("spsr_el12",		CPEN_ (5,C0,0),		0),
  SR_CORE ("elr_el1",		CPEN_ (0,C0,1),		0),
  SR_V8_1 ("elr_el12",		CPEN_ (5,C0,1),		0),
  SR_CORE ("sp_el0",		CPEN_ (0,C1,0),		0),
  SR_CORE ("spsel",		CPEN_ (0,C2,0),		0),
  SR_CORE ("daif",		CPEN_ (3,C2,1),		0),
  SR_CORE ("currentel",		CPEN_ (0,C2,2),		F_REG_READ),
  SR_PAN  ("pan",		CPEN_ (0,C2,3),		0),
  SR_V8_2 ("uao",		CPEN_ (0,C2,4),		0),
  SR_CORE ("nzcv",		CPEN_ (3,C2,0),		0),
  SR_SSBS ("ssbs",		CPEN_ (3,C2,6),		0),
  SR_CORE ("fpcr",		CPEN_ (3,C4,0),		0),
  SR_CORE ("fpsr",		CPEN_ (3,C4,1),		0),
  SR_CORE ("dspsr_el0",		CPEN_ (3,C5,0),		0),
  SR_CORE ("dlr_el0",		CPEN_ (3,C5,1),		0),
  SR_CORE ("spsr_el2",		CPEN_ (4,C0,0),		0), /* = spsr_hyp.  */
  SR_CORE ("elr_el2",		CPEN_ (4,C0,1),		0),
  SR_CORE ("sp_el1",		CPEN_ (4,C1,0),		0),
  SR_CORE ("spsr_irq",		CPEN_ (4,C3,0),		0),
  SR_CORE ("spsr_abt",		CPEN_ (4,C3,1),		0),
  SR_CORE ("spsr_und",		CPEN_ (4,C3,2),		0),
  SR_CORE ("spsr_fiq",		CPEN_ (4,C3,3),		0),
  SR_CORE ("spsr_el3",		CPEN_ (6,C0,0),		0),
  SR_CORE ("elr_el3",		CPEN_ (6,C0,1),		0),
  SR_CORE ("sp_el2",		CPEN_ (6,C1,0),		0),
  SR_CORE ("spsr_svc",		CPEN_ (0,C0,0),		F_DEPRECATED), /* = spsr_el1.  */
  SR_CORE ("spsr_hyp",		CPEN_ (4,C0,0),		F_DEPRECATED), /* = spsr_el2.  */
  SR_CORE ("midr_el1",		CPENC (3,0,C0,C0,0),	F_REG_READ),
  SR_CORE ("ctr_el0",		CPENC (3,3,C0,C0,1),	F_REG_READ),
  SR_CORE ("mpidr_el1",		CPENC (3,0,C0,C0,5),	F_REG_READ),
  SR_CORE ("revidr_el1",	CPENC (3,0,C0,C0,6),	F_REG_READ),
  SR_CORE ("aidr_el1",		CPENC (3,1,C0,C0,7),	F_REG_READ),
  SR_CORE ("dczid_el0",		CPENC (3,3,C0,C0,7),	F_REG_READ),
  SR_CORE ("id_dfr0_el1",	CPENC (3,0,C0,C1,2),	F_REG_READ),
  SR_CORE ("id_pfr0_el1",	CPENC (3,0,C0,C1,0),	F_REG_READ),
  SR_CORE ("id_pfr1_el1",	CPENC (3,0,C0,C1,1),	F_REG_READ),
  SR_ID_PFR2 ("id_pfr2_el1",	CPENC (3,0,C0,C3,4),	F_REG_READ),
  SR_CORE ("id_afr0_el1",	CPENC (3,0,C0,C1,3),	F_REG_READ),
  SR_CORE ("id_mmfr0_el1",	CPENC (3,0,C0,C1,4),	F_REG_READ),
  SR_CORE ("id_mmfr1_el1",	CPENC (3,0,C0,C1,5),	F_REG_READ),
  SR_CORE ("id_mmfr2_el1",	CPENC (3,0,C0,C1,6),	F_REG_READ),
  SR_CORE ("id_mmfr3_el1",	CPENC (3,0,C0,C1,7),	F_REG_READ),
  SR_CORE ("id_mmfr4_el1",	CPENC (3,0,C0,C2,6),	F_REG_READ),
  SR_CORE ("id_isar0_el1",	CPENC (3,0,C0,C2,0),	F_REG_READ),
  SR_CORE ("id_isar1_el1",	CPENC (3,0,C0,C2,1),	F_REG_READ),
  SR_CORE ("id_isar2_el1",	CPENC (3,0,C0,C2,2),	F_REG_READ),
  SR_CORE ("id_isar3_el1",	CPENC (3,0,C0,C2,3),	F_REG_READ),
  SR_CORE ("id_isar4_el1",	CPENC (3,0,C0,C2,4),	F_REG_READ),
  SR_CORE ("id_isar5_el1",	CPENC (3,0,C0,C2,5),	F_REG_READ),
  SR_CORE ("mvfr0_el1",		CPENC (3,0,C0,C3,0),	F_REG_READ),
  SR_CORE ("mvfr1_el1",		CPENC (3,0,C0,C3,1),	F_REG_READ),
  SR_CORE ("mvfr2_el1",		CPENC (3,0,C0,C3,2),	F_REG_READ),
  SR_CORE ("ccsidr_el1",	CPENC (3,1,C0,C0,0),	F_REG_READ),
  SR_CORE ("id_aa64pfr0_el1",	CPENC (3,0,C0,C4,0),	F_REG_READ),
  SR_CORE ("id_aa64pfr1_el1",	CPENC (3,0,C0,C4,1),	F_REG_READ),
  SR_CORE ("id_aa64dfr0_el1",	CPENC (3,0,C0,C5,0),	F_REG_READ),
  SR_CORE ("id_aa64dfr1_el1",	CPENC (3,0,C0,C5,1),	F_REG_READ),
  SR_CORE ("id_aa64isar0_el1",	CPENC (3,0,C0,C6,0),	F_REG_READ),
  SR_CORE ("id_aa64isar1_el1",	CPENC (3,0,C0,C6,1),	F_REG_READ),
  SR_CORE ("id_aa64mmfr0_el1",	CPENC (3,0,C0,C7,0),	F_REG_READ),
  SR_CORE ("id_aa64mmfr1_el1",	CPENC (3,0,C0,C7,1),	F_REG_READ),
  SR_V8_2 ("id_aa64mmfr2_el1",	CPENC (3,0,C0,C7,2),	F_REG_READ),
  SR_CORE ("id_aa64afr0_el1",	CPENC (3,0,C0,C5,4),	F_REG_READ),
  SR_CORE ("id_aa64afr1_el1",	CPENC (3,0,C0,C5,5),	F_REG_READ),
  SR_SVE  ("id_aa64zfr0_el1",	CPENC (3,0,C0,C4,4),	F_REG_READ),
  SR_CORE ("clidr_el1",		CPENC (3,1,C0,C0,1),	F_REG_READ),
  SR_CORE ("csselr_el1",	CPENC (3,2,C0,C0,0),	0),
  SR_CORE ("vpidr_el2",		CPENC (3,4,C0,C0,0),	0),
  SR_CORE ("vmpidr_el2",	CPENC (3,4,C0,C0,5),	0),
  SR_CORE ("sctlr_el1",		CPENC (3,0,C1,C0,0),	0),
  SR_CORE ("sctlr_el2",		CPENC (3,4,C1,C0,0),	0),
  SR_CORE ("sctlr_el3",		CPENC (3,6,C1,C0,0),	0),
  SR_V8_1 ("sctlr_el12",	CPENC (3,5,C1,C0,0),	0),
  SR_CORE ("actlr_el1",		CPENC (3,0,C1,C0,1),	0),
  SR_CORE ("actlr_el2",		CPENC (3,4,C1,C0,1),	0),
  SR_CORE ("actlr_el3",		CPENC (3,6,C1,C0,1),	0),
  SR_CORE ("cpacr_el1",		CPENC (3,0,C1,C0,2),	0),
  SR_V8_1 ("cpacr_el12",	CPENC (3,5,C1,C0,2),	0),
  SR_CORE ("cptr_el2",		CPENC (3,4,C1,C1,2),	0),
  SR_CORE ("cptr_el3",		CPENC (3,6,C1,C1,2),	0),
  SR_CORE ("scr_el3",		CPENC (3,6,C1,C1,0),	0),
  SR_CORE ("hcr_el2",		CPENC (3,4,C1,C1,0),	0),
  SR_CORE ("mdcr_el2",		CPENC (3,4,C1,C1,1),	0),
  SR_CORE ("mdcr_el3",		CPENC (3,6,C1,C3,1),	0),
  SR_CORE ("hstr_el2",		CPENC (3,4,C1,C1,3),	0),
  SR_CORE ("hacr_el2",		CPENC (3,4,C1,C1,7),	0),
  SR_SVE  ("zcr_el1",		CPENC (3,0,C1,C2,0),	0),
  SR_SVE  ("zcr_el12",		CPENC (3,5,C1,C2,0),	0),
  SR_SVE  ("zcr_el2",		CPENC (3,4,C1,C2,0),	0),
  SR_SVE  ("zcr_el3",		CPENC (3,6,C1,C2,0),	0),
  SR_SVE  ("zidr_el1",		CPENC (3,0,C0,C0,7),	0),
  SR_CORE ("ttbr0_el1",		CPENC (3,0,C2,C0,0),	0),
  SR_CORE ("ttbr1_el1",		CPENC (3,0,C2,C0,1),	0),
  SR_V8_A ("ttbr0_el2",		CPENC (3,4,C2,C0,0),	0),
  SR_V8_1_A ("ttbr1_el2",	CPENC (3,4,C2,C0,1),	0),
  SR_CORE ("ttbr0_el3",		CPENC (3,6,C2,C0,0),	0),
  SR_V8_1 ("ttbr0_el12",	CPENC (3,5,C2,C0,0),	0),
  SR_V8_1 ("ttbr1_el12",	CPENC (3,5,C2,C0,1),	0),
  SR_V8_A ("vttbr_el2",		CPENC (3,4,C2,C1,0),	0),
  SR_CORE ("tcr_el1",		CPENC (3,0,C2,C0,2),	0),
  SR_CORE ("tcr_el2",		CPENC (3,4,C2,C0,2),	0),
  SR_CORE ("tcr_el3",		CPENC (3,6,C2,C0,2),	0),
  SR_V8_1 ("tcr_el12",		CPENC (3,5,C2,C0,2),	0),
  SR_CORE ("vtcr_el2",		CPENC (3,4,C2,C1,2),	0),
  SR_V8_3 ("apiakeylo_el1",	CPENC (3,0,C2,C1,0),	0),
  SR_V8_3 ("apiakeyhi_el1",	CPENC (3,0,C2,C1,1),	0),
  SR_V8_3 ("apibkeylo_el1",	CPENC (3,0,C2,C1,2),	0),
  SR_V8_3 ("apibkeyhi_el1",	CPENC (3,0,C2,C1,3),	0),
  SR_V8_3 ("apdakeylo_el1",	CPENC (3,0,C2,C2,0),	0),
  SR_V8_3 ("apdakeyhi_el1",	CPENC (3,0,C2,C2,1),	0),
  SR_V8_3 ("apdbkeylo_el1",	CPENC (3,0,C2,C2,2),	0),
  SR_V8_3 ("apdbkeyhi_el1",	CPENC (3,0,C2,C2,3),	0),
  SR_V8_3 ("apgakeylo_el1",	CPENC (3,0,C2,C3,0),	0),
  SR_V8_3 ("apgakeyhi_el1",	CPENC (3,0,C2,C3,1),	0),
  SR_CORE ("afsr0_el1",		CPENC (3,0,C5,C1,0),	0),
  SR_CORE ("afsr1_el1",		CPENC (3,0,C5,C1,1),	0),
  SR_CORE ("afsr0_el2",		CPENC (3,4,C5,C1,0),	0),
  SR_CORE ("afsr1_el2",		CPENC (3,4,C5,C1,1),	0),
  SR_CORE ("afsr0_el3",		CPENC (3,6,C5,C1,0),	0),
  SR_V8_1 ("afsr0_el12",	CPENC (3,5,C5,C1,0),	0),
  SR_CORE ("afsr1_el3",		CPENC (3,6,C5,C1,1),	0),
  SR_V8_1 ("afsr1_el12",	CPENC (3,5,C5,C1,1),	0),
  SR_CORE ("esr_el1",		CPENC (3,0,C5,C2,0),	0),
  SR_CORE ("esr_el2",		CPENC (3,4,C5,C2,0),	0),
  SR_CORE ("esr_el3",		CPENC (3,6,C5,C2,0),	0),
  SR_V8_1 ("esr_el12",		CPENC (3,5,C5,C2,0),	0),
  SR_RAS  ("vsesr_el2",		CPENC (3,4,C5,C2,3),	0),
  SR_CORE ("fpexc32_el2",	CPENC (3,4,C5,C3,0),	0),
  SR_RAS  ("erridr_el1",	CPENC (3,0,C5,C3,0),	F_REG_READ),
  SR_RAS  ("errselr_el1",	CPENC (3,0,C5,C3,1),	0),
  SR_RAS  ("erxfr_el1",		CPENC (3,0,C5,C4,0),	F_REG_READ),
  SR_RAS  ("erxctlr_el1",	CPENC (3,0,C5,C4,1),	0),
  SR_RAS  ("erxstatus_el1",	CPENC (3,0,C5,C4,2),	0),
  SR_RAS  ("erxaddr_el1",	CPENC (3,0,C5,C4,3),	0),
  SR_RAS  ("erxmisc0_el1",	CPENC (3,0,C5,C5,0),	0),
  SR_RAS  ("erxmisc1_el1",	CPENC (3,0,C5,C5,1),	0),
  SR_CORE ("far_el1",		CPENC (3,0,C6,C0,0),	0),
  SR_CORE ("far_el2",		CPENC (3,4,C6,C0,0),	0),
  SR_CORE ("far_el3",		CPENC (3,6,C6,C0,0),	0),
  SR_V8_1 ("far_el12",		CPENC (3,5,C6,C0,0),	0),
  SR_CORE ("hpfar_el2",		CPENC (3,4,C6,C0,4),	0),
  SR_CORE ("par_el1",		CPENC (3,0,C7,C4,0),	0),
  SR_CORE ("mair_el1",		CPENC (3,0,C10,C2,0),	0),
  SR_CORE ("mair_el2",		CPENC (3,4,C10,C2,0),	0),
  SR_CORE ("mair_el3",		CPENC (3,6,C10,C2,0),	0),
  SR_V8_1 ("mair_el12",		CPENC (3,5,C10,C2,0),	0),
  SR_CORE ("amair_el1",		CPENC (3,0,C10,C3,0),	0),
  SR_CORE ("amair_el2",		CPENC (3,4,C10,C3,0),	0),
  SR_CORE ("amair_el3",		CPENC (3,6,C10,C3,0),	0),
  SR_V8_1 ("amair_el12",	CPENC (3,5,C10,C3,0),	0),
  SR_CORE ("vbar_el1",		CPENC (3,0,C12,C0,0),	0),
  SR_CORE ("vbar_el2",		CPENC (3,4,C12,C0,0),	0),
  SR_CORE ("vbar_el3",		CPENC (3,6,C12,C0,0),	0),
  SR_V8_1 ("vbar_el12",		CPENC (3,5,C12,C0,0),	0),
  SR_CORE ("rvbar_el1",		CPENC (3,0,C12,C0,1),	F_REG_READ),
  SR_CORE ("rvbar_el2",		CPENC (3,4,C12,C0,1),	F_REG_READ),
  SR_CORE ("rvbar_el3",		CPENC (3,6,C12,C0,1),	F_REG_READ),
  SR_CORE ("rmr_el1",		CPENC (3,0,C12,C0,2),	0),
  SR_CORE ("rmr_el2",		CPENC (3,4,C12,C0,2),	0),
  SR_CORE ("rmr_el3",		CPENC (3,6,C12,C0,2),	0),
  SR_CORE ("isr_el1",		CPENC (3,0,C12,C1,0),	F_REG_READ),
  SR_RAS  ("disr_el1",		CPENC (3,0,C12,C1,1),	0),
  SR_RAS  ("vdisr_el2",		CPENC (3,4,C12,C1,1),	0),
  SR_CORE ("contextidr_el1",	CPENC (3,0,C13,C0,1),	0),
  SR_V8_1 ("contextidr_el2",	CPENC (3,4,C13,C0,1),	0),
  SR_V8_1 ("contextidr_el12",	CPENC (3,5,C13,C0,1),	0),
  SR_RNG  ("rndr",		CPENC (3,3,C2,C4,0),	F_REG_READ),
  SR_RNG  ("rndrrs",		CPENC (3,3,C2,C4,1),	F_REG_READ),
  SR_MEMTAG ("tco",		CPENC (3,3,C4,C2,7),	0),
  SR_MEMTAG ("tfsre0_el1",	CPENC (3,0,C5,C6,1),	0),
  SR_MEMTAG ("tfsr_el1",	CPENC (3,0,C5,C6,0),	0),
  SR_MEMTAG ("tfsr_el2",	CPENC (3,4,C5,C6,0),	0),
  SR_MEMTAG ("tfsr_el3",	CPENC (3,6,C5,C6,0),	0),
  SR_MEMTAG ("tfsr_el12",	CPENC (3,5,C5,C6,0),	0),
  SR_MEMTAG ("rgsr_el1",	CPENC (3,0,C1,C0,5),	0),
  SR_MEMTAG ("gcr_el1",		CPENC (3,0,C1,C0,6),	0),
  SR_MEMTAG ("gmid_el1",	CPENC (3,1,C0,C0,4),	F_REG_READ),
  SR_CORE ("tpidr_el0",		CPENC (3,3,C13,C0,2),	0),
  SR_CORE ("tpidrro_el0",       CPENC (3,3,C13,C0,3),	0),
  SR_CORE ("tpidr_el1",		CPENC (3,0,C13,C0,4),	0),
  SR_CORE ("tpidr_el2",		CPENC (3,4,C13,C0,2),	0),
  SR_CORE ("tpidr_el3",		CPENC (3,6,C13,C0,2),	0),
  SR_SCXTNUM ("scxtnum_el0",	CPENC (3,3,C13,C0,7),	0),
  SR_SCXTNUM ("scxtnum_el1",	CPENC (3,0,C13,C0,7),	0),
  SR_SCXTNUM ("scxtnum_el2",	CPENC (3,4,C13,C0,7),	0),
  SR_SCXTNUM ("scxtnum_el12",   CPENC (3,5,C13,C0,7),	0),
  SR_SCXTNUM ("scxtnum_el3",    CPENC (3,6,C13,C0,7),	0),
  SR_CORE ("teecr32_el1",       CPENC (2,2,C0, C0,0),	0), /* See section 3.9.7.1.  */
  SR_CORE ("cntfrq_el0",	CPENC (3,3,C14,C0,0),	0),
  SR_CORE ("cntpct_el0",	CPENC (3,3,C14,C0,1),	F_REG_READ),
  SR_CORE ("cntvct_el0",	CPENC (3,3,C14,C0,2),	F_REG_READ),
  SR_CORE ("cntvoff_el2",       CPENC (3,4,C14,C0,3),	0),
  SR_CORE ("cntkctl_el1",       CPENC (3,0,C14,C1,0),	0),
  SR_V8_1 ("cntkctl_el12",	CPENC (3,5,C14,C1,0),	0),
  SR_CORE ("cnthctl_el2",	CPENC (3,4,C14,C1,0),	0),
  SR_CORE ("cntp_tval_el0",	CPENC (3,3,C14,C2,0),	0),
  SR_V8_1 ("cntp_tval_el02",	CPENC (3,5,C14,C2,0),	0),
  SR_CORE ("cntp_ctl_el0",      CPENC (3,3,C14,C2,1),	0),
  SR_V8_1 ("cntp_ctl_el02",	CPENC (3,5,C14,C2,1),	0),
  SR_CORE ("cntp_cval_el0",     CPENC (3,3,C14,C2,2),	0),
  SR_V8_1 ("cntp_cval_el02",	CPENC (3,5,C14,C2,2),	0),
  SR_CORE ("cntv_tval_el0",     CPENC (3,3,C14,C3,0),	0),
  SR_V8_1 ("cntv_tval_el02",	CPENC (3,5,C14,C3,0),	0),
  SR_CORE ("cntv_ctl_el0",      CPENC (3,3,C14,C3,1),	0),
  SR_V8_1 ("cntv_ctl_el02",	CPENC (3,5,C14,C3,1),	0),
  SR_CORE ("cntv_cval_el0",     CPENC (3,3,C14,C3,2),	0),
  SR_V8_1 ("cntv_cval_el02",	CPENC (3,5,C14,C3,2),	0),
  SR_CORE ("cnthp_tval_el2",	CPENC (3,4,C14,C2,0),	0),
  SR_CORE ("cnthp_ctl_el2",	CPENC (3,4,C14,C2,1),	0),
  SR_CORE ("cnthp_cval_el2",	CPENC (3,4,C14,C2,2),	0),
  SR_CORE ("cntps_tval_el1",	CPENC (3,7,C14,C2,0),	0),
  SR_CORE ("cntps_ctl_el1",	CPENC (3,7,C14,C2,1),	0),
  SR_CORE ("cntps_cval_el1",	CPENC (3,7,C14,C2,2),	0),
  SR_V8_1 ("cnthv_tval_el2",	CPENC (3,4,C14,C3,0),	0),
  SR_V8_1 ("cnthv_ctl_el2",	CPENC (3,4,C14,C3,1),	0),
  SR_V8_1 ("cnthv_cval_el2",	CPENC (3,4,C14,C3,2),	0),
  SR_CORE ("dacr32_el2",	CPENC (3,4,C3,C0,0),	0),
  SR_CORE ("ifsr32_el2",	CPENC (3,4,C5,C0,1),	0),
  SR_CORE ("teehbr32_el1",	CPENC (2,2,C1,C0,0),	0),
  SR_CORE ("sder32_el3",	CPENC (3,6,C1,C1,1),	0),
  SR_CORE ("mdscr_el1",		CPENC (2,0,C0,C2,2),	0),
  SR_CORE ("mdccsr_el0",	CPENC (2,3,C0,C1,0),	F_REG_READ),
  SR_CORE ("mdccint_el1",       CPENC (2,0,C0,C2,0),	0),
  SR_CORE ("dbgdtr_el0",	CPENC (2,3,C0,C4,0),	0),
  SR_CORE ("dbgdtrrx_el0",	CPENC (2,3,C0,C5,0),	F_REG_READ),
  SR_CORE ("dbgdtrtx_el0",	CPENC (2,3,C0,C5,0),	F_REG_WRITE),
  SR_CORE ("osdtrrx_el1",	CPENC (2,0,C0,C0,2),	0),
  SR_CORE ("osdtrtx_el1",	CPENC (2,0,C0,C3,2),	0),
  SR_CORE ("oseccr_el1",	CPENC (2,0,C0,C6,2),	0),
  SR_CORE ("dbgvcr32_el2",      CPENC (2,4,C0,C7,0),	0),
  SR_CORE ("dbgbvr0_el1",       CPENC (2,0,C0,C0,4),	0),
  SR_CORE ("dbgbvr1_el1",       CPENC (2,0,C0,C1,4),	0),
  SR_CORE ("dbgbvr2_el1",       CPENC (2,0,C0,C2,4),	0),
  SR_CORE ("dbgbvr3_el1",       CPENC (2,0,C0,C3,4),	0),
  SR_CORE ("dbgbvr4_el1",       CPENC (2,0,C0,C4,4),	0),
  SR_CORE ("dbgbvr5_el1",       CPENC (2,0,C0,C5,4),	0),
  SR_CORE ("dbgbvr6_el1",       CPENC (2,0,C0,C6,4),	0),
  SR_CORE ("dbgbvr7_el1",       CPENC (2,0,C0,C7,4),	0),
  SR_CORE ("dbgbvr8_el1",       CPENC (2,0,C0,C8,4),	0),
  SR_CORE ("dbgbvr9_el1",       CPENC (2,0,C0,C9,4),	0),
  SR_CORE ("dbgbvr10_el1",      CPENC (2,0,C0,C10,4),	0),
  SR_CORE ("dbgbvr11_el1",      CPENC (2,0,C0,C11,4),	0),
  SR_CORE ("dbgbvr12_el1",      CPENC (2,0,C0,C12,4),	0),
  SR_CORE ("dbgbvr13_el1",      CPENC (2,0,C0,C13,4),	0),
  SR_CORE ("dbgbvr14_el1",      CPENC (2,0,C0,C14,4),	0),
  SR_CORE ("dbgbvr15_el1",      CPENC (2,0,C0,C15,4),	0),
  SR_CORE ("dbgbcr0_el1",       CPENC (2,0,C0,C0,5),	0),
  SR_CORE ("dbgbcr1_el1",       CPENC (2,0,C0,C1,5),	0),
  SR_CORE ("dbgbcr2_el1",       CPENC (2,0,C0,C2,5),	0),
  SR_CORE ("dbgbcr3_el1",       CPENC (2,0,C0,C3,5),	0),
  SR_CORE ("dbgbcr4_el1",       CPENC (2,0,C0,C4,5),	0),
  SR_CORE ("dbgbcr5_el1",       CPENC (2,0,C0,C5,5),	0),
  SR_CORE ("dbgbcr6_el1",       CPENC (2,0,C0,C6,5),	0),
  SR_CORE ("dbgbcr7_el1",       CPENC (2,0,C0,C7,5),	0),
  SR_CORE ("dbgbcr8_el1",       CPENC (2,0,C0,C8,5),	0),
  SR_CORE ("dbgbcr9_el1",       CPENC (2,0,C0,C9,5),	0),
  SR_CORE ("dbgbcr10_el1",      CPENC (2,0,C0,C10,5),	0),
  SR_CORE ("dbgbcr11_el1",      CPENC (2,0,C0,C11,5),	0),
  SR_CORE ("dbgbcr12_el1",      CPENC (2,0,C0,C12,5),	0),
  SR_CORE ("dbgbcr13_el1",      CPENC (2,0,C0,C13,5),	0),
  SR_CORE ("dbgbcr14_el1",      CPENC (2,0,C0,C14,5),	0),
  SR_CORE ("dbgbcr15_el1",      CPENC (2,0,C0,C15,5),	0),
  SR_CORE ("dbgwvr0_el1",       CPENC (2,0,C0,C0,6),	0),
  SR_CORE ("dbgwvr1_el1",       CPENC (2,0,C0,C1,6),	0),
  SR_CORE ("dbgwvr2_el1",       CPENC (2,0,C0,C2,6),	0),
  SR_CORE ("dbgwvr3_el1",       CPENC (2,0,C0,C3,6),	0),
  SR_CORE ("dbgwvr4_el1",       CPENC (2,0,C0,C4,6),	0),
  SR_CORE ("dbgwvr5_el1",       CPENC (2,0,C0,C5,6),	0),
  SR_CORE ("dbgwvr6_el1",       CPENC (2,0,C0,C6,6),	0),
  SR_CORE ("dbgwvr7_el1",       CPENC (2,0,C0,C7,6),	0),
  SR_CORE ("dbgwvr8_el1",       CPENC (2,0,C0,C8,6),	0),
  SR_CORE ("dbgwvr9_el1",       CPENC (2,0,C0,C9,6),	0),
  SR_CORE ("dbgwvr10_el1",      CPENC (2,0,C0,C10,6),	0),
  SR_CORE ("dbgwvr11_el1",      CPENC (2,0,C0,C11,6),	0),
  SR_CORE ("dbgwvr12_el1",      CPENC (2,0,C0,C12,6),	0),
  SR_CORE ("dbgwvr13_el1",      CPENC (2,0,C0,C13,6),	0),
  SR_CORE ("dbgwvr14_el1",      CPENC (2,0,C0,C14,6),	0),
  SR_CORE ("dbgwvr15_el1",      CPENC (2,0,C0,C15,6),	0),
  SR_CORE ("dbgwcr0_el1",       CPENC (2,0,C0,C0,7),	0),
  SR_CORE ("dbgwcr1_el1",       CPENC (2,0,C0,C1,7),	0),
  SR_CORE ("dbgwcr2_el1",       CPENC (2,0,C0,C2,7),	0),
  SR_CORE ("dbgwcr3_el1",       CPENC (2,0,C0,C3,7),	0),
  SR_CORE ("dbgwcr4_el1",       CPENC (2,0,C0,C4,7),	0),
  SR_CORE ("dbgwcr5_el1",       CPENC (2,0,C0,C5,7),	0),
  SR_CORE ("dbgwcr6_el1",       CPENC (2,0,C0,C6,7),	0),
  SR_CORE ("dbgwcr7_el1",       CPENC (2,0,C0,C7,7),	0),
  SR_CORE ("dbgwcr8_el1",       CPENC (2,0,C0,C8,7),	0),
  SR_CORE ("dbgwcr9_el1",       CPENC (2,0,C0,C9,7),	0),
  SR_CORE ("dbgwcr10_el1",      CPENC (2,0,C0,C10,7),	0),
  SR_CORE ("dbgwcr11_el1",      CPENC (2,0,C0,C11,7),	0),
  SR_CORE ("dbgwcr12_el1",      CPENC (2,0,C0,C12,7),	0),
  SR_CORE ("dbgwcr13_el1",      CPENC (2,0,C0,C13,7),	0),
  SR_CORE ("dbgwcr14_el1",      CPENC (2,0,C0,C14,7),	0),
  SR_CORE ("dbgwcr15_el1",      CPENC (2,0,C0,C15,7),	0),
  SR_CORE ("mdrar_el1",		CPENC (2,0,C1,C0,0),	F_REG_READ),
  SR_CORE ("oslar_el1",		CPENC (2,0,C1,C0,4),	F_REG_WRITE),
  SR_CORE ("oslsr_el1",		CPENC (2,0,C1,C1,4),	F_REG_READ),
  SR_CORE ("osdlr_el1",		CPENC (2,0,C1,C3,4),	0),
  SR_CORE ("dbgprcr_el1",       CPENC (2,0,C1,C4,4),	0),
  SR_CORE ("dbgclaimset_el1",   CPENC (2,0,C7,C8,6),	0),
  SR_CORE ("dbgclaimclr_el1",   CPENC (2,0,C7,C9,6),	0),
  SR_CORE ("dbgauthstatus_el1", CPENC (2,0,C7,C14,6),	F_REG_READ),
  SR_PROFILE ("pmblimitr_el1",	CPENC (3,0,C9,C10,0),	0),
  SR_PROFILE ("pmbptr_el1",	CPENC (3,0,C9,C10,1),	0),
  SR_PROFILE ("pmbsr_el1",	CPENC (3,0,C9,C10,3),	0),
  SR_PROFILE ("pmbidr_el1",	CPENC (3,0,C9,C10,7),	F_REG_READ),
  SR_PROFILE ("pmscr_el1",	CPENC (3,0,C9,C9,0),	0),
  SR_PROFILE ("pmsicr_el1",	CPENC (3,0,C9,C9,2),	0),
  SR_PROFILE ("pmsirr_el1",	CPENC (3,0,C9,C9,3),	0),
  SR_PROFILE ("pmsfcr_el1",	CPENC (3,0,C9,C9,4),	0),
  SR_PROFILE ("pmsevfr_el1",	CPENC (3,0,C9,C9,5),	0),
  SR_PROFILE ("pmslatfr_el1",	CPENC (3,0,C9,C9,6),	0),
  SR_PROFILE ("pmsidr_el1",	CPENC (3,0,C9,C9,7),	0),
  SR_PROFILE ("pmscr_el2",	CPENC (3,4,C9,C9,0),	0),
  SR_PROFILE ("pmscr_el12",	CPENC (3,5,C9,C9,0),	0),
  SR_CORE ("pmcr_el0",		CPENC (3,3,C9,C12,0),	0),
  SR_CORE ("pmcntenset_el0",    CPENC (3,3,C9,C12,1),	0),
  SR_CORE ("pmcntenclr_el0",    CPENC (3,3,C9,C12,2),	0),
  SR_CORE ("pmovsclr_el0",      CPENC (3,3,C9,C12,3),	0),
  SR_CORE ("pmswinc_el0",       CPENC (3,3,C9,C12,4),	F_REG_WRITE),
  SR_CORE ("pmselr_el0",	CPENC (3,3,C9,C12,5),	0),
  SR_CORE ("pmceid0_el0",       CPENC (3,3,C9,C12,6),	F_REG_READ),
  SR_CORE ("pmceid1_el0",       CPENC (3,3,C9,C12,7),	F_REG_READ),
  SR_CORE ("pmccntr_el0",       CPENC (3,3,C9,C13,0),	0),
  SR_CORE ("pmxevtyper_el0",    CPENC (3,3,C9,C13,1),	0),
  SR_CORE ("pmxevcntr_el0",     CPENC (3,3,C9,C13,2),	0),
  SR_CORE ("pmuserenr_el0",     CPENC (3,3,C9,C14,0),	0),
  SR_CORE ("pmintenset_el1",    CPENC (3,0,C9,C14,1),	0),
  SR_CORE ("pmintenclr_el1",    CPENC (3,0,C9,C14,2),	0),
  SR_CORE ("pmovsset_el0",      CPENC (3,3,C9,C14,3),	0),
  SR_CORE ("pmevcntr0_el0",     CPENC (3,3,C14,C8,0),	0),
  SR_CORE ("pmevcntr1_el0",     CPENC (3,3,C14,C8,1),	0),
  SR_CORE ("pmevcntr2_el0",     CPENC (3,3,C14,C8,2),	0),
  SR_CORE ("pmevcntr3_el0",     CPENC (3,3,C14,C8,3),	0),
  SR_CORE ("pmevcntr4_el0",     CPENC (3,3,C14,C8,4),	0),
  SR_CORE ("pmevcntr5_el0",     CPENC (3,3,C14,C8,5),	0),
  SR_CORE ("pmevcntr6_el0",     CPENC (3,3,C14,C8,6),	0),
  SR_CORE ("pmevcntr7_el0",     CPENC (3,3,C14,C8,7),	0),
  SR_CORE ("pmevcntr8_el0",     CPENC (3,3,C14,C9,0),	0),
  SR_CORE ("pmevcntr9_el0",     CPENC (3,3,C14,C9,1),	0),
  SR_CORE ("pmevcntr10_el0",    CPENC (3,3,C14,C9,2),	0),
  SR_CORE ("pmevcntr11_el0",    CPENC (3,3,C14,C9,3),	0),
  SR_CORE ("pmevcntr12_el0",    CPENC (3,3,C14,C9,4),	0),
  SR_CORE ("pmevcntr13_el0",    CPENC (3,3,C14,C9,5),	0),
  SR_CORE ("pmevcntr14_el0",    CPENC (3,3,C14,C9,6),	0),
  SR_CORE ("pmevcntr15_el0",    CPENC (3,3,C14,C9,7),	0),
  SR_CORE ("pmevcntr16_el0",    CPENC (3,3,C14,C10,0),	0),
  SR_CORE ("pmevcntr17_el0",    CPENC (3,3,C14,C10,1),	0),
  SR_CORE ("pmevcntr18_el0",    CPENC (3,3,C14,C10,2),	0),
  SR_CORE ("pmevcntr19_el0",    CPENC (3,3,C14,C10,3),	0),
  SR_CORE ("pmevcntr20_el0",    CPENC (3,3,C14,C10,4),	0),
  SR_CORE ("pmevcntr21_el0",    CPENC (3,3,C14,C10,5),	0),
  SR_CORE ("pmevcntr22_el0",    CPENC (3,3,C14,C10,6),	0),
  SR_CORE ("pmevcntr23_el0",    CPENC (3,3,C14,C10,7),	0),
  SR_CORE ("pmevcntr24_el0",    CPENC (3,3,C14,C11,0),	0),
  SR_CORE ("pmevcntr25_el0",    CPENC (3,3,C14,C11,1),	0),
  SR_CORE ("pmevcntr26_el0",    CPENC (3,3,C14,C11,2),	0),
  SR_CORE ("pmevcntr27_el0",    CPENC (3,3,C14,C11,3),	0),
  SR_CORE ("pmevcntr28_el0",    CPENC (3,3,C14,C11,4),	0),
  SR_CORE ("pmevcntr29_el0",    CPENC (3,3,C14,C11,5),	0),
  SR_CORE ("pmevcntr30_el0",    CPENC (3,3,C14,C11,6),	0),
  SR_CORE ("pmevtyper0_el0",    CPENC (3,3,C14,C12,0),	0),
  SR_CORE ("pmevtyper1_el0",    CPENC (3,3,C14,C12,1),	0),
  SR_CORE ("pmevtyper2_el0",    CPENC (3,3,C14,C12,2),	0),
  SR_CORE ("pmevtyper3_el0",    CPENC (3,3,C14,C12,3),	0),
  SR_CORE ("pmevtyper4_el0",    CPENC (3,3,C14,C12,4),	0),
  SR_CORE ("pmevtyper5_el0",    CPENC (3,3,C14,C12,5),	0),
  SR_CORE ("pmevtyper6_el0",    CPENC (3,3,C14,C12,6),	0),
  SR_CORE ("pmevtyper7_el0",    CPENC (3,3,C14,C12,7),	0),
  SR_CORE ("pmevtyper8_el0",    CPENC (3,3,C14,C13,0),	0),
  SR_CORE ("pmevtyper9_el0",    CPENC (3,3,C14,C13,1),	0),
  SR_CORE ("pmevtyper10_el0",   CPENC (3,3,C14,C13,2),	0),
  SR_CORE ("pmevtyper11_el0",   CPENC (3,3,C14,C13,3),	0),
  SR_CORE ("pmevtyper12_el0",   CPENC (3,3,C14,C13,4),	0),
  SR_CORE ("pmevtyper13_el0",   CPENC (3,3,C14,C13,5),	0),
  SR_CORE ("pmevtyper14_el0",   CPENC (3,3,C14,C13,6),	0),
  SR_CORE ("pmevtyper15_el0",   CPENC (3,3,C14,C13,7),	0),
  SR_CORE ("pmevtyper16_el0",   CPENC (3,3,C14,C14,0),	0),
  SR_CORE ("pmevtyper17_el0",   CPENC (3,3,C14,C14,1),	0),
  SR_CORE ("pmevtyper18_el0",   CPENC (3,3,C14,C14,2),	0),
  SR_CORE ("pmevtyper19_el0",   CPENC (3,3,C14,C14,3),	0),
  SR_CORE ("pmevtyper20_el0",   CPENC (3,3,C14,C14,4),	0),
  SR_CORE ("pmevtyper21_el0",   CPENC (3,3,C14,C14,5),	0),
  SR_CORE ("pmevtyper22_el0",   CPENC (3,3,C14,C14,6),	0),
  SR_CORE ("pmevtyper23_el0",   CPENC (3,3,C14,C14,7),	0),
  SR_CORE ("pmevtyper24_el0",   CPENC (3,3,C14,C15,0),	0),
  SR_CORE ("pmevtyper25_el0",   CPENC (3,3,C14,C15,1),	0),
  SR_CORE ("pmevtyper26_el0",   CPENC (3,3,C14,C15,2),	0),
  SR_CORE ("pmevtyper27_el0",   CPENC (3,3,C14,C15,3),	0),
  SR_CORE ("pmevtyper28_el0",   CPENC (3,3,C14,C15,4),	0),
  SR_CORE ("pmevtyper29_el0",   CPENC (3,3,C14,C15,5),	0),
  SR_CORE ("pmevtyper30_el0",   CPENC (3,3,C14,C15,6),	0),
  SR_CORE ("pmccfiltr_el0",     CPENC (3,3,C14,C15,7),	0),

  SR_V8_4 ("dit",		CPEN_ (3,C2,5),		0),
  SR_V8_4 ("vstcr_el2",		CPENC (3,4,C2,C6,2),	0),
  SR_V8_4_A ("vsttbr_el2",	CPENC (3,4,C2,C6,0),	0),
  SR_V8_4 ("cnthvs_tval_el2",	CPENC (3,4,C14,C4,0),	0),
  SR_V8_4 ("cnthvs_cval_el2",	CPENC (3,4,C14,C4,2),	0),
  SR_V8_4 ("cnthvs_ctl_el2",	CPENC (3,4,C14,C4,1),	0),
  SR_V8_4 ("cnthps_tval_el2",	CPENC (3,4,C14,C5,0),	0),
  SR_V8_4 ("cnthps_cval_el2",	CPENC (3,4,C14,C5,2),	0),
  SR_V8_4 ("cnthps_ctl_el2",	CPENC (3,4,C14,C5,1),	0),
  SR_V8_4 ("sder32_el2",	CPENC (3,4,C1,C3,1),	0),
  SR_V8_4 ("vncr_el2",		CPENC (3,4,C2,C2,0),	0),

  SR_CORE ("mpam0_el1",		CPENC (3,0,C10,C5,1),	0),
  SR_CORE ("mpam1_el1",		CPENC (3,0,C10,C5,0),	0),
  SR_CORE ("mpam1_el12",	CPENC (3,5,C10,C5,0),	0),
  SR_CORE ("mpam2_el2",		CPENC (3,4,C10,C5,0),	0),
  SR_CORE ("mpam3_el3",		CPENC (3,6,C10,C5,0),	0),
  SR_CORE ("mpamhcr_el2",	CPENC (3,4,C10,C4,0),	0),
  SR_CORE ("mpamidr_el1",	CPENC (3,0,C10,C4,4),	F_REG_READ),
  SR_CORE ("mpamvpm0_el2",	CPENC (3,4,C10,C6,0),	0),
  SR_CORE ("mpamvpm1_el2",	CPENC (3,4,C10,C6,1),	0),
  SR_CORE ("mpamvpm2_el2",	CPENC (3,4,C10,C6,2),	0),
  SR_CORE ("mpamvpm3_el2",	CPENC (3,4,C10,C6,3),	0),
  SR_CORE ("mpamvpm4_el2",	CPENC (3,4,C10,C6,4),	0),
  SR_CORE ("mpamvpm5_el2",	CPENC (3,4,C10,C6,5),	0),
  SR_CORE ("mpamvpm6_el2",	CPENC (3,4,C10,C6,6),	0),
  SR_CORE ("mpamvpm7_el2",	CPENC (3,4,C10,C6,7),	0),
  SR_CORE ("mpamvpmv_el2",	CPENC (3,4,C10,C4,1),	0),

  SR_V8_R ("mpuir_el1",		CPENC (3,0,C0,C0,4),	F_REG_READ),
  SR_V8_R ("mpuir_el2",		CPENC (3,4,C0,C0,4),	F_REG_READ),
  SR_V8_R ("prbar_el1",		CPENC (3,0,C6,C8,0),	0),
  SR_V8_R ("prbar_el2",		CPENC (3,4,C6,C8,0),	0),

#define ENC_BARLAR(x,n,lar) \
  CPENC (3, (x-1) << 2, C6, 8 | (n >> 1), ((n & 1) << 2) | lar)

#define PRBARn_ELx(x,n) SR_V8_R ("prbar" #n "_el" #x, ENC_BARLAR (x,n,0), 0)
#define PRLARn_ELx(x,n) SR_V8_R ("prlar" #n "_el" #x, ENC_BARLAR (x,n,1), 0)

  SR_EXPAND_EL12 (PRBARn_ELx)
  SR_V8_R ("prenr_el1",		CPENC (3,0,C6,C1,1),	0),
  SR_V8_R ("prenr_el2",		CPENC (3,4,C6,C1,1),	0),
  SR_V8_R ("prlar_el1",		CPENC (3,0,C6,C8,1),	0),
  SR_V8_R ("prlar_el2",		CPENC (3,4,C6,C8,1),	0),
  SR_EXPAND_EL12 (PRLARn_ELx)
  SR_V8_R ("prselr_el1",	CPENC (3,0,C6,C2,1),	0),
  SR_V8_R ("prselr_el2",	CPENC (3,4,C6,C2,1),	0),
  SR_V8_R ("vsctlr_el2",	CPENC (3,4,C2,C0,0),	0),

  SR_CORE("trbbaser_el1", 	CPENC (3,0,C9,C11,2),	0),
  SR_CORE("trbidr_el1", 	CPENC (3,0,C9,C11,7),	F_REG_READ),
  SR_CORE("trblimitr_el1", 	CPENC (3,0,C9,C11,0),	0),
  SR_CORE("trbmar_el1", 	CPENC (3,0,C9,C11,4),	0),
  SR_CORE("trbptr_el1", 	CPENC (3,0,C9,C11,1),	0),
  SR_CORE("trbsr_el1",  	CPENC (3,0,C9,C11,3),	0),
  SR_CORE("trbtrg_el1", 	CPENC (3,0,C9,C11,6),	0),

  SR_CORE ("trcextinselr0",	CPENC (2,1,C0,C8,4),	0),
  SR_CORE ("trcextinselr1",	CPENC (2,1,C0,C9,4),	0),
  SR_CORE ("trcextinselr2",	CPENC (2,1,C0,C10,4),	0),
  SR_CORE ("trcextinselr3",	CPENC (2,1,C0,C11,4),	0),
  SR_CORE ("trcrsr",		CPENC (2,1,C0,C10,0),	0),

  SR_CORE ("trcauthstatus", CPENC (2,1,C7,C14,6), F_REG_READ),
  SR_CORE ("trccidr0",      CPENC (2,1,C7,C12,7), F_REG_READ),
  SR_CORE ("trccidr1",      CPENC (2,1,C7,C13,7), F_REG_READ),
  SR_CORE ("trccidr2",      CPENC (2,1,C7,C14,7), F_REG_READ),
  SR_CORE ("trccidr3",      CPENC (2,1,C7,C15,7), F_REG_READ),
  SR_CORE ("trcdevaff0",    CPENC (2,1,C7,C10,6), F_REG_READ),
  SR_CORE ("trcdevaff1",    CPENC (2,1,C7,C11,6), F_REG_READ),
  SR_CORE ("trcdevarch",    CPENC (2,1,C7,C15,6), F_REG_READ),
  SR_CORE ("trcdevid",      CPENC (2,1,C7,C2,7),  F_REG_READ),
  SR_CORE ("trcdevtype",    CPENC (2,1,C7,C3,7),  F_REG_READ),
  SR_CORE ("trcidr0",       CPENC (2,1,C0,C8,7),  F_REG_READ),
  SR_CORE ("trcidr1",       CPENC (2,1,C0,C9,7),  F_REG_READ),
  SR_CORE ("trcidr2",       CPENC (2,1,C0,C10,7), F_REG_READ),
  SR_CORE ("trcidr3",       CPENC (2,1,C0,C11,7), F_REG_READ),
  SR_CORE ("trcidr4",       CPENC (2,1,C0,C12,7), F_REG_READ),
  SR_CORE ("trcidr5",       CPENC (2,1,C0,C13,7), F_REG_READ),
  SR_CORE ("trcidr6",       CPENC (2,1,C0,C14,7), F_REG_READ),
  SR_CORE ("trcidr7",       CPENC (2,1,C0,C15,7), F_REG_READ),
  SR_CORE ("trcidr8",       CPENC (2,1,C0,C0,6),  F_REG_READ),
  SR_CORE ("trcidr9",       CPENC (2,1,C0,C1,6),  F_REG_READ),
  SR_CORE ("trcidr10",      CPENC (2,1,C0,C2,6),  F_REG_READ),
  SR_CORE ("trcidr11",      CPENC (2,1,C0,C3,6),  F_REG_READ),
  SR_CORE ("trcidr12",      CPENC (2,1,C0,C4,6),  F_REG_READ),
  SR_CORE ("trcidr13",      CPENC (2,1,C0,C5,6),  F_REG_READ),
  SR_CORE ("trclsr",        CPENC (2,1,C7,C13,6), F_REG_READ),
  SR_CORE ("trcoslsr",      CPENC (2,1,C1,C1,4),  F_REG_READ),
  SR_CORE ("trcpdsr",       CPENC (2,1,C1,C5,4),  F_REG_READ),
  SR_CORE ("trcpidr0",      CPENC (2,1,C7,C8,7),  F_REG_READ),
  SR_CORE ("trcpidr1",      CPENC (2,1,C7,C9,7),  F_REG_READ),
  SR_CORE ("trcpidr2",      CPENC (2,1,C7,C10,7), F_REG_READ),
  SR_CORE ("trcpidr3",      CPENC (2,1,C7,C11,7), F_REG_READ),
  SR_CORE ("trcpidr4",      CPENC (2,1,C7,C4,7),  F_REG_READ),
  SR_CORE ("trcpidr5",      CPENC (2,1,C7,C5,7),  F_REG_READ),
  SR_CORE ("trcpidr6",      CPENC (2,1,C7,C6,7),  F_REG_READ),
  SR_CORE ("trcpidr7",      CPENC (2,1,C7,C7,7),  F_REG_READ),
  SR_CORE ("trcstatr",      CPENC (2,1,C0,C3,0),  F_REG_READ),
  SR_CORE ("trcacatr0",     CPENC (2,1,C2,C0,2),  0),
  SR_CORE ("trcacatr1",     CPENC (2,1,C2,C2,2),  0),
  SR_CORE ("trcacatr2",     CPENC (2,1,C2,C4,2),  0),
  SR_CORE ("trcacatr3",     CPENC (2,1,C2,C6,2),  0),
  SR_CORE ("trcacatr4",     CPENC (2,1,C2,C8,2),  0),
  SR_CORE ("trcacatr5",     CPENC (2,1,C2,C10,2), 0),
  SR_CORE ("trcacatr6",     CPENC (2,1,C2,C12,2), 0),
  SR_CORE ("trcacatr7",     CPENC (2,1,C2,C14,2), 0),
  SR_CORE ("trcacatr8",     CPENC (2,1,C2,C0,3),  0),
  SR_CORE ("trcacatr9",     CPENC (2,1,C2,C2,3),  0),
  SR_CORE ("trcacatr10",    CPENC (2,1,C2,C4,3),  0),
  SR_CORE ("trcacatr11",    CPENC (2,1,C2,C6,3),  0),
  SR_CORE ("trcacatr12",    CPENC (2,1,C2,C8,3),  0),
  SR_CORE ("trcacatr13",    CPENC (2,1,C2,C10,3), 0),
  SR_CORE ("trcacatr14",    CPENC (2,1,C2,C12,3), 0),
  SR_CORE ("trcacatr15",    CPENC (2,1,C2,C14,3), 0),
  SR_CORE ("trcacvr0",      CPENC (2,1,C2,C0,0),  0),
  SR_CORE ("trcacvr1",      CPENC (2,1,C2,C2,0),  0),
  SR_CORE ("trcacvr2",      CPENC (2,1,C2,C4,0),  0),
  SR_CORE ("trcacvr3",      CPENC (2,1,C2,C6,0),  0),
  SR_CORE ("trcacvr4",      CPENC (2,1,C2,C8,0),  0),
  SR_CORE ("trcacvr5",      CPENC (2,1,C2,C10,0), 0),
  SR_CORE ("trcacvr6",      CPENC (2,1,C2,C12,0), 0),
  SR_CORE ("trcacvr7",      CPENC (2,1,C2,C14,0), 0),
  SR_CORE ("trcacvr8",      CPENC (2,1,C2,C0,1),  0),
  SR_CORE ("trcacvr9",      CPENC (2,1,C2,C2,1),  0),
  SR_CORE ("trcacvr10",     CPENC (2,1,C2,C4,1),  0),
  SR_CORE ("trcacvr11",     CPENC (2,1,C2,C6,1),  0),
  SR_CORE ("trcacvr12",     CPENC (2,1,C2,C8,1),  0),
  SR_CORE ("trcacvr13",     CPENC (2,1,C2,C10,1), 0),
  SR_CORE ("trcacvr14",     CPENC (2,1,C2,C12,1), 0),
  SR_CORE ("trcacvr15",     CPENC (2,1,C2,C14,1), 0),
  SR_CORE ("trcauxctlr",    CPENC (2,1,C0,C6,0),  0),
  SR_CORE ("trcbbctlr",     CPENC (2,1,C0,C15,0), 0),
  SR_CORE ("trcccctlr",     CPENC (2,1,C0,C14,0), 0),
  SR_CORE ("trccidcctlr0",  CPENC (2,1,C3,C0,2),  0),
  SR_CORE ("trccidcctlr1",  CPENC (2,1,C3,C1,2),  0),
  SR_CORE ("trccidcvr0",    CPENC (2,1,C3,C0,0),  0),
  SR_CORE ("trccidcvr1",    CPENC (2,1,C3,C2,0),  0),
  SR_CORE ("trccidcvr2",    CPENC (2,1,C3,C4,0),  0),
  SR_CORE ("trccidcvr3",    CPENC (2,1,C3,C6,0),  0),
  SR_CORE ("trccidcvr4",    CPENC (2,1,C3,C8,0),  0),
  SR_CORE ("trccidcvr5",    CPENC (2,1,C3,C10,0), 0),
  SR_CORE ("trccidcvr6",    CPENC (2,1,C3,C12,0), 0),
  SR_CORE ("trccidcvr7",    CPENC (2,1,C3,C14,0), 0),
  SR_CORE ("trcclaimclr",   CPENC (2,1,C7,C9,6),  0),
  SR_CORE ("trcclaimset",   CPENC (2,1,C7,C8,6),  0),
  SR_CORE ("trccntctlr0",   CPENC (2,1,C0,C4,5),  0),
  SR_CORE ("trccntctlr1",   CPENC (2,1,C0,C5,5),  0),
  SR_CORE ("trccntctlr2",   CPENC (2,1,C0,C6,5),  0),
  SR_CORE ("trccntctlr3",   CPENC (2,1,C0,C7,5),  0),
  SR_CORE ("trccntrldvr0",  CPENC (2,1,C0,C0,5),  0),
  SR_CORE ("trccntrldvr1",  CPENC (2,1,C0,C1,5),  0),
  SR_CORE ("trccntrldvr2",  CPENC (2,1,C0,C2,5),  0),
  SR_CORE ("trccntrldvr3",  CPENC (2,1,C0,C3,5),  0),
  SR_CORE ("trccntvr0",     CPENC (2,1,C0,C8,5),  0),
  SR_CORE ("trccntvr1",     CPENC (2,1,C0,C9,5),  0),
  SR_CORE ("trccntvr2",     CPENC (2,1,C0,C10,5), 0),
  SR_CORE ("trccntvr3",     CPENC (2,1,C0,C11,5), 0),
  SR_CORE ("trcconfigr",    CPENC (2,1,C0,C4,0),  0),
  SR_CORE ("trcdvcmr0",     CPENC (2,1,C2,C0,6),  0),
  SR_CORE ("trcdvcmr1",     CPENC (2,1,C2,C4,6),  0),
  SR_CORE ("trcdvcmr2",     CPENC (2,1,C2,C8,6),  0),
  SR_CORE ("trcdvcmr3",     CPENC (2,1,C2,C12,6), 0),
  SR_CORE ("trcdvcmr4",     CPENC (2,1,C2,C0,7),  0),
  SR_CORE ("trcdvcmr5",     CPENC (2,1,C2,C4,7),  0),
  SR_CORE ("trcdvcmr6",     CPENC (2,1,C2,C8,7),  0),
  SR_CORE ("trcdvcmr7",     CPENC (2,1,C2,C12,7), 0),
  SR_CORE ("trcdvcvr0",     CPENC (2,1,C2,C0,4),  0),
  SR_CORE ("trcdvcvr1",     CPENC (2,1,C2,C4,4),  0),
  SR_CORE ("trcdvcvr2",     CPENC (2,1,C2,C8,4),  0),
  SR_CORE ("trcdvcvr3",     CPENC (2,1,C2,C12,4), 0),
  SR_CORE ("trcdvcvr4",     CPENC (2,1,C2,C0,5),  0),
  SR_CORE ("trcdvcvr5",     CPENC (2,1,C2,C4,5),  0),
  SR_CORE ("trcdvcvr6",     CPENC (2,1,C2,C8,5),  0),
  SR_CORE ("trcdvcvr7",     CPENC (2,1,C2,C12,5), 0),
  SR_CORE ("trceventctl0r", CPENC (2,1,C0,C8,0),  0),
  SR_CORE ("trceventctl1r", CPENC (2,1,C0,C9,0),  0),
  SR_CORE ("trcextinselr0", CPENC (2,1,C0,C8,4),  0),
  SR_CORE ("trcextinselr",  CPENC (2,1,C0,C8,4),  0),
  SR_CORE ("trcextinselr1", CPENC (2,1,C0,C9,4),  0),
  SR_CORE ("trcextinselr2", CPENC (2,1,C0,C10,4), 0),
  SR_CORE ("trcextinselr3", CPENC (2,1,C0,C11,4), 0),
  SR_CORE ("trcimspec0",    CPENC (2,1,C0,C0,7),  0),
  SR_CORE ("trcimspec0",    CPENC (2,1,C0,C0,7),  0),
  SR_CORE ("trcimspec1",    CPENC (2,1,C0,C1,7),  0),
  SR_CORE ("trcimspec2",    CPENC (2,1,C0,C2,7),  0),
  SR_CORE ("trcimspec3",    CPENC (2,1,C0,C3,7),  0),
  SR_CORE ("trcimspec4",    CPENC (2,1,C0,C4,7),  0),
  SR_CORE ("trcimspec5",    CPENC (2,1,C0,C5,7),  0),
  SR_CORE ("trcimspec6",    CPENC (2,1,C0,C6,7),  0),
  SR_CORE ("trcimspec7",    CPENC (2,1,C0,C7,7),  0),
  SR_CORE ("trcitctrl",     CPENC (2,1,C7,C0,4),  0),
  SR_CORE ("trcpdcr",       CPENC (2,1,C1,C4,4),  0),
  SR_CORE ("trcprgctlr",    CPENC (2,1,C0,C1,0),  0),
  SR_CORE ("trcprocselr",   CPENC (2,1,C0,C2,0),  0),
  SR_CORE ("trcqctlr",      CPENC (2,1,C0,C1,1),  0),
  SR_CORE ("trcrsctlr2",    CPENC (2,1,C1,C2,0),  0),
  SR_CORE ("trcrsctlr3",    CPENC (2,1,C1,C3,0),  0),
  SR_CORE ("trcrsctlr4",    CPENC (2,1,C1,C4,0),  0),
  SR_CORE ("trcrsctlr5",    CPENC (2,1,C1,C5,0),  0),
  SR_CORE ("trcrsctlr6",    CPENC (2,1,C1,C6,0),  0),
  SR_CORE ("trcrsctlr7",    CPENC (2,1,C1,C7,0),  0),
  SR_CORE ("trcrsctlr8",    CPENC (2,1,C1,C8,0),  0),
  SR_CORE ("trcrsctlr9",    CPENC (2,1,C1,C9,0),  0),
  SR_CORE ("trcrsctlr10",   CPENC (2,1,C1,C10,0), 0),
  SR_CORE ("trcrsctlr11",   CPENC (2,1,C1,C11,0), 0),
  SR_CORE ("trcrsctlr12",   CPENC (2,1,C1,C12,0), 0),
  SR_CORE ("trcrsctlr13",   CPENC (2,1,C1,C13,0), 0),
  SR_CORE ("trcrsctlr14",   CPENC (2,1,C1,C14,0), 0),
  SR_CORE ("trcrsctlr15",   CPENC (2,1,C1,C15,0), 0),
  SR_CORE ("trcrsctlr16",   CPENC (2,1,C1,C0,1),  0),
  SR_CORE ("trcrsctlr17",   CPENC (2,1,C1,C1,1),  0),
  SR_CORE ("trcrsctlr18",   CPENC (2,1,C1,C2,1),  0),
  SR_CORE ("trcrsctlr19",   CPENC (2,1,C1,C3,1),  0),
  SR_CORE ("trcrsctlr20",   CPENC (2,1,C1,C4,1),  0),
  SR_CORE ("trcrsctlr21",   CPENC (2,1,C1,C5,1),  0),
  SR_CORE ("trcrsctlr22",   CPENC (2,1,C1,C6,1),  0),
  SR_CORE ("trcrsctlr23",   CPENC (2,1,C1,C7,1),  0),
  SR_CORE ("trcrsctlr24",   CPENC (2,1,C1,C8,1),  0),
  SR_CORE ("trcrsctlr25",   CPENC (2,1,C1,C9,1),  0),
  SR_CORE ("trcrsctlr26",   CPENC (2,1,C1,C10,1), 0),
  SR_CORE ("trcrsctlr27",   CPENC (2,1,C1,C11,1), 0),
  SR_CORE ("trcrsctlr28",   CPENC (2,1,C1,C12,1), 0),
  SR_CORE ("trcrsctlr29",   CPENC (2,1,C1,C13,1), 0),
  SR_CORE ("trcrsctlr30",   CPENC (2,1,C1,C14,1), 0),
  SR_CORE ("trcrsctlr31",   CPENC (2,1,C1,C15,1), 0),
  SR_CORE ("trcseqevr0",    CPENC (2,1,C0,C0,4),  0),
  SR_CORE ("trcseqevr1",    CPENC (2,1,C0,C1,4),  0),
  SR_CORE ("trcseqevr2",    CPENC (2,1,C0,C2,4),  0),
  SR_CORE ("trcseqrstevr",  CPENC (2,1,C0,C6,4),  0),
  SR_CORE ("trcseqstr",     CPENC (2,1,C0,C7,4),  0),
  SR_CORE ("trcssccr0",     CPENC (2,1,C1,C0,2),  0),
  SR_CORE ("trcssccr1",     CPENC (2,1,C1,C1,2),  0),
  SR_CORE ("trcssccr2",     CPENC (2,1,C1,C2,2),  0),
  SR_CORE ("trcssccr3",     CPENC (2,1,C1,C3,2),  0),
  SR_CORE ("trcssccr4",     CPENC (2,1,C1,C4,2),  0),
  SR_CORE ("trcssccr5",     CPENC (2,1,C1,C5,2),  0),
  SR_CORE ("trcssccr6",     CPENC (2,1,C1,C6,2),  0),
  SR_CORE ("trcssccr7",     CPENC (2,1,C1,C7,2),  0),
  SR_CORE ("trcsscsr0",     CPENC (2,1,C1,C8,2),  0),
  SR_CORE ("trcsscsr1",     CPENC (2,1,C1,C9,2),  0),
  SR_CORE ("trcsscsr2",     CPENC (2,1,C1,C10,2), 0),
  SR_CORE ("trcsscsr3",     CPENC (2,1,C1,C11,2), 0),
  SR_CORE ("trcsscsr4",     CPENC (2,1,C1,C12,2), 0),
  SR_CORE ("trcsscsr5",     CPENC (2,1,C1,C13,2), 0),
  SR_CORE ("trcsscsr6",     CPENC (2,1,C1,C14,2), 0),
  SR_CORE ("trcsscsr7",     CPENC (2,1,C1,C15,2), 0),
  SR_CORE ("trcsspcicr0",   CPENC (2,1,C1,C0,3),  0),
  SR_CORE ("trcsspcicr1",   CPENC (2,1,C1,C1,3),  0),
  SR_CORE ("trcsspcicr2",   CPENC (2,1,C1,C2,3),  0),
  SR_CORE ("trcsspcicr3",   CPENC (2,1,C1,C3,3),  0),
  SR_CORE ("trcsspcicr4",   CPENC (2,1,C1,C4,3),  0),
  SR_CORE ("trcsspcicr5",   CPENC (2,1,C1,C5,3),  0),
  SR_CORE ("trcsspcicr6",   CPENC (2,1,C1,C6,3),  0),
  SR_CORE ("trcsspcicr7",   CPENC (2,1,C1,C7,3),  0),
  SR_CORE ("trcstallctlr",  CPENC (2,1,C0,C11,0), 0),
  SR_CORE ("trcsyncpr",     CPENC (2,1,C0,C13,0), 0),
  SR_CORE ("trctraceidr",   CPENC (2,1,C0,C0,1),  0),
  SR_CORE ("trctsctlr",     CPENC (2,1,C0,C12,0), 0),
  SR_CORE ("trcvdarcctlr",  CPENC (2,1,C0,C10,2), 0),
  SR_CORE ("trcvdctlr",     CPENC (2,1,C0,C8,2),  0),
  SR_CORE ("trcvdsacctlr",  CPENC (2,1,C0,C9,2),  0),
  SR_CORE ("trcvictlr",     CPENC (2,1,C0,C0,2),  0),
  SR_CORE ("trcviiectlr",   CPENC (2,1,C0,C1,2),  0),
  SR_CORE ("trcvipcssctlr", CPENC (2,1,C0,C3,2),  0),
  SR_CORE ("trcvissctlr",   CPENC (2,1,C0,C2,2),  0),
  SR_CORE ("trcvmidcctlr0", CPENC (2,1,C3,C2,2),  0),
  SR_CORE ("trcvmidcctlr1", CPENC (2,1,C3,C3,2),  0),
  SR_CORE ("trcvmidcvr0",   CPENC (2,1,C3,C0,1),  0),
  SR_CORE ("trcvmidcvr1",   CPENC (2,1,C3,C2,1),  0),
  SR_CORE ("trcvmidcvr2",   CPENC (2,1,C3,C4,1),  0),
  SR_CORE ("trcvmidcvr3",   CPENC (2,1,C3,C6,1),  0),
  SR_CORE ("trcvmidcvr4",   CPENC (2,1,C3,C8,1),  0),
  SR_CORE ("trcvmidcvr5",   CPENC (2,1,C3,C10,1), 0),
  SR_CORE ("trcvmidcvr6",   CPENC (2,1,C3,C12,1), 0),
  SR_CORE ("trcvmidcvr7",   CPENC (2,1,C3,C14,1), 0),
  SR_CORE ("trclar",        CPENC (2,1,C7,C12,6), F_REG_WRITE),
  SR_CORE ("trcoslar",      CPENC (2,1,C1,C0,4),  F_REG_WRITE),

  SR_CORE ("csrcr_el0",     CPENC (2,3,C8,C0,0),  0),
  SR_CORE ("csrptr_el0",    CPENC (2,3,C8,C0,1),  0),
  SR_CORE ("csridr_el0",    CPENC (2,3,C8,C0,2),  F_REG_READ),
  SR_CORE ("csrptridx_el0", CPENC (2,3,C8,C0,3),  F_REG_READ),
  SR_CORE ("csrcr_el1",     CPENC (2,0,C8,C0,0),  0),
  SR_CORE ("csrcr_el12",    CPENC (2,5,C8,C0,0),  0),
  SR_CORE ("csrptr_el1",    CPENC (2,0,C8,C0,1),  0),
  SR_CORE ("csrptr_el12",   CPENC (2,5,C8,C0,1),  0),
  SR_CORE ("csrptridx_el1", CPENC (2,0,C8,C0,3),  F_REG_READ),
  SR_CORE ("csrcr_el2",     CPENC (2,4,C8,C0,0),  0),
  SR_CORE ("csrptr_el2",    CPENC (2,4,C8,C0,1),  0),
  SR_CORE ("csrptridx_el2", CPENC (2,4,C8,C0,3),  F_REG_READ),

  SR_CORE ("brbcr_el1",     CPENC (2,1,C9,C0,0),  0),
  SR_CORE ("brbcr_el12",    CPENC (2,5,C9,C0,0),  0),
  SR_CORE ("brbfcr_el1",    CPENC (2,1,C9,C0,1),  0),
  SR_CORE ("brbts_el1",     CPENC (2,1,C9,C0,2),  0),
  SR_CORE ("brbinfinj_el1", CPENC (2,1,C9,C1,0),  0),
  SR_CORE ("brbsrcinj_el1", CPENC (2,1,C9,C1,1),  0),
  SR_CORE ("brbtgtinj_el1", CPENC (2,1,C9,C1,2),  0),
  SR_CORE ("brbidr0_el1",   CPENC (2,1,C9,C2,0),  F_REG_READ),
  SR_CORE ("brbcr_el2",     CPENC (2,4,C9,C0,0),  0),
  SR_CORE ("brbsrc0_el1",   CPENC (2,1,C8,C0,1),  F_REG_READ),
  SR_CORE ("brbsrc1_el1",   CPENC (2,1,C8,C1,1),  F_REG_READ),
  SR_CORE ("brbsrc2_el1",   CPENC (2,1,C8,C2,1),  F_REG_READ),
  SR_CORE ("brbsrc3_el1",   CPENC (2,1,C8,C3,1),  F_REG_READ),
  SR_CORE ("brbsrc4_el1",   CPENC (2,1,C8,C4,1),  F_REG_READ),
  SR_CORE ("brbsrc5_el1",   CPENC (2,1,C8,C5,1),  F_REG_READ),
  SR_CORE ("brbsrc6_el1",   CPENC (2,1,C8,C6,1),  F_REG_READ),
  SR_CORE ("brbsrc7_el1",   CPENC (2,1,C8,C7,1),  F_REG_READ),
  SR_CORE ("brbsrc8_el1",   CPENC (2,1,C8,C8,1),  F_REG_READ),
  SR_CORE ("brbsrc9_el1",   CPENC (2,1,C8,C9,1),  F_REG_READ),
  SR_CORE ("brbsrc10_el1",  CPENC (2,1,C8,C10,1), F_REG_READ),
  SR_CORE ("brbsrc11_el1",  CPENC (2,1,C8,C11,1), F_REG_READ),
  SR_CORE ("brbsrc12_el1",  CPENC (2,1,C8,C12,1), F_REG_READ),
  SR_CORE ("brbsrc13_el1",  CPENC (2,1,C8,C13,1), F_REG_READ),
  SR_CORE ("brbsrc14_el1",  CPENC (2,1,C8,C14,1), F_REG_READ),
  SR_CORE ("brbsrc15_el1",  CPENC (2,1,C8,C15,1), F_REG_READ),
  SR_CORE ("brbsrc16_el1",  CPENC (2,1,C8,C0,5),  F_REG_READ),
  SR_CORE ("brbsrc17_el1",  CPENC (2,1,C8,C1,5),  F_REG_READ),
  SR_CORE ("brbsrc18_el1",  CPENC (2,1,C8,C2,5),  F_REG_READ),
  SR_CORE ("brbsrc19_el1",  CPENC (2,1,C8,C3,5),  F_REG_READ),
  SR_CORE ("brbsrc20_el1",  CPENC (2,1,C8,C4,5),  F_REG_READ),
  SR_CORE ("brbsrc21_el1",  CPENC (2,1,C8,C5,5),  F_REG_READ),
  SR_CORE ("brbsrc22_el1",  CPENC (2,1,C8,C6,5),  F_REG_READ),
  SR_CORE ("brbsrc23_el1",  CPENC (2,1,C8,C7,5),  F_REG_READ),
  SR_CORE ("brbsrc24_el1",  CPENC (2,1,C8,C8,5),  F_REG_READ),
  SR_CORE ("brbsrc25_el1",  CPENC (2,1,C8,C9,5),  F_REG_READ),
  SR_CORE ("brbsrc26_el1",  CPENC (2,1,C8,C10,5), F_REG_READ),
  SR_CORE ("brbsrc27_el1",  CPENC (2,1,C8,C11,5), F_REG_READ),
  SR_CORE ("brbsrc28_el1",  CPENC (2,1,C8,C12,5), F_REG_READ),
  SR_CORE ("brbsrc29_el1",  CPENC (2,1,C8,C13,5), F_REG_READ),
  SR_CORE ("brbsrc30_el1",  CPENC (2,1,C8,C14,5), F_REG_READ),
  SR_CORE ("brbsrc31_el1",  CPENC (2,1,C8,C15,5), F_REG_READ),
  SR_CORE ("brbtgt0_el1",   CPENC (2,1,C8,C0,2),  F_REG_READ),
  SR_CORE ("brbtgt1_el1",   CPENC (2,1,C8,C1,2),  F_REG_READ),
  SR_CORE ("brbtgt2_el1",   CPENC (2,1,C8,C2,2),  F_REG_READ),
  SR_CORE ("brbtgt3_el1",   CPENC (2,1,C8,C3,2),  F_REG_READ),
  SR_CORE ("brbtgt4_el1",   CPENC (2,1,C8,C4,2),  F_REG_READ),
  SR_CORE ("brbtgt5_el1",   CPENC (2,1,C8,C5,2),  F_REG_READ),
  SR_CORE ("brbtgt6_el1",   CPENC (2,1,C8,C6,2),  F_REG_READ),
  SR_CORE ("brbtgt7_el1",   CPENC (2,1,C8,C7,2),  F_REG_READ),
  SR_CORE ("brbtgt8_el1",   CPENC (2,1,C8,C8,2),  F_REG_READ),
  SR_CORE ("brbtgt9_el1",   CPENC (2,1,C8,C9,2),  F_REG_READ),
  SR_CORE ("brbtgt10_el1",  CPENC (2,1,C8,C10,2), F_REG_READ),
  SR_CORE ("brbtgt11_el1",  CPENC (2,1,C8,C11,2), F_REG_READ),
  SR_CORE ("brbtgt12_el1",  CPENC (2,1,C8,C12,2), F_REG_READ),
  SR_CORE ("brbtgt13_el1",  CPENC (2,1,C8,C13,2), F_REG_READ),
  SR_CORE ("brbtgt14_el1",  CPENC (2,1,C8,C14,2), F_REG_READ),
  SR_CORE ("brbtgt15_el1",  CPENC (2,1,C8,C15,2), F_REG_READ),
  SR_CORE ("brbtgt16_el1",  CPENC (2,1,C8,C0,6),  F_REG_READ),
  SR_CORE ("brbtgt17_el1",  CPENC (2,1,C8,C1,6),  F_REG_READ),
  SR_CORE ("brbtgt18_el1",  CPENC (2,1,C8,C2,6),  F_REG_READ),
  SR_CORE ("brbtgt19_el1",  CPENC (2,1,C8,C3,6),  F_REG_READ),
  SR_CORE ("brbtgt20_el1",  CPENC (2,1,C8,C4,6),  F_REG_READ),
  SR_CORE ("brbtgt21_el1",  CPENC (2,1,C8,C5,6),  F_REG_READ),
  SR_CORE ("brbtgt22_el1",  CPENC (2,1,C8,C6,6),  F_REG_READ),
  SR_CORE ("brbtgt23_el1",  CPENC (2,1,C8,C7,6),  F_REG_READ),
  SR_CORE ("brbtgt24_el1",  CPENC (2,1,C8,C8,6),  F_REG_READ),
  SR_CORE ("brbtgt25_el1",  CPENC (2,1,C8,C9,6),  F_REG_READ),
  SR_CORE ("brbtgt26_el1",  CPENC (2,1,C8,C10,6), F_REG_READ),
  SR_CORE ("brbtgt27_el1",  CPENC (2,1,C8,C11,6), F_REG_READ),
  SR_CORE ("brbtgt28_el1",  CPENC (2,1,C8,C12,6), F_REG_READ),
  SR_CORE ("brbtgt29_el1",  CPENC (2,1,C8,C13,6), F_REG_READ),
  SR_CORE ("brbtgt30_el1",  CPENC (2,1,C8,C14,6), F_REG_READ),
  SR_CORE ("brbtgt31_el1",  CPENC (2,1,C8,C15,6), F_REG_READ),
  SR_CORE ("brbinf0_el1",   CPENC (2,1,C8,C0,0),  F_REG_READ),
  SR_CORE ("brbinf1_el1",   CPENC (2,1,C8,C1,0),  F_REG_READ),
  SR_CORE ("brbinf2_el1",   CPENC (2,1,C8,C2,0),  F_REG_READ),
  SR_CORE ("brbinf3_el1",   CPENC (2,1,C8,C3,0),  F_REG_READ),
  SR_CORE ("brbinf4_el1",   CPENC (2,1,C8,C4,0),  F_REG_READ),
  SR_CORE ("brbinf5_el1",   CPENC (2,1,C8,C5,0),  F_REG_READ),
  SR_CORE ("brbinf6_el1",   CPENC (2,1,C8,C6,0),  F_REG_READ),
  SR_CORE ("brbinf7_el1",   CPENC (2,1,C8,C7,0),  F_REG_READ),
  SR_CORE ("brbinf8_el1",   CPENC (2,1,C8,C8,0),  F_REG_READ),
  SR_CORE ("brbinf9_el1",   CPENC (2,1,C8,C9,0),  F_REG_READ),
  SR_CORE ("brbinf10_el1",  CPENC (2,1,C8,C10,0), F_REG_READ),
  SR_CORE ("brbinf11_el1",  CPENC (2,1,C8,C11,0), F_REG_READ),
  SR_CORE ("brbinf12_el1",  CPENC (2,1,C8,C12,0), F_REG_READ),
  SR_CORE ("brbinf13_el1",  CPENC (2,1,C8,C13,0), F_REG_READ),
  SR_CORE ("brbinf14_el1",  CPENC (2,1,C8,C14,0), F_REG_READ),
  SR_CORE ("brbinf15_el1",  CPENC (2,1,C8,C15,0), F_REG_READ),
  SR_CORE ("brbinf16_el1",  CPENC (2,1,C8,C0,4),  F_REG_READ),
  SR_CORE ("brbinf17_el1",  CPENC (2,1,C8,C1,4),  F_REG_READ),
  SR_CORE ("brbinf18_el1",  CPENC (2,1,C8,C2,4),  F_REG_READ),
  SR_CORE ("brbinf19_el1",  CPENC (2,1,C8,C3,4),  F_REG_READ),
  SR_CORE ("brbinf20_el1",  CPENC (2,1,C8,C4,4),  F_REG_READ),
  SR_CORE ("brbinf21_el1",  CPENC (2,1,C8,C5,4),  F_REG_READ),
  SR_CORE ("brbinf22_el1",  CPENC (2,1,C8,C6,4),  F_REG_READ),
  SR_CORE ("brbinf23_el1",  CPENC (2,1,C8,C7,4),  F_REG_READ),
  SR_CORE ("brbinf24_el1",  CPENC (2,1,C8,C8,4),  F_REG_READ),
  SR_CORE ("brbinf25_el1",  CPENC (2,1,C8,C9,4),  F_REG_READ),
  SR_CORE ("brbinf26_el1",  CPENC (2,1,C8,C10,4), F_REG_READ),
  SR_CORE ("brbinf27_el1",  CPENC (2,1,C8,C11,4), F_REG_READ),
  SR_CORE ("brbinf28_el1",  CPENC (2,1,C8,C12,4), F_REG_READ),
  SR_CORE ("brbinf29_el1",  CPENC (2,1,C8,C13,4), F_REG_READ),
  SR_CORE ("brbinf30_el1",  CPENC (2,1,C8,C14,4), F_REG_READ),
  SR_CORE ("brbinf31_el1",  CPENC (2,1,C8,C15,4), F_REG_READ),

  { 0, CPENC (0,0,0,0,0), 0, 0 }
};

bfd_boolean
aarch64_sys_reg_deprecated_p (const uint32_t reg_flags)
{
  return (reg_flags & F_DEPRECATED) != 0;
}

/* The CPENC below is fairly misleading, the fields
   here are not in CPENC form. They are in op2op1 form. The fields are encoded
   by ins_pstatefield, which just shifts the value by the width of the fields
   in a loop. So if you CPENC them only the first value will be set, the rest
   are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
   value of 0b110000000001000000 (0x30040) while what you want is
   0b011010 (0x1a).  */
const aarch64_sys_reg aarch64_pstatefields [] =
{
  SR_CORE ("spsel",	  0x05,	0),
  SR_CORE ("daifset",	  0x1e,	0),
  SR_CORE ("daifclr",	  0x1f,	0),
  SR_PAN  ("pan",	  0x04, 0),
  SR_V8_2 ("uao",	  0x03, 0),
  SR_SSBS ("ssbs",	  0x19, 0),
  SR_V8_4 ("dit",	  0x1a,	0),
  SR_MEMTAG ("tco",	  0x1c,	0),
  { 0,	  CPENC (0,0,0,0,0), 0, 0 },
};

bfd_boolean
aarch64_pstatefield_supported_p (const aarch64_feature_set features,
				 const aarch64_sys_reg *reg)
{
  if (!(reg->flags & F_ARCHEXT))
    return TRUE;

  return AARCH64_CPU_HAS_ALL_FEATURES (features, reg->features);
}

const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
{
    { "ialluis", CPENS(0,C7,C1,0), 0 },
    { "iallu",   CPENS(0,C7,C5,0), 0 },
    { "ivau",    CPENS (3, C7, C5, 1), F_HASXT },
    { 0, CPENS(0,0,0,0), 0 }
};

const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
{
    { "zva",	    CPENS (3, C7, C4, 1),  F_HASXT },
    { "gva",	    CPENS (3, C7, C4, 3),  F_HASXT | F_ARCHEXT },
    { "gzva",	    CPENS (3, C7, C4, 4),  F_HASXT | F_ARCHEXT },
    { "ivac",       CPENS (0, C7, C6, 1),  F_HASXT },
    { "igvac",      CPENS (0, C7, C6, 3),  F_HASXT | F_ARCHEXT },
    { "igsw",       CPENS (0, C7, C6, 4),  F_HASXT | F_ARCHEXT },
    { "isw",	    CPENS (0, C7, C6, 2),  F_HASXT },
    { "igdvac",	    CPENS (0, C7, C6, 5),  F_HASXT | F_ARCHEXT },
    { "igdsw",	    CPENS (0, C7, C6, 6),  F_HASXT | F_ARCHEXT },
    { "cvac",       CPENS (3, C7, C10, 1), F_HASXT },
    { "cgvac",      CPENS (3, C7, C10, 3), F_HASXT | F_ARCHEXT },
    { "cgdvac",     CPENS (3, C7, C10, 5), F_HASXT | F_ARCHEXT },
    { "csw",	    CPENS (0, C7, C10, 2), F_HASXT },
    { "cgsw",       CPENS (0, C7, C10, 4), F_HASXT | F_ARCHEXT },
    { "cgdsw",	    CPENS (0, C7, C10, 6), F_HASXT | F_ARCHEXT },
    { "cvau",       CPENS (3, C7, C11, 1), F_HASXT },
    { "cvap",       CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT },
    { "cgvap",      CPENS (3, C7, C12, 3), F_HASXT | F_ARCHEXT },
    { "cgdvap",     CPENS (3, C7, C12, 5), F_HASXT | F_ARCHEXT },
    { "cvadp",      CPENS (3, C7, C13, 1), F_HASXT | F_ARCHEXT },
    { "cgvadp",     CPENS (3, C7, C13, 3), F_HASXT | F_ARCHEXT },
    { "cgdvadp",    CPENS (3, C7, C13, 5), F_HASXT | F_ARCHEXT },
    { "civac",      CPENS (3, C7, C14, 1), F_HASXT },
    { "cigvac",     CPENS (3, C7, C14, 3), F_HASXT | F_ARCHEXT },
    { "cigdvac",    CPENS (3, C7, C14, 5), F_HASXT | F_ARCHEXT },
    { "cisw",       CPENS (0, C7, C14, 2), F_HASXT },
    { "cigsw",      CPENS (0, C7, C14, 4), F_HASXT | F_ARCHEXT },
    { "cigdsw",     CPENS (0, C7, C14, 6), F_HASXT | F_ARCHEXT },
    { 0,       CPENS(0,0,0,0), 0 }
};

const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
{
    { "s1e1r",      CPENS (0, C7, C8, 0), F_HASXT },
    { "s1e1w",      CPENS (0, C7, C8, 1), F_HASXT },
    { "s1e0r",      CPENS (0, C7, C8, 2), F_HASXT },
    { "s1e0w",      CPENS (0, C7, C8, 3), F_HASXT },
    { "s12e1r",     CPENS (4, C7, C8, 4), F_HASXT },
    { "s12e1w",     CPENS (4, C7, C8, 5), F_HASXT },
    { "s12e0r",     CPENS (4, C7, C8, 6), F_HASXT },
    { "s12e0w",     CPENS (4, C7, C8, 7), F_HASXT },
    { "s1e2r",      CPENS (4, C7, C8, 0), F_HASXT },
    { "s1e2w",      CPENS (4, C7, C8, 1), F_HASXT },
    { "s1e3r",      CPENS (6, C7, C8, 0), F_HASXT },
    { "s1e3w",      CPENS (6, C7, C8, 1), F_HASXT },
    { "s1e1rp",     CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT },
    { "s1e1wp",     CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT },
    { 0,       CPENS(0,0,0,0), 0 }
};

const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
{
    { "vmalle1",   CPENS(0,C8,C7,0), 0 },
    { "vae1",      CPENS (0, C8, C7, 1), F_HASXT },
    { "aside1",    CPENS (0, C8, C7, 2), F_HASXT },
    { "vaae1",     CPENS (0, C8, C7, 3), F_HASXT },
    { "vmalle1is", CPENS(0,C8,C3,0), 0 },
    { "vae1is",    CPENS (0, C8, C3, 1), F_HASXT },
    { "aside1is",  CPENS (0, C8, C3, 2), F_HASXT },
    { "vaae1is",   CPENS (0, C8, C3, 3), F_HASXT },
    { "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT },
    { "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT },
    { "ipas2e1",   CPENS (4, C8, C4, 1), F_HASXT },
    { "ipas2le1",  CPENS (4, C8, C4, 5), F_HASXT },
    { "vae2",      CPENS (4, C8, C7, 1), F_HASXT },
    { "vae2is",    CPENS (4, C8, C3, 1), F_HASXT },
    { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
    { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
    { "vae3",      CPENS (6, C8, C7, 1), F_HASXT },
    { "vae3is",    CPENS (6, C8, C3, 1), F_HASXT },
    { "alle2",     CPENS(4,C8,C7,0), 0 },
    { "alle2is",   CPENS(4,C8,C3,0), 0 },
    { "alle1",     CPENS(4,C8,C7,4), 0 },
    { "alle1is",   CPENS(4,C8,C3,4), 0 },
    { "alle3",     CPENS(6,C8,C7,0), 0 },
    { "alle3is",   CPENS(6,C8,C3,0), 0 },
    { "vale1is",   CPENS (0, C8, C3, 5), F_HASXT },
    { "vale2is",   CPENS (4, C8, C3, 5), F_HASXT },
    { "vale3is",   CPENS (6, C8, C3, 5), F_HASXT },
    { "vaale1is",  CPENS (0, C8, C3, 7), F_HASXT },
    { "vale1",     CPENS (0, C8, C7, 5), F_HASXT },
    { "vale2",     CPENS (4, C8, C7, 5), F_HASXT },
    { "vale3",     CPENS (6, C8, C7, 5), F_HASXT },
    { "vaale1",    CPENS (0, C8, C7, 7), F_HASXT },

    { "vmalle1os",    CPENS (0, C8, C1, 0), F_ARCHEXT },
    { "vae1os",       CPENS (0, C8, C1, 1), F_HASXT | F_ARCHEXT },
    { "aside1os",     CPENS (0, C8, C1, 2), F_HASXT | F_ARCHEXT },
    { "vaae1os",      CPENS (0, C8, C1, 3), F_HASXT | F_ARCHEXT },
    { "vale1os",      CPENS (0, C8, C1, 5), F_HASXT | F_ARCHEXT },
    { "vaale1os",     CPENS (0, C8, C1, 7), F_HASXT | F_ARCHEXT },
    { "ipas2e1os",    CPENS (4, C8, C4, 0), F_HASXT | F_ARCHEXT },
    { "ipas2le1os",   CPENS (4, C8, C4, 4), F_HASXT | F_ARCHEXT },
    { "vae2os",       CPENS (4, C8, C1, 1), F_HASXT | F_ARCHEXT },
    { "vale2os",      CPENS (4, C8, C1, 5), F_HASXT | F_ARCHEXT },
    { "vmalls12e1os", CPENS (4, C8, C1, 6), F_ARCHEXT },
    { "vae3os",       CPENS (6, C8, C1, 1), F_HASXT | F_ARCHEXT },
    { "vale3os",      CPENS (6, C8, C1, 5), F_HASXT | F_ARCHEXT },
    { "alle2os",      CPENS (4, C8, C1, 0), F_ARCHEXT },
    { "alle1os",      CPENS (4, C8, C1, 4), F_ARCHEXT },
    { "alle3os",      CPENS (6, C8, C1, 0), F_ARCHEXT },

    { "rvae1",      CPENS (0, C8, C6, 1), F_HASXT | F_ARCHEXT },
    { "rvaae1",     CPENS (0, C8, C6, 3), F_HASXT | F_ARCHEXT },
    { "rvale1",     CPENS (0, C8, C6, 5), F_HASXT | F_ARCHEXT },
    { "rvaale1",    CPENS (0, C8, C6, 7), F_HASXT | F_ARCHEXT },
    { "rvae1is",    CPENS (0, C8, C2, 1), F_HASXT | F_ARCHEXT },
    { "rvaae1is",   CPENS (0, C8, C2, 3), F_HASXT | F_ARCHEXT },
    { "rvale1is",   CPENS (0, C8, C2, 5), F_HASXT | F_ARCHEXT },
    { "rvaale1is",  CPENS (0, C8, C2, 7), F_HASXT | F_ARCHEXT },
    { "rvae1os",    CPENS (0, C8, C5, 1), F_HASXT | F_ARCHEXT },
    { "rvaae1os",   CPENS (0, C8, C5, 3), F_HASXT | F_ARCHEXT },
    { "rvale1os",   CPENS (0, C8, C5, 5), F_HASXT | F_ARCHEXT },
    { "rvaale1os",  CPENS (0, C8, C5, 7), F_HASXT | F_ARCHEXT },
    { "ripas2e1is", CPENS (4, C8, C0, 2), F_HASXT | F_ARCHEXT },
    { "ripas2le1is",CPENS (4, C8, C0, 6), F_HASXT | F_ARCHEXT },
    { "ripas2e1",   CPENS (4, C8, C4, 2), F_HASXT | F_ARCHEXT },
    { "ripas2le1",  CPENS (4, C8, C4, 6), F_HASXT | F_ARCHEXT },
    { "ripas2e1os", CPENS (4, C8, C4, 3), F_HASXT | F_ARCHEXT },
    { "ripas2le1os",CPENS (4, C8, C4, 7), F_HASXT | F_ARCHEXT },
    { "rvae2",      CPENS (4, C8, C6, 1), F_HASXT | F_ARCHEXT },
    { "rvale2",     CPENS (4, C8, C6, 5), F_HASXT | F_ARCHEXT },
    { "rvae2is",    CPENS (4, C8, C2, 1), F_HASXT | F_ARCHEXT },
    { "rvale2is",   CPENS (4, C8, C2, 5), F_HASXT | F_ARCHEXT },
    { "rvae2os",    CPENS (4, C8, C5, 1), F_HASXT | F_ARCHEXT },
    { "rvale2os",   CPENS (4, C8, C5, 5), F_HASXT | F_ARCHEXT },
    { "rvae3",      CPENS (6, C8, C6, 1), F_HASXT | F_ARCHEXT },
    { "rvale3",     CPENS (6, C8, C6, 5), F_HASXT | F_ARCHEXT },
    { "rvae3is",    CPENS (6, C8, C2, 1), F_HASXT | F_ARCHEXT },
    { "rvale3is",   CPENS (6, C8, C2, 5), F_HASXT | F_ARCHEXT },
    { "rvae3os",    CPENS (6, C8, C5, 1), F_HASXT | F_ARCHEXT },
    { "rvale3os",   CPENS (6, C8, C5, 5), F_HASXT | F_ARCHEXT },

    { 0,       CPENS(0,0,0,0), 0 }
};

const aarch64_sys_ins_reg aarch64_sys_regs_sr[] =
{
    /* RCTX is somewhat unique in a way that it has different values
       (op2) based on the instruction in which it is used (cfp/dvp/cpp).
       Thus op2 is masked out and instead encoded directly in the
       aarch64_opcode_table entries for the respective instructions.  */
    { "rctx",   CPENS(3,C7,C3,0), F_HASXT | F_ARCHEXT | F_REG_WRITE}, /* WO */

    { 0,       CPENS(0,0,0,0), 0 }
};

bfd_boolean
aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
{
  return (sys_ins_reg->flags & F_HASXT) != 0;
}

extern bfd_boolean
aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
		 const char *reg_name,
                 aarch64_insn reg_value,
                 uint32_t reg_flags,
                 aarch64_feature_set reg_features)
{
  /* Armv8-R has no EL3.  */
  if (AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_R))
    {
      const char *suffix = strrchr (reg_name, '_');
      if (suffix && !strcmp (suffix, "_el3"))
	return FALSE;
    }

  if (!(reg_flags & F_ARCHEXT))
    return TRUE;

  if (reg_features
      && AARCH64_CPU_HAS_ALL_FEATURES (features, reg_features))
    return TRUE;

  /* ARMv8.4 TLB instructions.  */
  if ((reg_value == CPENS (0, C8, C1, 0)
       || reg_value == CPENS (0, C8, C1, 1)
       || reg_value == CPENS (0, C8, C1, 2)
       || reg_value == CPENS (0, C8, C1, 3)
       || reg_value == CPENS (0, C8, C1, 5)
       || reg_value == CPENS (0, C8, C1, 7)
       || reg_value == CPENS (4, C8, C4, 0)
       || reg_value == CPENS (4, C8, C4, 4)
       || reg_value == CPENS (4, C8, C1, 1)
       || reg_value == CPENS (4, C8, C1, 5)
       || reg_value == CPENS (4, C8, C1, 6)
       || reg_value == CPENS (6, C8, C1, 1)
       || reg_value == CPENS (6, C8, C1, 5)
       || reg_value == CPENS (4, C8, C1, 0)
       || reg_value == CPENS (4, C8, C1, 4)
       || reg_value == CPENS (6, C8, C1, 0)
       || reg_value == CPENS (0, C8, C6, 1)
       || reg_value == CPENS (0, C8, C6, 3)
       || reg_value == CPENS (0, C8, C6, 5)
       || reg_value == CPENS (0, C8, C6, 7)
       || reg_value == CPENS (0, C8, C2, 1)
       || reg_value == CPENS (0, C8, C2, 3)
       || reg_value == CPENS (0, C8, C2, 5)
       || reg_value == CPENS (0, C8, C2, 7)
       || reg_value == CPENS (0, C8, C5, 1)
       || reg_value == CPENS (0, C8, C5, 3)
       || reg_value == CPENS (0, C8, C5, 5)
       || reg_value == CPENS (0, C8, C5, 7)
       || reg_value == CPENS (4, C8, C0, 2)
       || reg_value == CPENS (4, C8, C0, 6)
       || reg_value == CPENS (4, C8, C4, 2)
       || reg_value == CPENS (4, C8, C4, 6)
       || reg_value == CPENS (4, C8, C4, 3)
       || reg_value == CPENS (4, C8, C4, 7)
       || reg_value == CPENS (4, C8, C6, 1)
       || reg_value == CPENS (4, C8, C6, 5)
       || reg_value == CPENS (4, C8, C2, 1)
       || reg_value == CPENS (4, C8, C2, 5)
       || reg_value == CPENS (4, C8, C5, 1)
       || reg_value == CPENS (4, C8, C5, 5)
       || reg_value == CPENS (6, C8, C6, 1)
       || reg_value == CPENS (6, C8, C6, 5)
       || reg_value == CPENS (6, C8, C2, 1)
       || reg_value == CPENS (6, C8, C2, 5)
       || reg_value == CPENS (6, C8, C5, 1)
       || reg_value == CPENS (6, C8, C5, 5))
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
    return TRUE;

  /* DC CVAP.  Values are from aarch64_sys_regs_dc.  */
  if (reg_value == CPENS (3, C7, C12, 1)
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
    return TRUE;

  /* DC CVADP.  Values are from aarch64_sys_regs_dc.  */
  if (reg_value == CPENS (3, C7, C13, 1)
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_CVADP))
    return TRUE;

  /* DC <dc_op> for ARMv8.5-A Memory Tagging Extension.  */
  if ((reg_value == CPENS (0, C7, C6, 3)
       || reg_value == CPENS (0, C7, C6, 4)
       || reg_value == CPENS (0, C7, C10, 4)
       || reg_value == CPENS (0, C7, C14, 4)
       || reg_value == CPENS (3, C7, C10, 3)
       || reg_value == CPENS (3, C7, C12, 3)
       || reg_value == CPENS (3, C7, C13, 3)
       || reg_value == CPENS (3, C7, C14, 3)
       || reg_value == CPENS (3, C7, C4, 3)
       || reg_value == CPENS (0, C7, C6, 5)
       || reg_value == CPENS (0, C7, C6, 6)
       || reg_value == CPENS (0, C7, C10, 6)
       || reg_value == CPENS (0, C7, C14, 6)
       || reg_value == CPENS (3, C7, C10, 5)
       || reg_value == CPENS (3, C7, C12, 5)
       || reg_value == CPENS (3, C7, C13, 5)
       || reg_value == CPENS (3, C7, C14, 5)
       || reg_value == CPENS (3, C7, C4, 4))
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
    return TRUE;

  /* AT S1E1RP, AT S1E1WP.  Values are from aarch64_sys_regs_at.  */
  if ((reg_value == CPENS (0, C7, C9, 0)
       || reg_value == CPENS (0, C7, C9, 1))
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
    return TRUE;

  /* CFP/DVP/CPP RCTX : Value are from aarch64_sys_regs_sr. */
  if (reg_value == CPENS (3, C7, C3, 0)
      && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PREDRES))
    return TRUE;

  return FALSE;
}

#undef C0
#undef C1
#undef C2
#undef C3
#undef C4
#undef C5
#undef C6
#undef C7
#undef C8
#undef C9
#undef C10
#undef C11
#undef C12
#undef C13
#undef C14
#undef C15

#define BIT(INSN,BT)     (((INSN) >> (BT)) & 1)
#define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))

static enum err_type
verify_ldpsw (const struct aarch64_inst *inst ATTRIBUTE_UNUSED,
	      const aarch64_insn insn, bfd_vma pc ATTRIBUTE_UNUSED,
	      bfd_boolean encoding ATTRIBUTE_UNUSED,
	      aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
	      aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
{
  int t  = BITS (insn, 4, 0);
  int n  = BITS (insn, 9, 5);
  int t2 = BITS (insn, 14, 10);

  if (BIT (insn, 23))
    {
      /* Write back enabled.  */
      if ((t == n || t2 == n) && n != 31)
	return ERR_UND;
    }

  if (BIT (insn, 22))
    {
      /* Load */
      if (t == t2)
	return ERR_UND;
    }

  return ERR_OK;
}

/* Verifier for vector by element 3 operands functions where the
   conditions `if sz:L == 11 then UNDEFINED` holds.  */

static enum err_type
verify_elem_sd (const struct aarch64_inst *inst, const aarch64_insn insn,
		bfd_vma pc ATTRIBUTE_UNUSED, bfd_boolean encoding,
		aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
		aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
{
  const aarch64_insn undef_pattern = 0x3;
  aarch64_insn value;

  assert (inst->opcode);
  assert (inst->opcode->operands[2] == AARCH64_OPND_Em);
  value = encoding ? inst->value : insn;
  assert (value);

  if (undef_pattern == extract_fields (value, 0, 2, FLD_sz, FLD_L))
    return ERR_UND;

  return ERR_OK;
}

/* Initialize an instruction sequence insn_sequence with the instruction INST.
   If INST is NULL the given insn_sequence is cleared and the sequence is left
   uninitialized.  */

void
init_insn_sequence (const struct aarch64_inst *inst,
		    aarch64_instr_sequence *insn_sequence)
{
  int num_req_entries = 0;
  insn_sequence->next_insn = 0;
  insn_sequence->num_insns = num_req_entries;
  if (insn_sequence->instr)
    XDELETE (insn_sequence->instr);
  insn_sequence->instr = NULL;

  if (inst)
    {
      insn_sequence->instr = XNEW (aarch64_inst);
      memcpy (insn_sequence->instr, inst, sizeof (aarch64_inst));
    }

  /* Handle all the cases here.  May need to think of something smarter than
     a giant if/else chain if this grows.  At that time, a lookup table may be
     best.  */
  if (inst && inst->opcode->constraints & C_SCAN_MOVPRFX)
    num_req_entries = 1;

  if (insn_sequence->current_insns)
    XDELETEVEC (insn_sequence->current_insns);
  insn_sequence->current_insns = NULL;

  if (num_req_entries != 0)
    {
      size_t size = num_req_entries * sizeof (aarch64_inst);
      insn_sequence->current_insns
	= (aarch64_inst**) XNEWVEC (aarch64_inst, num_req_entries);
      memset (insn_sequence->current_insns, 0, size);
    }
}


/*  This function verifies that the instruction INST adheres to its specified
    constraints.  If it does then ERR_OK is returned, if not then ERR_VFI is
    returned and MISMATCH_DETAIL contains the reason why verification failed.

    The function is called both during assembly and disassembly.  If assembling
    then ENCODING will be TRUE, else FALSE.  If dissassembling PC will be set
    and will contain the PC of the current instruction w.r.t to the section.

    If ENCODING and PC=0 then you are at a start of a section.  The constraints
    are verified against the given state insn_sequence which is updated as it
    transitions through the verification.  */

enum err_type
verify_constraints (const struct aarch64_inst *inst,
		    const aarch64_insn insn ATTRIBUTE_UNUSED,
		    bfd_vma pc,
		    bfd_boolean encoding,
		    aarch64_operand_error *mismatch_detail,
		    aarch64_instr_sequence *insn_sequence)
{
  assert (inst);
  assert (inst->opcode);

  const struct aarch64_opcode *opcode = inst->opcode;
  if (!opcode->constraints && !insn_sequence->instr)
    return ERR_OK;

  assert (insn_sequence);

  enum err_type res = ERR_OK;

  /* This instruction puts a constraint on the insn_sequence.  */
  if (opcode->flags & F_SCAN)
    {
      if (insn_sequence->instr)
	{
	  mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	  mismatch_detail->error = _("instruction opens new dependency "
				     "sequence without ending previous one");
	  mismatch_detail->index = -1;
	  mismatch_detail->non_fatal = TRUE;
	  res = ERR_VFI;
	}

      init_insn_sequence (inst, insn_sequence);
      return res;
    }

  /* Verify constraints on an existing sequence.  */
  if (insn_sequence->instr)
    {
      const struct aarch64_opcode* inst_opcode = insn_sequence->instr->opcode;
      /* If we're decoding and we hit PC=0 with an open sequence then we haven't
	 closed a previous one that we should have.  */
      if (!encoding && pc == 0)
	{
	  mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	  mismatch_detail->error = _("previous `movprfx' sequence not closed");
	  mismatch_detail->index = -1;
	  mismatch_detail->non_fatal = TRUE;
	  res = ERR_VFI;
	  /* Reset the sequence.  */
	  init_insn_sequence (NULL, insn_sequence);
	  return res;
	}

      /* Validate C_SCAN_MOVPRFX constraints.  Move this to a lookup table.  */
      if (inst_opcode->constraints & C_SCAN_MOVPRFX)
	{
	  /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
	     instruction for better error messages.  */
	  if (!opcode->avariant
	      || !(*opcode->avariant &
		   (AARCH64_FEATURE_SVE | AARCH64_FEATURE_SVE2)))
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("SVE instruction expected after "
					 "`movprfx'");
	      mismatch_detail->index = -1;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }

	  /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
	     instruction that is allowed to be used with a MOVPRFX.  */
	  if (!(opcode->constraints & C_SCAN_MOVPRFX))
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("SVE `movprfx' compatible instruction "
					 "expected");
	      mismatch_detail->index = -1;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }

	  /* Next check for usage of the predicate register.  */
	  aarch64_opnd_info blk_dest = insn_sequence->instr->operands[0];
	  aarch64_opnd_info blk_pred, inst_pred;
	  memset (&blk_pred, 0, sizeof (aarch64_opnd_info));
	  memset (&inst_pred, 0, sizeof (aarch64_opnd_info));
	  bfd_boolean predicated = FALSE;
	  assert (blk_dest.type == AARCH64_OPND_SVE_Zd);

	  /* Determine if the movprfx instruction used is predicated or not.  */
	  if (insn_sequence->instr->operands[1].type == AARCH64_OPND_SVE_Pg3)
	    {
	      predicated = TRUE;
	      blk_pred = insn_sequence->instr->operands[1];
	    }

	  unsigned char max_elem_size = 0;
	  unsigned char current_elem_size;
	  int num_op_used = 0, last_op_usage = 0;
	  int i, inst_pred_idx = -1;
	  int num_ops = aarch64_num_of_operands (opcode);
	  for (i = 0; i < num_ops; i++)
	    {
	      aarch64_opnd_info inst_op = inst->operands[i];
	      switch (inst_op.type)
		{
		  case AARCH64_OPND_SVE_Zd:
		  case AARCH64_OPND_SVE_Zm_5:
		  case AARCH64_OPND_SVE_Zm_16:
		  case AARCH64_OPND_SVE_Zn:
		  case AARCH64_OPND_SVE_Zt:
		  case AARCH64_OPND_SVE_Vm:
		  case AARCH64_OPND_SVE_Vn:
		  case AARCH64_OPND_Va:
		  case AARCH64_OPND_Vn:
		  case AARCH64_OPND_Vm:
		  case AARCH64_OPND_Sn:
		  case AARCH64_OPND_Sm:
		    if (inst_op.reg.regno == blk_dest.reg.regno)
		      {
			num_op_used++;
			last_op_usage = i;
		      }
		    current_elem_size
		      = aarch64_get_qualifier_esize (inst_op.qualifier);
		    if (current_elem_size > max_elem_size)
		      max_elem_size = current_elem_size;
		    break;
		  case AARCH64_OPND_SVE_Pd:
		  case AARCH64_OPND_SVE_Pg3:
		  case AARCH64_OPND_SVE_Pg4_5:
		  case AARCH64_OPND_SVE_Pg4_10:
		  case AARCH64_OPND_SVE_Pg4_16:
		  case AARCH64_OPND_SVE_Pm:
		  case AARCH64_OPND_SVE_Pn:
		  case AARCH64_OPND_SVE_Pt:
		    inst_pred = inst_op;
		    inst_pred_idx = i;
		    break;
		  default:
		    break;
		}
	    }

	   assert (max_elem_size != 0);
	   aarch64_opnd_info inst_dest = inst->operands[0];
	   /* Determine the size that should be used to compare against the
	      movprfx size.  */
	   current_elem_size
	     = opcode->constraints & C_MAX_ELEM
	       ? max_elem_size
	       : aarch64_get_qualifier_esize (inst_dest.qualifier);

	  /* If movprfx is predicated do some extra checks.  */
	  if (predicated)
	    {
	      /* The instruction must be predicated.  */
	      if (inst_pred_idx < 0)
		{
		  mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
		  mismatch_detail->error = _("predicated instruction expected "
					     "after `movprfx'");
		  mismatch_detail->index = -1;
		  mismatch_detail->non_fatal = TRUE;
		  res = ERR_VFI;
		  goto done;
		}

	      /* The instruction must have a merging predicate.  */
	      if (inst_pred.qualifier != AARCH64_OPND_QLF_P_M)
		{
		  mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
		  mismatch_detail->error = _("merging predicate expected due "
					     "to preceding `movprfx'");
		  mismatch_detail->index = inst_pred_idx;
		  mismatch_detail->non_fatal = TRUE;
		  res = ERR_VFI;
		  goto done;
		}

	      /* The same register must be used in instruction.  */
	      if (blk_pred.reg.regno != inst_pred.reg.regno)
		{
		  mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
		  mismatch_detail->error = _("predicate register differs "
					     "from that in preceding "
					     "`movprfx'");
		  mismatch_detail->index = inst_pred_idx;
		  mismatch_detail->non_fatal = TRUE;
		  res = ERR_VFI;
		  goto done;
		}
	    }

	  /* Destructive operations by definition must allow one usage of the
	     same register.  */
	  int allowed_usage
	    = aarch64_is_destructive_by_operands (opcode) ? 2 : 1;

	  /* Operand is not used at all.  */
	  if (num_op_used == 0)
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("output register of preceding "
					 "`movprfx' not used in current "
					 "instruction");
	      mismatch_detail->index = 0;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }

	  /* We now know it's used, now determine exactly where it's used.  */
	  if (blk_dest.reg.regno != inst_dest.reg.regno)
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("output register of preceding "
					 "`movprfx' expected as output");
	      mismatch_detail->index = 0;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }

	  /* Operand used more than allowed for the specific opcode type.  */
	  if (num_op_used > allowed_usage)
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("output register of preceding "
					 "`movprfx' used as input");
	      mismatch_detail->index = last_op_usage;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }

	  /* Now the only thing left is the qualifiers checks.  The register
	     must have the same maximum element size.  */
	  if (inst_dest.qualifier
	      && blk_dest.qualifier
	      && current_elem_size
		 != aarch64_get_qualifier_esize (blk_dest.qualifier))
	    {
	      mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
	      mismatch_detail->error = _("register size not compatible with "
					 "previous `movprfx'");
	      mismatch_detail->index = 0;
	      mismatch_detail->non_fatal = TRUE;
	      res = ERR_VFI;
	      goto done;
	    }
	}

    done:
      /* Add the new instruction to the sequence.  */
      memcpy (insn_sequence->current_insns + insn_sequence->next_insn++,
	      inst, sizeof (aarch64_inst));

      /* Check if sequence is now full.  */
      if (insn_sequence->next_insn >= insn_sequence->num_insns)
	{
	  /* Sequence is full, but we don't have anything special to do for now,
	     so clear and reset it.  */
	  init_insn_sequence (NULL, insn_sequence);
	}
    }

  return res;
}


/* Return true if VALUE cannot be moved into an SVE register using DUP
   (with any element size, not just ESIZE) and if using DUPM would
   therefore be OK.  ESIZE is the number of bytes in the immediate.  */

bfd_boolean
aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue, int esize)
{
  int64_t svalue = uvalue;
  uint64_t upper = (uint64_t) -1 << (esize * 4) << (esize * 4);

  if ((uvalue & ~upper) != uvalue && (uvalue | upper) != uvalue)
    return FALSE;
  if (esize <= 4 || (uint32_t) uvalue == (uint32_t) (uvalue >> 32))
    {
      svalue = (int32_t) uvalue;
      if (esize <= 2 || (uint16_t) uvalue == (uint16_t) (uvalue >> 16))
	{
	  svalue = (int16_t) uvalue;
	  if (esize == 1 || (uint8_t) uvalue == (uint8_t) (uvalue >> 8))
	    return FALSE;
	}
    }
  if ((svalue & 0xff) == 0)
    svalue /= 256;
  return svalue < -128 || svalue >= 128;
}

/* Include the opcode description table as well as the operand description
   table.  */
#define VERIFIER(x) verify_##x
#include "aarch64-tbl.h"