1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* Instruction printing code for the AMD 29000
Copyright (C) 1990 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Jim Kingdon.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "dis-asm.h"
#include "opcode/a29k.h"
/* Print a symbolic representation of a general-purpose
register number NUM on STREAM.
NUM is a number as found in the instruction, not as found in
debugging symbols; it must be in the range 0-255. */
static void
print_general (num, info)
int num;
struct disassemble_info *info;
{
if (num < 128)
(*info->fprintf_func) (info->stream, "gr%d", num);
else
(*info->fprintf_func) (info->stream, "lr%d", num - 128);
}
/* Like print_general but a special-purpose register.
The mnemonics used by the AMD assembler are not quite the same
as the ones in the User's Manual. We use the ones that the
assembler uses. */
static void
print_special (num, info)
int num;
struct disassemble_info *info;
{
/* Register names of registers 0-SPEC0_NUM-1. */
static char *spec0_names[] = {
"vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr",
"pc0", "pc1", "pc2", "mmu", "lru"
};
#define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0]))
/* Register names of registers 128-128+SPEC128_NUM-1. */
static char *spec128_names[] = {
"ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr"
};
#define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0]))
/* Register names of registers 160-160+SPEC160_NUM-1. */
static char *spec160_names[] = {
"fpe", "inte", "fps", "sr163", "exop"
};
#define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))
if (num < SPEC0_NUM)
(*info->fprintf_func) (info->stream, spec0_names[num]);
else if (num >= 128 && num < 128 + SPEC128_NUM)
(*info->fprintf_func) (info->stream, spec128_names[num-128]);
else if (num >= 160 && num < 160 + SPEC160_NUM)
(*info->fprintf_func) (info->stream, spec160_names[num-160]);
else
(*info->fprintf_func) (info->stream, "sr%d", num);
}
/* Is an instruction with OPCODE a delayed branch? */
static int
is_delayed_branch (opcode)
int opcode;
{
return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1
|| opcode == 0xa4 || opcode == 0xa5
|| opcode == 0xb4 || opcode == 0xb5
|| opcode == 0xc4 || opcode == 0xc0
|| opcode == 0xac || opcode == 0xad
|| opcode == 0xcc);
}
/* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}. */
static void
find_bytes_big (insn, insn0, insn8, insn16, insn24)
char *insn;
unsigned char *insn0;
unsigned char *insn8;
unsigned char *insn16;
unsigned char *insn24;
{
*insn24 = insn[0];
*insn16 = insn[1];
*insn8 = insn[2];
*insn0 = insn[3];
}
static void
find_bytes_little (insn, insn0, insn8, insn16, insn24)
char *insn;
unsigned char *insn0;
unsigned char *insn8;
unsigned char *insn16;
unsigned char *insn24;
{
*insn24 = insn[3];
*insn16 = insn[2];
*insn8 = insn[1];
*insn0 = insn[0];
}
typedef (*find_byte_func_type)
PARAMS ((char *, unsigned char *, unsigned char *,
unsigned char *, unsigned char *));
/* Print one instruction from MEMADDR on STREAM.
Return the size of the instruction (always 4 on a29k). */
static int
print_insn (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
/* The raw instruction. */
char insn[4];
/* The four bytes of the instruction. */
unsigned char insn24, insn16, insn8, insn0;
find_byte_func_type find_byte_func = (find_byte_func_type)info->private_data;
struct a29k_opcode CONST * opcode;
{
int status =
(*info->read_memory_func) (memaddr, (bfd_byte *) &insn[0], 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
}
(*find_byte_func) (insn, &insn0, &insn8, &insn16, &insn24);
/* Handle the nop (aseq 0x40,gr1,gr1) specially */
if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) {
(*info->fprintf_func) (info->stream,"nop");
return 4;
}
/* The opcode is always in insn24. */
for (opcode = &a29k_opcodes[0];
opcode < &a29k_opcodes[num_opcodes];
++opcode)
{
if ((insn24<<24) == opcode->opcode)
{
char *s;
(*info->fprintf_func) (info->stream, "%s ", opcode->name);
for (s = opcode->args; *s != '\0'; ++s)
{
switch (*s)
{
case 'a':
print_general (insn8, info);
break;
case 'b':
print_general (insn0, info);
break;
case 'c':
print_general (insn16, info);
break;
case 'i':
(*info->fprintf_func) (info->stream, "%d", insn0);
break;
case 'x':
(*info->fprintf_func) (info->stream, "%d", (insn16 << 8) + insn0);
break;
case 'h':
/* This used to be %x for binutils. */
(*info->fprintf_func) (info->stream, "0x%x",
(insn16 << 24) + (insn0 << 16));
break;
case 'X':
(*info->fprintf_func) (info->stream, "%d",
((insn16 << 8) + insn0) | 0xffff0000);
break;
case 'P':
/* This output looks just like absolute addressing, but
maybe that's OK (it's what the GDB m68k and EBMON
a29k disassemblers do). */
/* All the shifting is to sign-extend it. p*/
(*info->print_address_func)
(memaddr +
(((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),
info);
break;
case 'A':
(*info->print_address_func)
((insn16 << 10) + (insn0 << 2), info);
break;
case 'e':
(*info->fprintf_func) (info->stream, "%d", insn16 >> 7);
break;
case 'n':
(*info->fprintf_func) (info->stream, "0x%x", insn16 & 0x7f);
break;
case 'v':
(*info->fprintf_func) (info->stream, "0x%x", insn16);
break;
case 's':
print_special (insn8, info);
break;
case 'u':
(*info->fprintf_func) (info->stream, "%d", insn0 >> 7);
break;
case 'r':
(*info->fprintf_func) (info->stream, "%d", (insn0 >> 4) & 7);
break;
case 'd':
(*info->fprintf_func) (info->stream, "%d", (insn0 >> 2) & 3);
break;
case 'f':
(*info->fprintf_func) (info->stream, "%d", insn0 & 3);
break;
case 'F':
(*info->fprintf_func) (info->stream, "%d", (insn16 >> 2) & 15);
break;
case 'C':
(*info->fprintf_func) (info->stream, "%d", insn16 & 3);
break;
default:
(*info->fprintf_func) (info->stream, "%c", *s);
}
}
/* Now we look for a const,consth pair of instructions,
in which case we try to print the symbolic address. */
if (insn24 == 2) /* consth */
{
int errcode;
char prev_insn[4];
unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;
errcode = (*info->read_memory_func) (memaddr - 4,
(bfd_byte *) &prev_insn[0],
4,
info);
if (errcode == 0)
{
/* If it is a delayed branch, we need to look at the
instruction before the delayed brach to handle
things like
const _foo
call _printf
consth _foo
*/
(*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
if (is_delayed_branch (prev_insn24))
{
errcode = (*info->read_memory_func)
(memaddr - 8, (bfd_byte *) &prev_insn[0], 4, info);
(*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
}
}
/* If there was a problem reading memory, then assume
the previous instruction was not const. */
if (errcode == 0)
{
/* Is it const to the same register? */
if (prev_insn24 == 3
&& prev_insn8 == insn8)
{
(*info->fprintf_func) (info->stream, "\t; ");
(*info->print_address_func)
(((insn16 << 24) + (insn0 << 16)
+ (prev_insn16 << 8) + (prev_insn0)),
info);
}
}
}
return 4;
}
}
/* This used to be %8x for binutils. */
(*info->fprintf_func)
(info->stream, ".word 0x%08x",
(insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
return 4;
}
/* Disassemble an big-endian a29k instruction. */
int
print_insn_big_a29k (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
info->private_data = (PTR) find_bytes_big;
return print_insn (memaddr, info);
}
/* Disassemble a little-endian a29k instruction. */
int
print_insn_little_a29k (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
info->private_data = (PTR) find_bytes_little;
return print_insn (memaddr, info);
}
|