1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
/* Local definitions for the decNumber C Library.
Copyright (C) 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* ------------------------------------------------------------------ */
/* decNumber package local type, tuning, and macro definitions */
/* ------------------------------------------------------------------ */
/* This header file is included by all modules in the decNumber */
/* library, and contains local type definitions, tuning parameters, */
/* etc. It should not need to be used by application programs. */
/* decNumber.h or one of decDouble (etc.) must be included first. */
/* ------------------------------------------------------------------ */
#if !defined(DECNUMBERLOC)
#define DECNUMBERLOC
#define DECVERSION "decNumber 3.53" /* Package Version [16 max.] */
#define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
#include <stdlib.h> /* for abs */
#include <string.h> /* for memset, strcpy */
#include "config.h" /* for WORDS_BIGENDIAN */
/* Conditional code flag -- set this to match hardware platform */
/* 1=little-endian, 0=big-endian */
#if WORDS_BIGENDIAN
#define DECLITEND 0
#else
#define DECLITEND 1
#endif
/* Conditional code flag -- set this to 1 for best performance */
#define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
/* Conditional check flags -- set these to 0 for best performance */
#define DECCHECK 0 /* 1 to enable robust checking */
#define DECALLOC 0 /* 1 to enable memory accounting */
#define DECTRACE 0 /* 1 to trace certain internals, etc. */
/* Tuning parameter for decNumber (arbitrary precision) module */
#define DECBUFFER 36 /* Size basis for local buffers. This */
/* should be a common maximum precision */
/* rounded up to a multiple of 4; must */
/* be zero or positive. */
/* ---------------------------------------------------------------- */
/* Definitions for all modules (general-purpose) */
/* ---------------------------------------------------------------- */
/* Local names for common types -- for safety, decNumber modules do */
/* not use int or long directly. */
#define Flag uint8_t
#define Byte int8_t
#define uByte uint8_t
#define Short int16_t
#define uShort uint16_t
#define Int int32_t
#define uInt uint32_t
#define Unit decNumberUnit
#if DECUSE64
#define Long int64_t
#define uLong uint64_t
#endif
/* Development-use definitions */
typedef long int LI; /* for printf arguments only */
#define DECNOINT 0 /* 1 to check no internal use of 'int' */
#if DECNOINT
/* if these interfere with your C includes, do not set DECNOINT */
#define int ? /* enable to ensure that plain C 'int' */
#define long ?? /* .. or 'long' types are not used */
#endif
/* Shared lookup tables */
extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
extern const uInt DECPOWERS[10]; /* powers of ten table */
/* The following are included from decDPD.h */
extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
/* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
/* (that is, sets w to be the high-order word of the 64-bit result; */
/* the low-order word is simply u*v.) */
/* This version is derived from Knuth via Hacker's Delight; */
/* it seems to optimize better than some others tried */
#define LONGMUL32HI(w, u, v) { \
uInt u0, u1, v0, v1, w0, w1, w2, t; \
u0=u & 0xffff; u1=u>>16; \
v0=v & 0xffff; v1=v>>16; \
w0=u0*v0; \
t=u1*v0 + (w0>>16); \
w1=t & 0xffff; w2=t>>16; \
w1=u0*v1 + w1; \
(w)=u1*v1 + w2 + (w1>>16);}
/* ROUNDUP -- round an integer up to a multiple of n */
#define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
/* ROUNDDOWN -- round an integer down to a multiple of n */
#define ROUNDDOWN(i, n) (((i)/n)*n)
#define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
/* References to multi-byte sequences under different sizes */
/* Refer to a uInt from four bytes starting at a char* or uByte*, */
/* etc. */
#define UINTAT(b) (*((uInt *)(b)))
#define USHORTAT(b) (*((uShort *)(b)))
#define UBYTEAT(b) (*((uByte *)(b)))
/* X10 and X100 -- multiply integer i by 10 or 100 */
/* [shifts are usually faster than multiply; could be conditional] */
#define X10(i) (((i)<<1)+((i)<<3))
#define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
/* MAXI and MINI -- general max & min (not in ANSI) for integers */
#define MAXI(x,y) ((x)<(y)?(y):(x))
#define MINI(x,y) ((x)>(y)?(y):(x))
/* Useful constants */
#define BILLION 1000000000 /* 10**9 */
/* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
#define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
/* ---------------------------------------------------------------- */
/* Definitions for arbitary-precision modules (only valid after */
/* decNumber.h has been included) */
/* ---------------------------------------------------------------- */
/* Limits and constants */
#define DECNUMMAXP 999999999 /* maximum precision code can handle */
#define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
#define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
#if (DECNUMMAXP != DEC_MAX_DIGITS)
#error Maximum digits mismatch
#endif
#if (DECNUMMAXE != DEC_MAX_EMAX)
#error Maximum exponent mismatch
#endif
#if (DECNUMMINE != DEC_MIN_EMIN)
#error Minimum exponent mismatch
#endif
/* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
/* digits, and D2UTABLE -- the initializer for the D2U table */
#if DECDPUN==1
#define DECDPUNMAX 9
#define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
48,49}
#elif DECDPUN==2
#define DECDPUNMAX 99
#define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
18,19,19,20,20,21,21,22,22,23,23,24,24,25}
#elif DECDPUN==3
#define DECDPUNMAX 999
#define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
13,14,14,14,15,15,15,16,16,16,17}
#elif DECDPUN==4
#define DECDPUNMAX 9999
#define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
11,11,11,12,12,12,12,13}
#elif DECDPUN==5
#define DECDPUNMAX 99999
#define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
9,9,10,10,10,10}
#elif DECDPUN==6
#define DECDPUNMAX 999999
#define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
8,8,8,8,8,9}
#elif DECDPUN==7
#define DECDPUNMAX 9999999
#define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
7,7,7,7,7,7}
#elif DECDPUN==8
#define DECDPUNMAX 99999999
#define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
6,6,6,6,6,7}
#elif DECDPUN==9
#define DECDPUNMAX 999999999
#define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
5,5,6,6,6,6}
#elif defined(DECDPUN)
#error DECDPUN must be in the range 1-9
#endif
/* ----- Shared data (in decNumber.c) ----- */
/* Public lookup table used by the D2U macro (see below) */
#define DECMAXD2U 49
extern const uByte d2utable[DECMAXD2U+1];
/* ----- Macros ----- */
/* ISZERO -- return true if decNumber dn is a zero */
/* [performance-critical in some situations] */
#define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
/* D2U -- return the number of Units needed to hold d digits */
/* (runtime version, with table lookaside for small d) */
#if DECDPUN==8
#define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
#elif DECDPUN==4
#define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
#else
#define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
#endif
/* SD2U -- static D2U macro (for compile-time calculation) */
#define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
/* MSUDIGITS -- returns digits in msu, from digits, calculated */
/* using D2U */
#define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
/* D2N -- return the number of decNumber structs that would be */
/* needed to contain that number of digits (and the initial */
/* decNumber struct) safely. Note that one Unit is included in the */
/* initial structure. Used for allocating space that is aligned on */
/* a decNumber struct boundary. */
#define D2N(d) \
((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
/* TODIGIT -- macro to remove the leading digit from the unsigned */
/* integer u at column cut (counting from the right, LSD=0) and */
/* place it as an ASCII character into the character pointed to by */
/* c. Note that cut must be <= 9, and the maximum value for u is */
/* 2,000,000,000 (as is needed for negative exponents of */
/* subnormals). The unsigned integer pow is used as a temporary */
/* variable. */
#define TODIGIT(u, cut, c, pow) { \
*(c)='0'; \
pow=DECPOWERS[cut]*2; \
if ((u)>pow) { \
pow*=4; \
if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
pow/=2; \
} \
if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
}
/* ---------------------------------------------------------------- */
/* Definitions for fixed-precision modules (only valid after */
/* decSingle.h, decDouble.h, or decQuad.h has been included) */
/* ---------------------------------------------------------------- */
/* bcdnum -- a structure describing a format-independent finite */
/* number, whose coefficient is a string of bcd8 uBytes */
typedef struct {
uByte *msd; /* -> most significant digit */
uByte *lsd; /* -> least ditto */
uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
Int exponent; /* Unadjusted signed exponent (q), or */
/* DECFLOAT_NaN etc. for a special */
} bcdnum;
/* Test if exponent or bcdnum exponent must be a special, etc. */
#define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
#define EXPISINF(exp) (exp==DECFLOAT_Inf)
#define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
#define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
/* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
/* (array) notation (the 0 word or byte contains the sign bit), */
/* automatically adjusting for endianness; similarly address a word */
/* in the next-wider format (decFloatWider, or dfw) */
#define DECWORDS (DECBYTES/4)
#define DECWWORDS (DECWBYTES/4)
#if DECLITEND
#define DFWORD(df, off) UINTAT((df)->bytes+(DECWORDS-1-(off))*4)
#define DFBYTE(df, off) UBYTEAT((df)->bytes+(DECBYTES-1-(off)))
#define DFWWORD(dfw, off) UINTAT((dfw)->bytes+(DECWWORDS-1-(off))*4)
#else
#define DFWORD(df, off) UINTAT((df)->bytes+(off)*4)
#define DFBYTE(df, off) UBYTEAT((df)->bytes+(off))
#define DFWWORD(dfw, off) UINTAT((dfw)->bytes+(off)*4)
#endif
/* Tests for sign or specials, directly on DECFLOATs */
#define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
#define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
#define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
#define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
#define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
#define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
/* Shared lookup tables */
extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
/* Private generic (utility) routine */
#if DECCHECK || DECTRACE
extern void decShowNum(const bcdnum *, const char *);
#endif
/* Format-dependent macros and constants */
#if defined(DECPMAX)
/* Useful constants */
#define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
/* Top words for a zero */
#define SINGLEZERO 0x22500000
#define DOUBLEZERO 0x22380000
#define QUADZERO 0x22080000
/* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
/* Format-dependent common tests: */
/* DFISZERO -- test for (any) zero */
/* DFISCCZERO -- test for coefficient continuation being zero */
/* DFISCC01 -- test for coefficient contains only 0s and 1s */
/* DFISINT -- test for finite and exponent q=0 */
/* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
/* MSD=0 or 1 */
/* ZEROWORD is also defined here. */
/* In DFISZERO the first test checks the least-significant word */
/* (most likely to be non-zero); the penultimate tests MSD and */
/* DPDs in the signword, and the final test excludes specials and */
/* MSD>7. DFISINT similarly has to allow for the two forms of */
/* MSD codes. DFISUINT01 only has to allow for one form of MSD */
/* code. */
#if DECPMAX==7
#define ZEROWORD SINGLEZERO
/* [test macros not needed except for Zero] */
#define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000)
#elif DECPMAX==16
#define ZEROWORD DOUBLEZERO
#define DFISZERO(df) ((DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x1c03ffff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000))
#define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
#define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
#define DFISCCZERO(df) (DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x0003ffff)==0)
#define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
&& (DFWORD(df, 1)&~0x49124491)==0)
#elif DECPMAX==34
#define ZEROWORD QUADZERO
#define DFISZERO(df) ((DFWORD(df, 3)==0 \
&& DFWORD(df, 2)==0 \
&& DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x1c003fff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000))
#define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
#define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
#define DFISCCZERO(df) (DFWORD(df, 3)==0 \
&& DFWORD(df, 2)==0 \
&& DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x00003fff)==0)
#define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
&& (DFWORD(df, 1)&~0x44912449)==0 \
&& (DFWORD(df, 2)&~0x12449124)==0 \
&& (DFWORD(df, 3)&~0x49124491)==0)
#endif
/* Macros to test if a certain 10 bits of a uInt or pair of uInts */
/* are a canonical declet [higher or lower bits are ignored]. */
/* declet is at offset 0 (from the right) in a uInt: */
#define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
/* declet is at offset k (a multiple of 2) in a uInt: */
#define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
|| ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
/* declet is at offset k (a multiple of 2) in a pair of uInts: */
/* [the top 2 bits will always be in the more-significant uInt] */
#define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
|| ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
|| ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
/* Macro to test whether a full-length (length DECPMAX) BCD8 */
/* coefficient is zero */
/* test just the LSWord first, then the remainder */
#if DECPMAX==7
#define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
&& UINTAT((u)+DECPMAX-7)==0)
#elif DECPMAX==16
#define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
&& (UINTAT((u)+DECPMAX-8)+UINTAT((u)+DECPMAX-12) \
+UINTAT((u)+DECPMAX-16))==0)
#elif DECPMAX==34
#define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
&& (UINTAT((u)+DECPMAX-8) +UINTAT((u)+DECPMAX-12) \
+UINTAT((u)+DECPMAX-16)+UINTAT((u)+DECPMAX-20) \
+UINTAT((u)+DECPMAX-24)+UINTAT((u)+DECPMAX-28) \
+UINTAT((u)+DECPMAX-32)+USHORTAT((u)+DECPMAX-34))==0)
#endif
/* Macros and masks for the exponent continuation field and MSD */
/* Get the exponent continuation from a decFloat *df as an Int */
#define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
/* Ditto, from the next-wider format */
#define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
/* Get the biased exponent similarly */
#define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
/* Get the unbiased exponent similarly */
#define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
/* Get the MSD similarly (as uInt) */
#define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
/* Compile-time computes of the exponent continuation field masks */
/* full exponent continuation field: */
#define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
/* same, not including its first digit (the qNaN/sNaN selector): */
#define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a BCD string (uByte *bcdin) of length DECPMAX uBytes */
/* In-line sequence to convert 10 bits at right end of uInt dpd */
/* to three BCD8 digits starting at uByte u. Note that an extra */
/* byte is written to the right of the three digits because this */
/* moves four at a time for speed; the alternative macro moves */
/* exactly three bytes */
#define dpd2bcd8(u, dpd) { \
UINTAT(u)=UINTAT(&DPD2BCD8[((dpd)&0x3ff)*4]);}
#define dpd2bcd83(u, dpd) { \
*(u)=DPD2BCD8[((dpd)&0x3ff)*4]; \
*(u+1)=DPD2BCD8[((dpd)&0x3ff)*4+1]; \
*(u+2)=DPD2BCD8[((dpd)&0x3ff)*4+2];}
/* Decode the declets. After extracting each one, it is decoded */
/* to BCD8 using a table lookup (also used for variable-length */
/* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
/* length which is not used, here). Fixed-length 4-byte moves */
/* are fast, however, almost everywhere, and so are used except */
/* for the final three bytes (to avoid overrun). The code below */
/* is 36 instructions for Doubles and about 70 for Quads, even */
/* on IA32. */
/* Two macros are defined for each format: */
/* GETCOEFF extracts the coefficient of the current format */
/* GETWCOEFF extracts the coefficient of the next-wider format. */
/* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
#if DECPMAX==7
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>10); \
dpd2bcd83(bcd+4, sourhi);}
#define GETWCOEFF(df, bcd) { \
uInt sourhi=DFWWORD(df, 0); \
uInt sourlo=DFWWORD(df, 1); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>8); \
dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+7, sourlo>>20); \
dpd2bcd8(bcd+10, sourlo>>10); \
dpd2bcd83(bcd+13, sourlo);}
#elif DECPMAX==16
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
uInt sourlo=DFWORD(df, 1); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>8); \
dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+7, sourlo>>20); \
dpd2bcd8(bcd+10, sourlo>>10); \
dpd2bcd83(bcd+13, sourlo);}
#define GETWCOEFF(df, bcd) { \
uInt sourhi=DFWWORD(df, 0); \
uInt sourmh=DFWWORD(df, 1); \
uInt sourml=DFWWORD(df, 2); \
uInt sourlo=DFWWORD(df, 3); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>4); \
dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
dpd2bcd8(bcd+7, sourmh>>16); \
dpd2bcd8(bcd+10, sourmh>>6); \
dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
dpd2bcd8(bcd+16, sourml>>18); \
dpd2bcd8(bcd+19, sourml>>8); \
dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+25, sourlo>>20); \
dpd2bcd8(bcd+28, sourlo>>10); \
dpd2bcd83(bcd+31, sourlo);}
#elif DECPMAX==34
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
uInt sourmh=DFWORD(df, 1); \
uInt sourml=DFWORD(df, 2); \
uInt sourlo=DFWORD(df, 3); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>4); \
dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
dpd2bcd8(bcd+7, sourmh>>16); \
dpd2bcd8(bcd+10, sourmh>>6); \
dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
dpd2bcd8(bcd+16, sourml>>18); \
dpd2bcd8(bcd+19, sourml>>8); \
dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+25, sourlo>>20); \
dpd2bcd8(bcd+28, sourlo>>10); \
dpd2bcd83(bcd+31, sourlo);}
#define GETWCOEFF(df, bcd) {??} /* [should never be used] */
#endif
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a base-billion uInt array, with the least-significant */
/* 0-999999999 'digit' at offset 0. */
/* Decode the declets. After extracting each one, it is decoded */
/* to binary using a table lookup. Three tables are used; one */
/* the usual DPD to binary, the other two pre-multiplied by 1000 */
/* and 1000000 to avoid multiplication during decode. These */
/* tables can also be used for multiplying up the MSD as the DPD */
/* code for 0 through 9 is the identity. */
#define DPD2BIN0 DPD2BIN /* for prettier code */
#if DECPMAX==7
#define GETCOEFFBILL(df, buf) { \
uInt sourhi=DFWORD(df, 0); \
(buf)[0]=DPD2BIN0[sourhi&0x3ff] \
+DPD2BINK[(sourhi>>10)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#elif DECPMAX==16
#define GETCOEFFBILL(df, buf) { \
uInt sourhi, sourlo; \
sourlo=DFWORD(df, 1); \
(buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+DPD2BINK[(sourlo>>10)&0x3ff] \
+DPD2BINM[(sourlo>>20)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
+DPD2BINK[(sourhi>>8)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#elif DECPMAX==34
#define GETCOEFFBILL(df, buf) { \
uInt sourhi, sourmh, sourml, sourlo; \
sourlo=DFWORD(df, 3); \
(buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+DPD2BINK[(sourlo>>10)&0x3ff] \
+DPD2BINM[(sourlo>>20)&0x3ff]; \
sourml=DFWORD(df, 2); \
(buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
+DPD2BINK[(sourml>>8)&0x3ff] \
+DPD2BINM[(sourml>>18)&0x3ff]; \
sourmh=DFWORD(df, 1); \
(buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
+DPD2BINK[(sourmh>>6)&0x3ff] \
+DPD2BINM[(sourmh>>16)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
+DPD2BINK[(sourhi>>4)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#endif
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a base-thousand uInt array, with the least-significant 0-999 */
/* 'digit' at offset 0. */
/* Decode the declets. After extracting each one, it is decoded */
/* to binary using a table lookup. */
#if DECPMAX==7
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi=DFWORD(df, 0); \
(buf)[0]=DPD2BIN[sourhi&0x3ff]; \
(buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
(buf)[2]=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==16
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi, sourlo; \
sourlo=DFWORD(df, 1); \
(buf)[0]=DPD2BIN[sourlo&0x3ff]; \
(buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
(buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
(buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
(buf)[5]=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==34
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi, sourmh, sourml, sourlo; \
sourlo=DFWORD(df, 3); \
(buf)[0]=DPD2BIN[sourlo&0x3ff]; \
(buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
(buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
sourml=DFWORD(df, 2); \
(buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
(buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
(buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
sourmh=DFWORD(df, 1); \
(buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
(buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
(buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
(buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
(buf)[11]=DECCOMBMSD[sourhi>>26];}
#endif
/* Set a decFloat to the maximum positive finite number (Nmax) */
#if DECPMAX==7
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77f3fcff;}
#elif DECPMAX==16
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77fcff3f; \
DFWORD(df, 1)=0xcff3fcff;}
#elif DECPMAX==34
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77ffcff3; \
DFWORD(df, 1)=0xfcff3fcf; \
DFWORD(df, 2)=0xf3fcff3f; \
DFWORD(df, 3)=0xcff3fcff;}
#endif
/* [end of format-dependent macros and constants] */
#endif
#else
#error decNumberLocal included more than once
#endif
|