aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-dedup.c
blob: 5fdddfd0b548cbf49e2c3bd7b6b42ae995ab867f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
/* CTF type deduplication.
   Copyright (C) 2019-2023 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "hashtab.h"

/* (In the below, relevant functions are named in square brackets.)  */

/* Type deduplication is a three-phase process:

    [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
    1) come up with unambiguous hash values for all types: no two types may have
       the same hash value, and any given type should have only one hash value
       (for optimal deduplication).

    [ctf_dedup, ctf_dedup_detect_name_ambiguity,
     ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
    2) mark those distinct types with names that collide (and thus cannot be
       declared simultaneously in the same translation unit) as conflicting, and
       recursively mark all types that cite one of those types as conflicting as
       well.  Possibly mark all types cited in only one TU as conflicting, if
       the CTF_LINK_SHARE_DUPLICATED link mode is active.

    [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
    3) emit all the types, one hash value at a time.  Types not marked
       conflicting are emitted once, into the shared dictionary: types marked
       conflicting are emitted once per TU into a dictionary corresponding to
       each TU in which they appear.  Structs marked conflicting get at the very
       least a forward emitted into the shared dict so that other dicts can cite
       it if needed.

   [id_to_packed_id]
   This all works over an array of inputs (usually in the same order as the
   inputs on the link line).  We don't use the ctf_link_inputs hash directly
   because it is convenient to be able to address specific input types as a
   *global type ID* or 'GID', a pair of an array offset and a ctf_id_t.  Since
   both are already 32 bits or less or can easily be constrained to that range,
   we can pack them both into a single 64-bit hash word for easy lookups, which
   would be much more annoying to do with a ctf_dict_t * and a ctf_id_t.  (On
   32-bit platforms, we must do that anyway, since pointers, and thus hash keys
   and values, are only 32 bits wide).  We track which inputs are parents of
   which other inputs so that we can correctly recognize that types we have
   traversed in children may cite types in parents, and so that we can process
   the parents first.)

   Note that thanks to ld -r, the deduplicator can be fed its own output, so the
   inputs may themselves have child dicts.  Since we need to support this usage
   anyway, we can use it in one other place.  If the caller finds translation
   units to be too small a unit ambiguous types, links can be 'cu-mapped', where
   the caller provides a mapping of input TU names to output child dict names.
   This mapping can fuse many child TUs into one potential child dict, so that
   ambiguous types in any of those input TUs go into the same child dict.
   When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
   repeatedly, once for every output name that has more than one input, to fuse
   all the input TUs associated with a given output dict into one, and once again
   as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
   together.  This has much higher memory usage than otherwise, because in the
   intermediate state, all the output TUs are in memory at once and cannot be
   lazily opened.  It also has implications for the emission code: if types
   appear ambiguously in multiple input TUs that are all mapped to the same
   child dict, we cannot put them in children in the cu-mapping link phase
   because this output is meant to *become* a child in the next link stage and
   parent/child relationships are only one level deep: so instead, we just hide
   all but one of the ambiguous types.

   There are a few other subtleties here that make this more complex than it
   seems.  Let's go over the steps above in more detail.

   1) HASHING.

   [ctf_dedup_hash_type, ctf_dedup_rhash_type]
   Hashing proceeds recursively, mixing in the properties of each input type
   (including its name, if any), and then adding the hash values of every type
   cited by that type.  The result is stashed in the cd_type_hashes so other
   phases can find the hash values of input types given their IDs, and so that
   if we encounter this type again while hashing we can just return its hash
   value: it is also stashed in the *output mapping*, a mapping from hash value
   to the set of GIDs corresponding to that type in all inputs.  We also keep
   track of the GID of the first appearance of the type in any input (in
   cd_output_first_gid), and the GID of structs, unions, and forwards that only
   appear in one TU (in cd_struct_origin).  See below for where these things are
   used.

   Everything in this phase is time-critical, because it is operating over
   non-deduplicated types and so may have hundreds or thousands of times the
   data volume to deal with than later phases.  Trace output is hidden behind
   ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
   ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
   from the calls to ctf_dprintf(), even with debugging switched off), and keep
   down the volume of output (hundreds of gigabytes of debug output are not
   uncommon on larger links).

   We have to do *something* about potential cycles in the type graph.  We'd
   like to avoid emitting forwards in the final output if possible, because
   forwards aren't much use: they have no members.  We are mostly saved from
   needing to worry about this at emission time by ctf_add_struct*()
   automatically replacing newly-created forwards when the real struct/union
   comes along.  So we only have to avoid getting stuck in cycles during the
   hashing phase, while also not confusing types that cite members that are
   structs with each other.  It is easiest to solve this problem by noting two
   things:

    - all cycles in C depend on the presence of tagged structs/unions
    - all tagged structs/unions have a unique name they can be disambiguated by

   [ctf_dedup_is_stub]
   This means that we can break all cycles by ceasing to hash in cited types at
   every tagged struct/union and instead hashing in a stub consisting of the
   struct/union's *decorated name*, which is the name preceded by "s " or "u "
   depending on the namespace (cached in cd_decorated_names).  Forwards are
   decorated identically (so a forward to "struct foo" would be represented as
   "s foo"): this means that a citation of a forward to a type and a citation of
   a concrete definition of a type with the same name ends up getting the same
   hash value.

   Of course, it is quite possible to have two TUs with structs with the same
   name and different definitions, but that's OK because when we scan for types
   with ambiguous names we will identify these and mark them conflicting.

   We populate one thing to help conflictedness marking.  No unconflicted type
   may cite a conflicted one, but this means that conflictedness marking must
   walk from types to the types that cite them, which is the opposite of the
   usual order.  We can make this easier to do by constructing a *citers* graph
   in cd_citers, which points from types to the types that cite them: because we
   emit forwards corresponding to every conflicted struct/union, we don't need
   to do this for citations of structs/unions by other types.  This is very
   convenient for us, because that's the only type we don't traverse
   recursively: so we can construct the citers graph at the same time as we
   hash, rather than needing to add an extra pass.  (This graph is a dynhash of
   *type hash values*, so it's small: in effect it is automatically
   deduplicated.)

   2) COLLISIONAL MARKING.

   [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
   We identify types whose names collide during the hashing process, and count
   the rough number of uses of each name (caching may throw it off a bit: this
   doesn't need to be accurate).  We then mark the less-frequently-cited types
   with each names conflicting: the most-frequently-cited one goes into the
   shared type dictionary, while all others are duplicated into per-TU
   dictionaries, named after the input TU, that have the shared dictionary as a
   parent.  For structures and unions this is not quite good enough: we'd like
   to have citations of forwards to ambiguously named structures and unions
   *stay* as citations of forwards, so that the user can tell that the caller
   didn't actually know which structure definition was meant: but if we put one
   of those structures into the shared dictionary, it would supplant and replace
   the forward, leaving no sign.  So structures and unions do not take part in
   this popularity contest: if their names are ambiguous, they are just
   duplicated, and only a forward appears in the shared dict.

   [ctf_dedup_propagate_conflictedness]
   The process of marking types conflicted is itself recursive: we recursively
   traverse the cd_citers graph populated in the hashing pass above and mark
   everything that we encounter conflicted (without wasting time re-marking
   anything that is already marked).  This naturally terminates just where we
   want it to (at types that are cited by no other types, and at structures and
   unions) and suffices to ensure that types that cite conflicted types are
   always marked conflicted.

   [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
   When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
   are used in only one TU to end up in a per-CU dict. The easiest way to do
   that is to mark them conflicted.  ctf_dedup_conflictify_unshared does this,
   traversing the output mapping and using ctf_dedup_multiple_input_dicts to
   check the number of input dicts each distinct type hash value came from:
   types that only came from one get marked conflicted.  One caveat here is that
   we need to consider both structs and forwards to them: a struct that appears
   in one TU and has a dozen citations to an opaque forward in other TUs should
   *not* be considered to be used in only one TU, because users would find it
   useful to be able to traverse into opaque structures of that sort: so we use
   cd_struct_origin to check both structs/unions and the forwards corresponding
   to them.

   3) EMISSION.

   [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
    ctf_dedup_rwalk_one_output_mapping]
   Emission involves another walk of the entire output mapping, this time
   traversing everything other than struct members, recursively.  Types are
   emitted from leaves to trunk, emitting all types a type cites before emitting
   the type itself.  We sort the output mapping before traversing it, for
   reproducibility and also correctness: the input dicts may have parent/child
   relationships, so we simply sort all types that first appear in parents
   before all children, then sort types that first appear in dicts appearing
   earlier on the linker command line before those that appear later, then sort
   by input ctf_id_t.  (This is where we use cd_output_first_gid, collected
   above.)

   The walking is done using a recursive traverser which arranges to not revisit
   any type already visited and to call its callback once per input GID for
   input GIDs corresponding to conflicted output types.  The traverser only
   finds input types and calls a callback for them as many times as the output
   needs to appear: it doesn't try to figure out anything about where the output
   might go.  That's done by the callback based on whether the type is
   marked conflicted or not.

   [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
   ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
   Conflicted types have all necessary dictionaries created, and then we emit
   the type into each dictionary in turn, working over each input CTF type
   corresponding to each hash value and using ctf_dedup_id_to_target to map each
   input ctf_id_t into the corresponding type in the output (dealing with input
   ctf_id_t's with parents in the process by simply chasing to the parent dict
   if the type we're looking up is in there).  Emitting structures involves
   simply noting that the members of this structure need emission later on:
   because you cannot cite a single structure member from another type, we avoid
   emitting the members at this stage to keep recursion depths down a bit.

   At this point, if we have by some mischance decided that two different types
   with child types that hash to different values have in fact got the same hash
   value themselves and *not* marked it conflicting, the type walk will walk
   only *one* of them and in all likelihood we'll find that we are trying to
   emit a type into some child dictionary that references a type that was never
   emitted into that dictionary and assertion-fail.  This always indicates a bug
   in the conflictedness marking machinery or the hashing code, or both.

   ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
   thing, alluded to above: if this is a conflicted tagged structure or union,
   and the target is the shared dict (i.e., the type we're being asked to emit
   is not itself conflicted so can't just point straight at the conflicted
   type), we instead synthesise a forward with the same name, emit it into the
   shared dict, record it in cd_output_emission_conflicted_forwards so that we
   don't re-emit it, and return it.  This means that cycles that contain
   conflicts do not cause the entire cycle to be replicated in every child: only
   that piece of the cycle which takes you back as far as the closest tagged
   struct/union needs to be replicated.  This trick means that no part of the
   deduplicator needs a cycle detector: every recursive walk can stop at tagged
   structures.

   [ctf_dedup_emit_struct_members]
   The final stage of emission is to walk over all structures with members
   that need emission and emit all of them. Every type has been emitted at
   this stage, so emission cannot fail.

   [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
   Finally, we update the input -> output type ID mappings used by the ctf-link
   machinery to update all the other sections.  This is surprisingly expensive
   and may be replaced with a scheme which lets the ctf-link machinery extract
   the needed info directly from the deduplicator.  */

/* Possible future optimizations are flagged with 'optimization opportunity'
   below.  */

/* Global optimization opportunity: a GC pass, eliminating types with no direct
   or indirect citations from the other sections in the dictionary.  */

/* Internal flag values for ctf_dedup_hash_type.  */

/* Child call: consider forwardable types equivalent to forwards or stubs below
   this point.  */
#define CTF_DEDUP_HASH_INTERNAL_CHILD         0x01

/* Transform references to single ctf_id_ts in passed-in inputs into a number
   that will fit in a uint64_t.  Needs rethinking if CTF_MAX_TYPE is boosted.

   On 32-bit platforms, we pack things together differently: see the note
   above.  */

#if UINTPTR_MAX < UINT64_MAX
# define IDS_NEED_ALLOCATION 1
# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
#else
# define CTF_DEDUP_GID(fp, input, type)	\
  (void *) (((uint64_t) input) << 32 | (type))
# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
#endif

#ifdef IDS_NEED_ALLOCATION

 /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
    into the pool.  It is notably less efficient than the 64-bit direct storage
    approach, but with a smaller key, this is all we can do.  */

static void *
id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
{
  const void *lookup;
  ctf_type_id_key_t *dynkey = NULL;
  ctf_type_id_key_t key = { input_num, type };

  if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
			      &key, &lookup, NULL))
    {
      if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
	goto oom;
      memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));

      if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
	goto oom;

      ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
			     dynkey, &lookup, NULL);
    }
  /* We use a raw assert() here because there isn't really a way to get any sort
     of error back from this routine without vastly complicating things for the
     much more common case of !IDS_NEED_ALLOCATION.  */
  assert (lookup);
  return (void *) lookup;

 oom:
  free (dynkey);
  ctf_set_errno (fp, ENOMEM);
  return NULL;
}

static int
packed_id_to_input (const void *id)
{
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;

  return key->ctii_input_num;
}

static ctf_id_t
packed_id_to_type (const void *id)
{
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;

  return key->ctii_type;
}
#endif

/* Make an element in a dynhash-of-dynsets, or return it if already present.  */

static ctf_dynset_t *
make_set_element (ctf_dynhash_t *set, const void *key)
{
  ctf_dynset_t *element;

  if ((element = ctf_dynhash_lookup (set, key)) == NULL)
    {
      if ((element = ctf_dynset_create (htab_hash_string,
					htab_eq_string,
					NULL)) == NULL)
	return NULL;

      if (ctf_dynhash_insert (set, (void *) key, element) < 0)
	{
	  ctf_dynset_destroy (element);
	  return NULL;
	}
    }

  return element;
}

/* Initialize the dedup atoms table.  */
int
ctf_dedup_atoms_init (ctf_dict_t *fp)
{
  if (fp->ctf_dedup_atoms)
    return 0;

  if (!fp->ctf_dedup_atoms_alloc)
    {
      if ((fp->ctf_dedup_atoms_alloc
	   = ctf_dynset_create (htab_hash_string, htab_eq_string,
				free)) == NULL)
	return ctf_set_errno (fp, ENOMEM);
    }
  fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
  return 0;
}

/* Intern things in the dedup atoms table.  */

static const char *
intern (ctf_dict_t *fp, char *atom)
{
  const void *foo;

  if (atom == NULL)
    return NULL;

  if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
    {
      if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
	{
	  ctf_set_errno (fp, ENOMEM);
	  return NULL;
	}
      foo = atom;
    }
  else
    free (atom);

  return (const char *) foo;
}

/* Add an indication of the namespace to a type name in a way that is not valid
   for C identifiers.  Used to maintain hashes of type names to other things
   while allowing for the four C namespaces (normal, struct, union, enum).
   Return a pointer into the cd_decorated_names atoms table.  */
static const char *
ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  const char *ret;
  const char *k;
  char *p;
  size_t i;

  switch (kind)
    {
    case CTF_K_STRUCT:
      k = "s ";
      i = 0;
      break;
    case CTF_K_UNION:
      k = "u ";
      i = 1;
      break;
    case CTF_K_ENUM:
      k = "e ";
      i = 2;
      break;
    default:
      k = "";
      i = 3;
    }

  if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
    {
      char *str;

      if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
	goto oom;

      p = stpcpy (str, k);
      strcpy (p, name);
      ret = intern (fp, str);
      if (!ret)
	goto oom;

      if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
	goto oom;
    }

  return ret;

 oom:
  ctf_set_errno (fp, ENOMEM);
  return NULL;
}

/* Hash a type, possibly debugging-dumping something about it as well.  */
static inline void
ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
		    const char *description _libctf_unused_,
		    unsigned long depth _libctf_unused_)
{
  ctf_sha1_add (sha1, buf, len);

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_sha1_t tmp;
  char tmp_hval[CTF_SHA1_SIZE];
  tmp = *sha1;
  ctf_sha1_fini (&tmp, tmp_hval);
  ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
	       tmp_hval);
#endif
}

static const char *
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
		     ctf_dict_t **inputs, uint32_t *parents,
		     int input_num, ctf_id_t type, int flags,
		     unsigned long depth,
		     int (*populate_fun) (ctf_dict_t *fp,
					  ctf_dict_t *input,
					  ctf_dict_t **inputs,
					  int input_num,
					  ctf_id_t type,
					  void *id,
					  const char *decorated_name,
					  const char *hash));

/* Determine whether this type is being hashed as a stub (in which case it is
   unsafe to cache it).  */
static int
ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
{
  /* We can cache all types unless we are recursing to children and are hashing
     in a tagged struct, union or forward, all of which are replaced with their
     decorated name as a stub and will have different hash values when hashed at
     the top level.  */

  return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
	  && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
	      || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
					    || fwdkind == CTF_K_UNION))));
}

/* Populate struct_origin if need be (not already populated, or populated with
   a different origin), in which case it must go to -1, "shared".)

   Only called for forwards or forwardable types with names, when the link mode
   is CTF_LINK_SHARE_DUPLICATED.  */
static int
ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
			 void *id)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  void *origin;
  int populate_origin = 0;

  if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
    {
      if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
	  && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
	{
	  populate_origin = 1;
	  origin = CTF_DEDUP_GID (fp, -1, -1);
	}
    }
  else
    {
      populate_origin = 1;
      origin = id;
    }

  if (populate_origin)
    if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
      return ctf_set_errno (fp, errno);
  return 0;
}

/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
   calls, recursively).  */

static const char *
ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
		      uint32_t *parents, int input_num, ctf_id_t type,
		      void *type_id, const ctf_type_t *tp, const char *name,
		      const char *decorated, int kind, int flags,
		      unsigned long depth,
		      int (*populate_fun) (ctf_dict_t *fp,
					   ctf_dict_t *input,
					   ctf_dict_t **inputs,
					   int input_num,
					   ctf_id_t type,
					   void *id,
					   const char *decorated_name,
					   const char *hash))
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  ctf_sha1_t hash;
  ctf_id_t child_type;
  char hashbuf[CTF_SHA1_SIZE];
  const char *hval = NULL;
  const char *whaterr;
  int err = 0;

  const char *citer = NULL;
  ctf_dynset_t *citers = NULL;

  /* Add a citer to the citers set.  */
#define ADD_CITER(citers, hval)						\
  do									\
    {									\
      whaterr = N_("error updating citers");				\
      if (!citers)							\
	if ((citers = ctf_dynset_create (htab_hash_string,		\
					 htab_eq_string,		\
					 NULL)) == NULL)		\
	  goto oom;							\
      if (ctf_dynset_cinsert (citers, hval) < 0)			\
	goto oom;							\
    }									\
  while (0)

  /* If this is a named struct or union or a forward to one, and this is a child
     traversal, treat this type as if it were a forward -- do not recurse to
     children, ignore all content not already hashed in, and hash in the
     decorated name of the type instead.  */

  if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
    {
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
      ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
		   "stub with decorated name %s\n", decorated);

#endif
      ctf_sha1_init (&hash);
      ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
			  "decorated struct/union/forward name", depth);
      ctf_sha1_fini (&hash, hashbuf);

      if ((hval = intern (fp, strdup (hashbuf))) == NULL)
	{
	  ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
				    "stub hashing for type with GID %p"),
			ctf_link_input_name (input), input_num, type_id);
	  return NULL;				/* errno is set for us.  */
	}

      /* In share-duplicated link mode, make sure the origin of this type is
	 recorded, even if this is a type in a parent dict which will not be
	 directly traversed.  */
      if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
	  && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
	return NULL;				/* errno is set for us.  */

      return hval;
    }

  /* Now ensure that subsequent recursive calls (but *not* the top-level call)
     get this treatment.  */
  flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;

  /* If this is a struct, union, or forward with a name, record the unique
     originating input TU, if there is one.  */

  if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
    if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
	&& ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
      return NULL;				/* errno is set for us.  */

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
	       depth, input_num, type, kind, name ? name : "");
#endif

  /* Some type kinds don't have names: the API provides no way to set the name,
     so the type the deduplicator outputs will be nameless even if the input
     somehow has a name, and the name should not be mixed into the hash.  */

  switch (kind)
    {
    case CTF_K_POINTER:
    case CTF_K_ARRAY:
    case CTF_K_FUNCTION:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_SLICE:
      name = NULL;
    }

  /* Mix in invariant stuff, transforming the type kind if needed.  Note that
     the vlen is *not* hashed in: the actual variable-length info is hashed in
     instead, piecewise.  The vlen is not part of the type, only the
     variable-length data is: identical types with distinct vlens are quite
     possible.  Equally, we do not want to hash in the isroot flag: both the
     compiler and the deduplicator set the nonroot flag to indicate clashes with
     *other types in the same TU* with the same name: so two types can easily
     have distinct nonroot flags, yet be exactly the same type.*/

  ctf_sha1_init (&hash);
  if (name)
    ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
  ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);

  /* Hash content of this type.  */
  switch (kind)
    {
    case CTF_K_UNKNOWN:
      /* No extra state.  */
      break;
    case CTF_K_FORWARD:

      /* Add the forwarded kind, stored in the ctt_type.  */
      ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
			  "forwarded kind", depth);
      break;
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
      {
	ctf_encoding_t ep;
	memset (&ep, 0, sizeof (ctf_encoding_t));

	ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
			    depth);
	if (ctf_type_encoding (input, type, &ep) < 0)
	  {
	    whaterr = N_("error getting encoding");
	    goto input_err;
	  }
	ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
			    depth);
	break;
      }
      /* Types that reference other types.  */
    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
      /* Hash the referenced type, if not already hashed, and mix it in.  */
      child_type = ctf_type_reference (input, type);
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
				       child_type, flags, depth,
				       populate_fun)) == NULL)
	{
	  whaterr = N_("error doing referenced type hashing");
	  goto err;
	}
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
			  depth);
      citer = hval;

      break;

      /* The slices of two types hash identically only if the type they overlay
	 also has the same encoding.  This is not ideal, but in practice will work
	 well enough.  We work directly rather than using the CTF API because
	 we do not want the slice's normal automatically-shine-through
	 semantics to kick in here.  */
    case CTF_K_SLICE:
      {
	const ctf_slice_t *slice;
	const ctf_dtdef_t *dtd;
	ssize_t size;
	ssize_t increment;

	child_type = ctf_type_reference (input, type);
	ctf_get_ctt_size (input, tp, &size, &increment);
	ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);

	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 child_type, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing slice-referenced type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
			    depth);
	citer = hval;

	if ((dtd = ctf_dynamic_type (input, type)) != NULL)
	  slice = (ctf_slice_t *) dtd->dtd_vlen;
	else
	  slice = (ctf_slice_t *) ((uintptr_t) tp + increment);

	ctf_dedup_sha1_add (&hash, &slice->cts_offset,
			    sizeof (slice->cts_offset), "slice offset", depth);
	ctf_dedup_sha1_add (&hash, &slice->cts_bits,
			    sizeof (slice->cts_bits), "slice bits", depth);
	break;
      }

    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;

	if (ctf_array_info (input, type, &ar) < 0)
	  {
	    whaterr = N_("error getting array info");
	    goto input_err;
	  }

	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 ar.ctr_contents, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing array contents type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
			    depth);
	ADD_CITER (citers, hval);

	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 ar.ctr_index, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing array index type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
			    depth);
	ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
			    "element count", depth);
	ADD_CITER (citers, hval);

	break;
      }
    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;

	if (ctf_func_type_info (input, type, &fi) < 0)
	  {
	    whaterr = N_("error getting func type info");
	    goto input_err;
	  }

	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 fi.ctc_return, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error getting func return type");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
			    depth);
	ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
			    "func argc", depth);
	ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
			    "func flags", depth);
	ADD_CITER (citers, hval);

	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    err = ENOMEM;
	    whaterr = N_("error doing memory allocation");
	    goto err;
	  }

	if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
	  {
	    free (args);
	    whaterr = N_("error getting func arg type");
	    goto input_err;
	  }
	for (j = 0; j < fi.ctc_argc; j++)
	  {
	    if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
					     input_num, args[j], flags, depth,
					     populate_fun)) == NULL)
	      {
		free (args);
		whaterr = N_("error doing func arg type hashing");
		goto err;
	      }
	    ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
				depth);
	    ADD_CITER (citers, hval);
	  }
	free (args);
	break;
      }
    case CTF_K_ENUM:
      {
	int val;
	const char *ename;

	ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
			    "enum size", depth);
	while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
	  {
	    ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
				depth);
	    ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  {
	    whaterr = N_("error doing enum member iteration");
	    goto input_err;
	  }
	break;
      }
    /* Top-level only.  */
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	ssize_t offset;
	const char *mname;
	ctf_id_t membtype;
	ssize_t size;

	ctf_get_ctt_size (input, tp, &size, NULL);
	ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
			    depth);

	while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
					  0)) >= 0)
	  {
	    if (mname == NULL)
	      mname = "";
	    ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
				"member name", depth);

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	    ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
#endif
	    if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
					     input_num, membtype, flags, depth,
					     populate_fun)) == NULL)
	      {
		whaterr = N_("error doing struct/union member type hashing");
		goto iterr;
	      }

	    ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
				depth);
	    ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
				depth);
	    ADD_CITER (citers, hval);
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  {
	    whaterr = N_("error doing struct/union member iteration");
	    goto input_err;
	  }
	break;
      }
    default:
      whaterr = N_("error: unknown type kind");
      goto err;
    }
  ctf_sha1_fini (&hash, hashbuf);

  if ((hval = intern (fp, strdup (hashbuf))) == NULL)
    {
      whaterr = N_("cannot intern hash");
      goto oom;
    }

  /* Populate the citers for this type's subtypes, now the hash for the type
     itself is known.  */
  whaterr = N_("error tracking citers");

  if (citer)
    {
      ctf_dynset_t *citer_hashes;

      if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
	goto oom;
      if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
	goto oom;
    }
  else if (citers)
    {
      const void *k;

      while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
	{
	  ctf_dynset_t *citer_hashes;
	  citer = (const char *) k;

	  if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
	    goto oom;

	  if (ctf_dynset_exists (citer_hashes, hval, NULL))
	    continue;
	  if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
	    goto oom;
	}
      if (err != ECTF_NEXT_END)
	goto err;
      ctf_dynset_destroy (citers);
    }

  return hval;

 iterr:
  ctf_next_destroy (i);
 input_err:
  err = ctf_errno (input);
 err:
  ctf_sha1_fini (&hash, NULL);
  ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
			      "kind %i"), ctf_link_input_name (input),
		input_num, gettext (whaterr), type, kind);
  return NULL;
 oom:
  ctf_set_errno (fp, errno);
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
			    "kind %i"), ctf_link_input_name (input),
		input_num, gettext (whaterr), type, kind);
  return NULL;
}

/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
   state is stored.  INPUT_NUM is the number of this input in the set of inputs.
   Record its hash in FP's cd_type_hashes once it is known.  PARENTS is
   described in the comment above ctf_dedup.

   (The flags argument currently accepts only the flag
   CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
   struct/union hashing in recursive traversals below the TYPE.)

   We use the CTF API rather than direct access wherever possible, because types
   that appear identical through the API should be considered identical, with
   one exception: slices should only be considered identical to other slices,
   not to the corresponding unsliced type.

   The POPULATE_FUN is a mandatory hook that populates other mappings with each
   type we see (excepting types that are recursively hashed as stubs).  The
   caller should not rely on the order of calls to this hook, though it will be
   called at least once for every non-stub reference to every type.

   Returns a hash value (an atom), or NULL on error.  */

static const char *
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
		     ctf_dict_t **inputs, uint32_t *parents,
		     int input_num, ctf_id_t type, int flags,
		     unsigned long depth,
		     int (*populate_fun) (ctf_dict_t *fp,
					  ctf_dict_t *input,
					  ctf_dict_t **inputs,
					  int input_num,
					  ctf_id_t type,
					  void *id,
					  const char *decorated_name,
					  const char *hash))
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  const ctf_type_t *tp;
  void *type_id;
  const char *hval = NULL;
  const char *name;
  const char *whaterr;
  const char *decorated = NULL;
  uint32_t kind, fwdkind;

  depth++;

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
#endif

  /* The unimplemented type doesn't really exist, but must be noted in parent
     hashes: so it gets a fixed, arbitrary hash.  */
  if (type == 0)
    return "00000000000000000000";

  /* Possible optimization: if the input type is in the parent type space, just
     copy recursively-cited hashes from the parent's types into the output
     mapping rather than rehashing them.  */

  type_id = CTF_DEDUP_GID (fp, input_num, type);

  if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
    {
      ctf_set_errno (fp, ctf_errno (input));
      ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
				"flags %x"), ctf_link_input_name (input),
		    input_num, type, flags);
      return NULL;		/* errno is set for us.  */
    }

  kind = LCTF_INFO_KIND (input, tp->ctt_info);
  name = ctf_strraw (input, tp->ctt_name);

  if (tp->ctt_name == 0 || !name || name[0] == '\0')
    name = NULL;

  /* Decorate the name appropriately for the namespace it appears in: forwards
     appear in the namespace of their referent.  */

  fwdkind = kind;
  if (name)
    {
      if (kind == CTF_K_FORWARD)
	fwdkind = tp->ctt_type;

      if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
	return NULL;				/* errno is set for us.  */
    }

  /* If not hashing a stub, we can rely on various sorts of caches.

     Optimization opportunity: we may be able to avoid calling the populate_fun
     sometimes here.  */

  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
    {
      if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
	{
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	  ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
		       type,  hval);
#endif
	  populate_fun (fp, input, inputs, input_num, type, type_id,
			decorated, hval);

	  return hval;
	}
    }

  /* We have never seen this type before, and must figure out its hash and the
     hashes of the types it cites.

     Hash this type, and call ourselves recursively.  (The hashing part is
     optional, and is disabled if overidden_hval is set.)  */

  if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
				    type, type_id, tp, name, decorated,
				    kind, flags, depth, populate_fun)) == NULL)
    return NULL;				/* errno is set for us.  */

  /* The hash of this type is now known: record it unless caching is unsafe
     because the hash value will change later.  This will be the final storage
     of this type's hash, so we call the population function on it.  */

  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
    {
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
      ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
		   type_id, name ? name : "", hval);
#endif

      if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
	{
	  whaterr = N_("error hash caching");
	  goto oom;
	}

      if (populate_fun (fp, input, inputs, input_num, type, type_id,
			decorated, hval) < 0)
	{
	  whaterr = N_("error calling population function");
	  goto err;				/* errno is set for us. */
	}
    }

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
	       input_num, type, hval);
#endif
  return hval;

 oom:
  ctf_set_errno (fp, errno);
 err:
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
			    "type %lx, kind %i"),
		ctf_link_input_name (input), input_num,
		gettext (whaterr), type, kind);
  return NULL;
}

/* Populate a number of useful mappings not directly used by the hashing
   machinery: the output mapping, the cd_name_counts mapping from name -> hash
   -> count of hashval deduplication state for a given hashed type, and the
   cd_output_first_tu mapping.  */

static int
ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
			     ctf_dict_t **inputs _libctf_unused_,
			     int input_num _libctf_unused_,
			     ctf_id_t type _libctf_unused_, void *id,
			     const char *decorated_name,
			     const char *hval)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_dynset_t *type_ids;
  ctf_dynhash_t *name_counts;
  long int count;

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
	       hval, decorated_name ? decorated_name : "(unnamed)",
	       input_num, type, ctf_link_input_name (input));

  const char *orig_hval;

  /* Make sure we never map a single GID to multiple hash values.  */

  if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
    {
      /* We can rely on pointer identity here, since all hashes are
	 interned.  */
      if (!ctf_assert (fp, orig_hval == hval))
	return -1;
    }
  else
    if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
      return ctf_set_errno (fp, errno);
#endif

  /* Record the type in the output mapping: if this is the first time this type
     has been seen, also record it in the cd_output_first_gid.  Because we
     traverse types in TU order and we do not merge types after the hashing
     phase, this will be the lowest TU this type ever appears in.  */

  if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
				      hval)) == NULL)
    {
      if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
	return ctf_set_errno (fp, errno);

      if ((type_ids = ctf_dynset_create (htab_hash_pointer,
					 htab_eq_pointer,
					 NULL)) == NULL)
	return ctf_set_errno (fp, errno);
      if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
			      type_ids) < 0)
	{
	  ctf_dynset_destroy (type_ids);
	  return ctf_set_errno (fp, errno);
	}
    }
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
    {
      /* Verify that all types with this hash are of the same kind, and that the
	 first TU a type was seen in never falls.  */

      int err;
      const void *one_id;
      ctf_next_t *i = NULL;
      int orig_kind = ctf_type_kind_unsliced (input, type);
      int orig_first_tu;

      orig_first_tu = CTF_DEDUP_GID_TO_INPUT
	(ctf_dynhash_lookup (d->cd_output_first_gid, hval));
      if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
	return -1;

      while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
	{
	  ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
	  ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
	  if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
	    {
	      ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
			    "for hash %s named %s: %p/%lx from %s is "
			    "kind %i, but newly-added %p/%lx from %s is "
			    "kind %i", hval,
			    decorated_name ? decorated_name : "(unnamed)",
			    (void *) foo, bar,
			    ctf_link_input_name (foo),
			    ctf_type_kind_unsliced (foo, bar),
			    (void *) input, type,
			    ctf_link_input_name (input), orig_kind);
	      if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
			       == orig_kind))
		return -1;
	    }
	}
      if (err != ECTF_NEXT_END)
	return ctf_set_errno (fp, err);
    }
#endif

  /* This function will be repeatedly called for the same types many times:
     don't waste time reinserting the same keys in that case.  */
  if (!ctf_dynset_exists (type_ids, id, NULL)
      && ctf_dynset_insert (type_ids, id) < 0)
    return ctf_set_errno (fp, errno);

  /* The rest only needs to happen for types with names.  */
  if (!decorated_name)
    return 0;

  /* Count the number of occurrences of the hash value for this GID.  */

  hval = ctf_dynhash_lookup (d->cd_type_hashes, id);

  /* Mapping from name -> hash(hashval, count) not already present?  */
  if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
					 decorated_name)) == NULL)
    {
      if ((name_counts = ctf_dynhash_create (ctf_hash_string,
					     ctf_hash_eq_string,
					     NULL, NULL)) == NULL)
	  return ctf_set_errno (fp, errno);
      if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
			       name_counts) < 0)
	{
	  ctf_dynhash_destroy (name_counts);
	  return ctf_set_errno (fp, errno);
	}
    }

  /* This will, conveniently, return NULL (i.e. 0) for a new entry.  */
  count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);

  if (ctf_dynhash_cinsert (name_counts, hval,
			   (const void *) (uintptr_t) (count + 1)) < 0)
    return ctf_set_errno (fp, errno);

  return 0;
}

/* Mark a single hash as corresponding to a conflicting type.  Mark all types
   that cite it as conflicting as well, terminating the recursive walk only when
   types that are already conflicted or types do not cite other types are seen.
   (Tagged structures and unions do not appear in the cd_citers graph, so the
   walk also terminates there, since any reference to a conflicting structure is
   just going to reference an unconflicting forward instead: see
   ctf_dedup_maybe_synthesize_forward.)  */

static int
ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  const void *k;
  ctf_dynset_t *citers;

  /* Mark conflicted if not already so marked.  */
  if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
    return 0;

  ctf_dprintf ("Marking %s as conflicted\n", hval);

  if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
    {
      ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
      ctf_set_errno (fp, errno);
      return -1;
    }

  /* If any types cite this type, mark them conflicted too.  */
  if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
    return 0;

  while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
    {
      const char *hv = (const char *) k;

      if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
	continue;

      if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
	{
	  ctf_next_destroy (i);
	  return -1;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    return ctf_set_errno (fp, err);

  return 0;
}

/* Look up a type kind from the output mapping, given a type hash value.  */
static int
ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  void *id;
  ctf_dynset_t *type_ids;

  /* Precondition: the output mapping is populated.  */
  if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
    return -1;

  /* Look up some GID from the output hash for this type.  (They are all
     identical, so we can pick any).  Don't assert if someone calls this
     function wrongly, but do assert if the output mapping knows about the hash,
     but has nothing associated with it.  */

  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
  if (!type_ids)
    {
      ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
      return ctf_set_errno (fp, ECTF_INTERNAL);
    }
  id = ctf_dynset_lookup_any (type_ids);
  if (!ctf_assert (fp, id))
    return -1;

  return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
				 CTF_DEDUP_GID_TO_TYPE (id));
}

/* Used to keep a count of types: i.e. distinct type hash values.  */
typedef struct ctf_dedup_type_counter
{
  ctf_dict_t *fp;
  ctf_dict_t **inputs;
  int num_non_forwards;
} ctf_dedup_type_counter_t;

/* Add to the type counter for one name entry from the cd_name_counts.  */
static int
ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
{
  const char *hval = (const char *) key_;
  int kind;
  ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;

  kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);

  /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
     smuggle errors out of here.  */

  if (kind != CTF_K_FORWARD)
    {
      arg->num_non_forwards++;
      ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
		   hval, kind, arg->num_non_forwards);
    }

  /* We only need to know if there is more than one non-forward (an ambiguous
     type): don't waste time iterating any more than needed to figure that
     out.  */

  if (arg->num_non_forwards > 1)
    return 1;

  return 0;
}

/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
   most common.  */
static int
ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  void *k;
  void *v;
  int err;
  const char *whaterr;

  /* Go through cd_name_counts for all CTF namespaces in turn.  */

  while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
    {
      const char *decorated = (const char *) k;
      ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
      ctf_next_t *j = NULL;

      /* If this is a forwardable kind or a forward (which we can tell without
	 consulting the type because its decorated name has a space as its
	 second character: see ctf_decorate_type_name), we are only interested
	 in whether this name has many hashes associated with it: any such name
	 is necessarily ambiguous, and types with that name are conflicting.
	 Once we know whether this is true, we can skip to the next name: so use
	 ctf_dynhash_iter_find for efficiency.  */

      if (decorated[0] != '\0' && decorated[1] == ' ')
	{
	  ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
	  ctf_dynhash_t *counts = (ctf_dynhash_t *) v;

	  ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);

	  /* Check for assertion failure and pass it up.  */
	  if (ctf_errno (fp) == ECTF_INTERNAL)
	    goto assert_err;

	  if (counters.num_non_forwards > 1)
	    {
	      const void *hval_;

	      while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
		{
		  const char *hval = (const char *) hval_;
		  ctf_dynset_t *type_ids;
		  void *id;
		  int kind;

		  /* Dig through the types in this hash to find the non-forwards
		     and mark them ambiguous.  */

		  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);

		  /* Nonexistent? Must be a forward with no referent.  */
		  if (!type_ids)
		    continue;

		  id = ctf_dynset_lookup_any (type_ids);

		  kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
					CTF_DEDUP_GID_TO_TYPE (id));

		  if (kind != CTF_K_FORWARD)
		    {
		      ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
				   "of many non-forward GIDs for %s\n", id,
				   hval, (char *) k);
		      ctf_dedup_mark_conflicting_hash (fp, hval);
		    }
		}
	      if (err != ECTF_NEXT_END)
		{
		  whaterr = N_("error marking conflicting structs/unions");
		  goto iterr;
		}
	    }
	}
      else
	{
	  /* This is an ordinary type.  Find the most common type with this
	     name, and mark it unconflicting: all others are conflicting.  (We
	     cannot do this sort of popularity contest with forwardable types
	     because any forwards to that type would be immediately unified with
	     the most-popular type on insertion, and we want conflicting structs
	     et al to have all forwards left intact, so the user is notified
	     that this type is conflicting.  TODO: improve this in future by
	     setting such forwards non-root-visible.)

	     If multiple distinct types are "most common", pick the one that
	     appears first on the link line, and within that, the one with the
	     lowest type ID.  (See sort_output_mapping.)  */

	  const void *key;
	  const void *count;
	  const char *hval;
	  long max_hcount = -1;
	  void *max_gid = NULL;
	  const char *max_hval = NULL;

	  if (ctf_dynhash_elements (name_counts) <= 1)
	    continue;

	  /* First find the most common.  */
	  while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
	    {
	      hval = (const char *) key;

	      if ((long int) (uintptr_t) count > max_hcount)
		{
		  max_hcount = (long int) (uintptr_t) count;
		  max_hval = hval;
		  max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
		}
	      else if ((long int) (uintptr_t) count == max_hcount)
		{
		  void *gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);

		  if (CTF_DEDUP_GID_TO_INPUT(gid) < CTF_DEDUP_GID_TO_INPUT(max_gid)
		      || (CTF_DEDUP_GID_TO_INPUT(gid) == CTF_DEDUP_GID_TO_INPUT(max_gid)
			  && CTF_DEDUP_GID_TO_TYPE(gid) < CTF_DEDUP_GID_TO_TYPE(max_gid)))
		    {
		      max_hval = hval;
		      max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
		    }
		}
	    }
	  if (err != ECTF_NEXT_END)
	    {
	      whaterr = N_("error finding commonest conflicting type");
	      goto iterr;
	    }

	  /* Mark all the others as conflicting.   */
	  while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
	    {
	      hval = (const char *) key;
	      if (strcmp (max_hval, hval) == 0)
		continue;

	      ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
			   hval, (const char *) k);
	      if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
		{
		  whaterr = N_("error marking hashes as conflicting");
		  goto err;
		}
	    }
	  if (err != ECTF_NEXT_END)
	    {
	      whaterr = N_("marking uncommon conflicting types");
	      goto iterr;
	    }
	}
    }
  if (err != ECTF_NEXT_END)
    {
      whaterr = N_("scanning for ambiguous names");
      goto iterr;
    }

  return 0;

 err:
  ctf_next_destroy (i);
  ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
  return -1;					/* errno is set for us.  */

 iterr:
  ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
  return ctf_set_errno (fp, err);

 assert_err:
  ctf_next_destroy (i);
  return -1; 					/* errno is set for us.  */
}

/* Initialize the deduplication machinery.  */

static int
ctf_dedup_init (ctf_dict_t *fp)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  size_t i;

  if (ctf_dedup_atoms_init (fp) < 0)
      goto oom;

#if IDS_NEED_ALLOCATION
  if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
						ctf_hash_eq_type_id_key,
						free, NULL)) == NULL)
    goto oom;
#endif

  for (i = 0; i < 4; i++)
    {
      if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
							  ctf_hash_eq_string,
							  NULL, NULL)) == NULL)
	goto oom;
    }

  if ((d->cd_name_counts
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
    goto oom;

  if ((d->cd_type_hashes
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer,
			     NULL, NULL)) == NULL)
    goto oom;

  if ((d->cd_struct_origin
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string,
			     NULL, NULL)) == NULL)
    goto oom;

  if ((d->cd_citers
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
    goto oom;

  if ((d->cd_output_mapping
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
    goto oom;

  if ((d->cd_output_first_gid
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string,
			     NULL, NULL)) == NULL)
    goto oom;

#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  if ((d->cd_output_mapping_guard
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer, NULL, NULL)) == NULL)
    goto oom;
#endif

  if ((d->cd_input_nums
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer,
			     NULL, NULL)) == NULL)
    goto oom;

  if ((d->cd_emission_struct_members
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer,
			     NULL, NULL)) == NULL)
    goto oom;

  if ((d->cd_conflicting_types
       = ctf_dynset_create (htab_hash_string,
			    htab_eq_string, NULL)) == NULL)
    goto oom;

  return 0;

 oom:
  ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
				 "out of memory"));
  return ctf_set_errno (fp, ENOMEM);
}

/* No ctf_dedup calls are allowed after this call other than starting a new
   deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups).  */
void
ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  size_t i;

  /* ctf_dedup_atoms is kept across links.  */
#if IDS_NEED_ALLOCATION
  ctf_dynhash_destroy (d->cd_id_to_dict_t);
#endif
  for (i = 0; i < 4; i++)
    ctf_dynhash_destroy (d->cd_decorated_names[i]);
  ctf_dynhash_destroy (d->cd_name_counts);
  ctf_dynhash_destroy (d->cd_type_hashes);
  ctf_dynhash_destroy (d->cd_struct_origin);
  ctf_dynhash_destroy (d->cd_citers);
  ctf_dynhash_destroy (d->cd_output_mapping);
  ctf_dynhash_destroy (d->cd_output_first_gid);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dynhash_destroy (d->cd_output_mapping_guard);
#endif
  ctf_dynhash_destroy (d->cd_input_nums);
  ctf_dynhash_destroy (d->cd_emission_struct_members);
  ctf_dynset_destroy (d->cd_conflicting_types);

  /* Free the per-output state.  */
  if (outputs)
    {
      for (i = 0; i < noutputs; i++)
	{
	  ctf_dedup_t *od = &outputs[i]->ctf_dedup;
	  ctf_dynhash_destroy (od->cd_output_emission_hashes);
	  ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
	  ctf_dict_close (od->cd_output);
	}
    }
  memset (d, 0, sizeof (ctf_dedup_t));
}

/* Return 1 if this type is cited by multiple input dictionaries.  */

static int
ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
				const char *hval)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_dynset_t *type_ids;
  ctf_next_t *i = NULL;
  void *id;
  ctf_dict_t *found = NULL, *relative_found = NULL;
  const char *type_id;
  ctf_dict_t *input_fp;
  ctf_id_t input_id;
  const char *name;
  const char *decorated;
  int fwdkind;
  int multiple = 0;
  int err;

  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
  if (!ctf_assert (output, type_ids))
    return -1;

  /* Scan across the IDs until we find proof that two disjoint dictionaries
     are referenced.  Exit as soon as possible.  Optimization opportunity, but
     possibly not worth it, given that this is only executed in
     CTF_LINK_SHARE_DUPLICATED mode.  */

  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
    {
      ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];

      if (fp == found || fp == relative_found)
	continue;

      if (!found)
	{
	  found = fp;
	  continue;
	}

      if (!relative_found
	  && (fp->ctf_parent == found || found->ctf_parent == fp))
	{
	  relative_found = fp;
	  continue;
	}

      multiple = 1;
      ctf_next_destroy (i);
      break;
    }
  if ((err != ECTF_NEXT_END) && (err != 0))
    {
      ctf_err_warn (output, 0, err, _("iteration error "
				      "propagating conflictedness"));
      return ctf_set_errno (output, err);
    }

  if (multiple)
    return multiple;

  /* This type itself does not appear in multiple input dicts: how about another
     related type with the same name (e.g. a forward if this is a struct,
     etc).  */

  type_id = ctf_dynset_lookup_any (type_ids);
  if (!ctf_assert (output, type_id))
    return -1;

  input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
  input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
  fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
  name = ctf_type_name_raw (input_fp, input_id);

  if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
      && name[0] != '\0')
    {
      const void *origin;

      if ((decorated = ctf_decorate_type_name (output, name,
					       fwdkind)) == NULL)
	return -1;				/* errno is set for us.  */

      origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
      if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
	multiple = 1;
    }

  return multiple;
}

/* Demote unconflicting types which reference only one input, or which reference
   two inputs where one input is the parent of the other, into conflicting
   types.  Only used if the link mode is CTF_LINK_SHARE_DUPLICATED.  */

static int
ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  const void *k;
  ctf_dynset_t *to_mark = NULL;

  if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
				    NULL)) == NULL)
    goto err_no;

  while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
    {
      const char *hval = (const char *) k;
      int conflicting;

      /* Types referenced by only one dict, with no type appearing under that
	 name elsewhere, are marked conflicting.  */

      conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);

      if (conflicting < 0)
	goto err;				/* errno is set for us.  */

      if (conflicting)
	if (ctf_dynset_cinsert (to_mark, hval) < 0)
	  goto err;
    }
  if (err != ECTF_NEXT_END)
    goto iterr;

  while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
    {
      const char *hval = (const char *) k;

      if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
	goto err;
    }
  if (err != ECTF_NEXT_END)
    goto iterr;

  ctf_dynset_destroy (to_mark);

  return 0;

 err_no:
  ctf_set_errno (output, errno);
 err:
  err = ctf_errno (output);
  ctf_next_destroy (i);
 iterr:
  ctf_dynset_destroy (to_mark);
  ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
  return ctf_set_errno (output, err);
}

/* The core deduplicator.  Populate cd_output_mapping in the output ctf_dedup
   with a mapping of all types that belong in this dictionary and where they
   come from, and cd_conflicting_types with an indication of whether each type
   is conflicted or not.  OUTPUT is the top-level output: INPUTS is the array of
   input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
   array with each element corresponding to a input which is a child dict set to
   the number in the INPUTS array of that input's parent.

   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
   mapping: only one output will result.

   Only deduplicates: does not emit the types into the output.  Call
   ctf_dedup_emit afterwards to do that.  */

int
ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
	   uint32_t *parents, int cu_mapped)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  size_t i;
  ctf_next_t *it = NULL;

  if (ctf_dedup_init (output) < 0)
    return -1; 					/* errno is set for us.  */

  for (i = 0; i < ninputs; i++)
    {
      ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
      if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
			      (void *) (uintptr_t) i) < 0)
	{
	  ctf_set_errno (output, errno);
	  ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
			ctf_errmsg (errno));
	  goto err;
	}
    }

  /* Some flags do not apply when CU-mapping: this is not a duplicated link,
     because there is only one output and we really don't want to end up marking
     all nonconflicting but appears-only-once types as conflicting (which in the
     CU-mapped link means we'd mark them all as non-root-visible!).  */
  d->cd_link_flags = output->ctf_link_flags;
  if (cu_mapped)
    d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);

  /* Compute hash values for all types, recursively, treating child structures
     and unions equivalent to forwards, and hashing in the name of the referent
     of each such type into structures, unions, and non-opaque forwards.
     Populate a mapping from decorated name (including an indication of
     struct/union/enum namespace) to count of type hash values in
     cd_name_counts, a mapping from and a mapping from hash values to input type
     IDs in cd_output_mapping.  */

  ctf_dprintf ("Computing type hashes\n");
  for (i = 0; i < ninputs; i++)
    {
      ctf_id_t id;

      while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
	{
	  if (ctf_dedup_hash_type (output, inputs[i], inputs,
				   parents, i, id, 0, 0,
				   ctf_dedup_populate_mappings) == NULL)
	    goto err;				/* errno is set for us.  */
	}
      if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
	{
	  ctf_set_errno (output, ctf_errno (inputs[i]));
	  ctf_err_warn (output, 0, 0, _("iteration failure "
					"computing type hashes"));
	  goto err;
	}
    }

  /* Go through the cd_name_counts name->hash->count mapping for all CTF
     namespaces: any name with many hashes associated with it at this stage is
     necessarily ambiguous.  Mark all the hashes except the most common as
     conflicting in the output.  */

  ctf_dprintf ("Detecting type name ambiguity\n");
  if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
      goto err;					/* errno is set for us.  */

  /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
     types whose output mapping references only one input dict into a
     conflicting type, so that they end up in the per-CU dictionaries.  */

  if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
    {
      ctf_dprintf ("Conflictifying unshared types\n");
      if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
	goto err;				/* errno is set for us.  */
    }
  return 0;

 err:
  ctf_dedup_fini (output, NULL, 0);
  return -1;
}

static int
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
				uint32_t ninputs, uint32_t *parents,
				ctf_dynset_t *already_visited,
				const char *hval,
				int (*visit_fun) (const char *hval,
						  ctf_dict_t *output,
						  ctf_dict_t **inputs,
						  uint32_t ninputs,
						  uint32_t *parents,
						  int already_visited,
						  ctf_dict_t *input,
						  ctf_id_t type,
						  void *id,
						  int depth,
						  void *arg),
				void *arg, unsigned long depth);

/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
   type and visits it.  */
static int
ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
				    ctf_dict_t **inputs, uint32_t ninputs,
				    uint32_t *parents,
				    ctf_dynset_t *already_visited,
				    int visited, void *type_id,
				    const char *hval,
				    int (*visit_fun) (const char *hval,
						      ctf_dict_t *output,
						      ctf_dict_t **inputs,
						      uint32_t ninputs,
						      uint32_t *parents,
						      int already_visited,
						      ctf_dict_t *input,
						      ctf_id_t type,
						      void *id,
						      int depth,
						      void *arg),
				    void *arg, unsigned long depth)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_dict_t *fp;
  int input_num;
  ctf_id_t type;
  int ret;
  const char *whaterr;

  input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
  fp = inputs[input_num];
  type = CTF_DEDUP_GID_TO_TYPE (type_id);

  ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
	       "kind %i\n", depth, hval, input_num, type, (void *) fp,
	       ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));

  /* Get the single call we do if this type has already been visited out of the
     way.  */
  if (visited)
    return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
		      type, type_id, depth, arg);

  /* This macro is really ugly, but the alternative is repeating this code many
     times, which is worse.  */

#define CTF_TYPE_WALK(type, errlabel, errmsg)				\
  do									\
    {									\
      void *type_id;							\
      const char *hashval;						\
      int cited_type_input_num = input_num;				\
									\
      if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
	cited_type_input_num = parents[input_num];			\
									\
      type_id = CTF_DEDUP_GID (output, cited_type_input_num, type);	\
									\
      if (type == 0)							\
	{								\
	  ctf_dprintf ("Walking: unimplemented type\n");		\
	  break;							\
	}								\
									\
      ctf_dprintf ("Looking up ID %i/%lx in type hashes\n",		\
		   cited_type_input_num, type);				\
      hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id);	\
      if (!ctf_assert (output, hashval))				\
	{								\
	  whaterr = N_("error looking up ID in type hashes");		\
	  goto errlabel;						\
	}								\
      ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
		   hashval);						\
									\
      ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
					    already_visited, hashval,	\
					    visit_fun, arg, depth);	\
      if (ret < 0)							\
	{								\
	  whaterr = errmsg;						\
	  goto errlabel;						\
	}								\
    }									\
  while (0)

  switch (ctf_type_kind_unsliced (fp, type))
    {
    case CTF_K_UNKNOWN:
    case CTF_K_FORWARD:
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
    case CTF_K_ENUM:
      /* No types referenced.  */
      break;

    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
    case CTF_K_SLICE:
      CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
		     N_("error during referenced type walk"));
      break;

    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;

	if (ctf_array_info (fp, type, &ar) < 0)
	  {
	    whaterr = N_("error during array info lookup");
	    goto err_msg;
	  }

	CTF_TYPE_WALK (ar.ctr_contents, err,
		       N_("error during array contents type walk"));
	CTF_TYPE_WALK (ar.ctr_index, err,
		       N_("error during array index type walk"));
	break;
      }

    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;

	if (ctf_func_type_info (fp, type, &fi) < 0)
	  {
	    whaterr = N_("error during func type info lookup");
	    goto err_msg;
	  }

	CTF_TYPE_WALK (fi.ctc_return, err,
		       N_("error during func return type walk"));

	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    whaterr = N_("error doing memory allocation");
	    goto err_msg;
	  }

	if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
	  {
	    whaterr = N_("error doing func arg type lookup");
	    free (args);
	    goto err_msg;
	  }

	for (j = 0; j < fi.ctc_argc; j++)
	  CTF_TYPE_WALK (args[j], err_free_args,
			 N_("error during Func arg type walk"));
	free (args);
	break;

      err_free_args:
	free (args);
	goto err;
      }
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      /* We do not recursively traverse the members of structures: they are
	 emitted later, in a separate pass.  */
	break;
    default:
      whaterr = N_("CTF dict corruption: unknown type kind");
      goto err_msg;
    }

  return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
		    type_id, depth, arg);

 err_msg:
  ctf_set_errno (output, ctf_errno (fp));
  ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
		gettext (whaterr), ctf_link_input_name (fp), type);
 err:
  return -1;
}
/* Recursively traverse the output mapping, and do something with each type
   visited, from leaves to root.  VISIT_FUN, called as recursion unwinds,
   returns a negative error code or zero.  Type hashes may be visited more than
   once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
   types have already been visited.  */
static int
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
				uint32_t ninputs, uint32_t *parents,
				ctf_dynset_t *already_visited,
				const char *hval,
				int (*visit_fun) (const char *hval,
						  ctf_dict_t *output,
						  ctf_dict_t **inputs,
						  uint32_t ninputs,
						  uint32_t *parents,
						  int already_visited,
						  ctf_dict_t *input,
						  ctf_id_t type,
						  void *id,
						  int depth,
						  void *arg),
				void *arg, unsigned long depth)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  int visited = 1;
  ctf_dynset_t *type_ids;
  void *id;

  depth++;

  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
  if (!type_ids)
    {
      ctf_err_warn (output, 0, ECTF_INTERNAL,
		    _("looked up type kind by nonexistent hash %s"), hval);
      return ctf_set_errno (output, ECTF_INTERNAL);
    }

  /* Have we seen this type before?  */

  if (!ctf_dynset_exists (already_visited, hval, NULL))
    {
      /* Mark as already-visited immediately, to eliminate the possibility of
	 cycles: but remember we have not actually visited it yet for the
	 upcoming call to the visit_fun.  (All our callers handle cycles
	 properly themselves, so we can just abort them aggressively as soon as
	 we find ourselves in one.)  */

      visited = 0;
      if (ctf_dynset_cinsert (already_visited, hval) < 0)
	{
	  ctf_err_warn (output, 0, ENOMEM,
			_("out of memory tracking already-visited types"));
	  return ctf_set_errno (output, ENOMEM);
	}
    }

  /* If this type is marked conflicted, traverse members and call
     ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
     pick a random one and use it.  */

  if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
    {
      id = ctf_dynset_lookup_any (type_ids);
      if (!ctf_assert (output, id))
	return -1;

      return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
						 parents, already_visited,
						 visited, id, hval, visit_fun,
						 arg, depth);
    }

  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
    {
      int ret;

      ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
						parents, already_visited,
						visited, id, hval,
						visit_fun, arg, depth);
      if (ret < 0)
	{
	  ctf_next_destroy (i);
	  return ret;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
      return ctf_set_errno (output, err);
    }

  return 0;
}

typedef struct ctf_sort_om_cb_arg
{
  ctf_dict_t **inputs;
  uint32_t ninputs;
  ctf_dedup_t *d;
} ctf_sort_om_cb_arg_t;

/* Sort the output mapping into order: types first appearing in earlier inputs
   first, parents preceding children: if types first appear in the same input,
   sort those with earlier ctf_id_t's first.  */
static int
sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
		     void *arg_)
{
  ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
  ctf_dedup_t *d = arg->d;
  const char *one_hval = (const char *) one->hkv_key;
  const char *two_hval = (const char *) two->hkv_key;
  void *one_gid, *two_gid;
  uint32_t one_ninput;
  uint32_t two_ninput;
  ctf_dict_t *one_fp;
  ctf_dict_t *two_fp;
  ctf_id_t one_type;
  ctf_id_t two_type;

  /* Inputs are always equal to themselves.  */
  if (one == two)
    return 0;

  one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
  two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);

  one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
  two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);

  one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
  two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);

  /* It's kind of hard to smuggle an assertion failure out of here.  */
  assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);

  one_fp = arg->inputs[one_ninput];
  two_fp = arg->inputs[two_ninput];

  /* Parents before children.  */

  if (!(one_fp->ctf_flags & LCTF_CHILD)
      && (two_fp->ctf_flags & LCTF_CHILD))
    return -1;
  else if ((one_fp->ctf_flags & LCTF_CHILD)
      && !(two_fp->ctf_flags & LCTF_CHILD))
    return 1;

  /* ninput order, types appearing in earlier TUs first.  */

  if (one_ninput < two_ninput)
    return -1;
  else if (two_ninput < one_ninput)
    return 1;

  /* Same TU.  Earliest ctf_id_t first.  They cannot be the same.  */

  assert (one_type != two_type);
  if (one_type < two_type)
    return -1;
  else
    return 1;
}

/* The public entry point to ctf_dedup_rwalk_output_mapping, above.  */
static int
ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
			       uint32_t ninputs, uint32_t *parents,
			       int (*visit_fun) (const char *hval,
						 ctf_dict_t *output,
						 ctf_dict_t **inputs,
						 uint32_t ninputs,
						 uint32_t *parents,
						 int already_visited,
						 ctf_dict_t *input,
						 ctf_id_t type,
						 void *id,
						 int depth,
						 void *arg),
			       void *arg)
{
  ctf_dynset_t *already_visited;
  ctf_next_t *i = NULL;
  ctf_sort_om_cb_arg_t sort_arg;
  int err;
  void *k;

  if ((already_visited = ctf_dynset_create (htab_hash_string,
					    htab_eq_string,
					    NULL)) == NULL)
    return ctf_set_errno (output, ENOMEM);

  sort_arg.inputs = inputs;
  sort_arg.ninputs = ninputs;
  sort_arg.d = &output->ctf_dedup;

  while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
					 &i, &k, NULL, sort_output_mapping,
					 &sort_arg)) == 0)
    {
      const char *hval = (const char *) k;

      err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
					    already_visited, hval, visit_fun,
					    arg, 0);
      if (err < 0)
	{
	  ctf_next_destroy (i);
	  goto err;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (output, 0, err, _("cannot recurse over output mapping"));
      ctf_set_errno (output, err);
      goto err;
    }
  ctf_dynset_destroy (already_visited);

  return 0;
 err:
  ctf_dynset_destroy (already_visited);
  return -1;
}

/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
   conflicted per-TU type ID in INPUT with hash HVAL.  Return its CTF ID, or 0
   if none was needed.  */
static ctf_id_t
ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
				    ctf_dict_t *input, ctf_id_t id,
				    const char *hval)
{
  ctf_dedup_t *od = &output->ctf_dedup;
  ctf_dedup_t *td = &target->ctf_dedup;
  int kind;
  int fwdkind;
  const char *name = ctf_type_name_raw (input, id);
  const char *decorated;
  void *v;
  ctf_id_t emitted_forward;

  if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
      || target->ctf_flags & LCTF_CHILD
      || name[0] == '\0'
      || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
	   && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
    return 0;

  fwdkind = ctf_type_kind_forwarded (input, id);

  ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
	       "hval %s\n", hval);

  if (!ctf_assert (output, name))
    return CTF_ERR;

  if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
    return CTF_ERR;

  if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
			      decorated, NULL, &v))
    {
      if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
					      fwdkind)) == CTF_ERR)
	{
	  ctf_set_errno (output, ctf_errno (target));
	  return CTF_ERR;
	}

      if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
			       decorated, (void *) (uintptr_t)
			       emitted_forward) < 0)
	{
	  ctf_set_errno (output, ENOMEM);
	  return CTF_ERR;
	}
    }
  else
    emitted_forward = (ctf_id_t) (uintptr_t) v;

  ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
	       emitted_forward);

  return emitted_forward;
}

/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
   into a GID in a target output dict.  If it returns 0, this is the
   unimplemented type, and the input type must have been 0.  The OUTPUT dict is
   assumed to be the parent of the TARGET, if it is not the TARGET itself.

   Returns CTF_ERR on failure.  Responds to an incoming CTF_ERR as an 'id' by
   returning CTF_ERR, to simplify callers.  Errors are always propagated to the
   input, even if they relate to the target, for the same reason.  (Target
   errors are expected to be very rare.)

   If the type in question is a citation of a conflicted type in a different TU,
   emit a forward of the right type in its place (if not already emitted), and
   record that forward in cd_output_emission_conflicted_forwards.  This avoids
   the need to replicate the entire type graph below this point in the current
   TU (an appalling waste of space).

   TODO: maybe replace forwards in the same TU with their referents?  Might
   make usability a bit better.  */

static ctf_id_t
ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
			ctf_dict_t **inputs, uint32_t ninputs,
			uint32_t *parents, ctf_dict_t *input, int input_num,
			ctf_id_t id)
{
  ctf_dedup_t *od = &output->ctf_dedup;
  ctf_dedup_t *td = &target->ctf_dedup;
  ctf_dict_t *err_fp = input;
  const char *hval;
  void *target_id;
  ctf_id_t emitted_forward;

  /* The target type of an error is an error.  */
  if (id == CTF_ERR)
    return CTF_ERR;

  /* The unimplemented type's ID never changes.  */
  if (!id)
    {
      ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
      return 0;
    }

  ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
	       id, (void *) target, ctf_link_input_name (target));

  /* If the input type is in the parent type space, and this is a child, reset
     the input to the parent (which must already have been emitted, since
     emission of parent dicts happens before children).  */
  if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
    {
      if (!ctf_assert (output, parents[input_num] <= ninputs))
	return -1;
      input = inputs[parents[input_num]];
      input_num = parents[input_num];
    }

  hval = ctf_dynhash_lookup (od->cd_type_hashes,
			     CTF_DEDUP_GID (output, input_num, id));

  if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
    return -1;

  /* If this type is a conflicted tagged structure, union, or forward,
     substitute a synthetic forward instead, emitting it if need be.  Only do
     this if the target is in the parent dict: if it's in the child dict, we can
     just point straight at the thing itself.  Of course, we might be looking in
     the child dict right now and not find it and have to look in the parent, so
     we have to do this check twice.  */

  emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
							input, id, hval);
  switch (emitted_forward)
    {
    case 0: /* No forward needed.  */
      break;
    case -1:
      ctf_set_errno (err_fp, ctf_errno (output));
      ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
				    "%i/%lx"), input_num, id);
      return -1;
    default:
      return emitted_forward;
    }

  ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);

  target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
  if (!target_id)
    {
      /* Must be in the parent, so this must be a child, and they must not be
	 the same dict.  */
      ctf_dprintf ("Checking shared parent for target\n");
      if (!ctf_assert (output, (target != output)
		       && (target->ctf_flags & LCTF_CHILD)))
	return -1;

      target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);

      emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
							    input, id, hval);
      switch (emitted_forward)
	{
	case 0: /* No forward needed.  */
	  break;
	case -1:
	  ctf_err_warn (err_fp, 0, ctf_errno (output),
			_("cannot add synthetic forward for type %i/%lx"),
			input_num, id);
	  return ctf_set_errno (err_fp, ctf_errno (output));
	default:
	  return emitted_forward;
	}
    }
  if (!ctf_assert (output, target_id))
    return -1;
  return (ctf_id_t) (uintptr_t) target_id;
}

/* Emit a single deduplicated TYPE with the given HVAL, located in a given
   INPUT, with the given (G)ID, into the shared OUTPUT or a
   possibly-newly-created per-CU dict.  All the types this type depends upon
   have already been emitted.  (This type itself may also have been emitted.)

   If the ARG is 1, this is a CU-mapped deduplication round mapping many
   ctf_dict_t's into precisely one: conflicting types should be marked
   non-root-visible.  If the ARG is 0, conflicting types go into per-CU
   dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
   is emitted directly into the output.  No struct/union members are emitted.

   Optimization opportunity: trace the ancestry of non-root-visible types and
   elide all that neither have a root-visible type somewhere towards their root,
   nor have the type visible via any other route (the function info section,
   data object section, backtrace section etc).  */

static int
ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
		     uint32_t ninputs, uint32_t *parents, int already_visited,
		     ctf_dict_t *input, ctf_id_t type, void *id, int depth,
		     void *arg)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  int kind = ctf_type_kind_unsliced (input, type);
  const char *name;
  ctf_dict_t *target = output;
  ctf_dict_t *real_input;
  const ctf_type_t *tp;
  int input_num = CTF_DEDUP_GID_TO_INPUT (id);
  int output_num = (uint32_t) -1;		/* 'shared' */
  int cu_mapped = *(int *)arg;
  int isroot = 1;
  int is_conflicting;

  ctf_next_t *i = NULL;
  ctf_id_t new_type;
  ctf_id_t ref;
  ctf_id_t maybe_dup = 0;
  ctf_encoding_t ep;
  const char *errtype;
  int emission_hashed = 0;

  /* We don't want to re-emit something we've already emitted.  */

  if (already_visited)
    return 0;

  ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
	       depth, hval, ctf_link_input_name (input));

  /* Conflicting types go into a per-CU output dictionary, unless this is a
     CU-mapped run.  The import is not refcounted, since it goes into the
     ctf_link_outputs dict of the output that is its parent.  */
  is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);

  if (is_conflicting && !cu_mapped)
    {
      ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
		   "inserting into per-CU target.\n",
		   depth, hval, input_num, type);

      if (input->ctf_dedup.cd_output)
	target = input->ctf_dedup.cd_output;
      else
	{
	  int err;

	  if ((target = ctf_create (&err)) == NULL)
	    {
	      ctf_err_warn (output, 0, err,
			    _("cannot create per-CU CTF archive for CU %s"),
			    ctf_link_input_name (input));
	      return ctf_set_errno (output, err);
	    }

	  ctf_import_unref (target, output);
	  if (ctf_cuname (input) != NULL)
	    ctf_cuname_set (target, ctf_cuname (input));
	  else
	    ctf_cuname_set (target, "unnamed-CU");
	  ctf_parent_name_set (target, _CTF_SECTION);

	  input->ctf_dedup.cd_output = target;
	  input->ctf_link_in_out = target;
	  target->ctf_link_in_out = input;
	}
      output_num = input_num;
    }

  real_input = input;
  if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
    {
      ctf_err_warn (output, 0, ctf_errno (input),
		    _("%s: lookup failure for type %lx"),
		    ctf_link_input_name (real_input), type);
      return ctf_set_errno (output, ctf_errno (input));
    }

  name = ctf_strraw (real_input, tp->ctt_name);

  /* Hide conflicting types, if we were asked to: also hide if a type with this
     name already exists and is not a forward.  */
  if (cu_mapped && is_conflicting)
    isroot = 0;
  else if (name
	   && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
    {
      if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
	isroot = 0;
    }

  ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
	       depth, hval, name ? name : "", input_num, (void *) target);

  if (!target->ctf_dedup.cd_output_emission_hashes)
    if ((target->ctf_dedup.cd_output_emission_hashes
	 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL)) == NULL)
      goto oom_hash;

  if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
    if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
	 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL)) == NULL)
      goto oom_hash;

  switch (kind)
    {
    case CTF_K_UNKNOWN:
      /* These are types that CTF cannot encode, marked as such by the
	 compiler.  */
      errtype = _("unknown type");
      if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
	goto err_target;
      break;
    case CTF_K_FORWARD:
      /* This will do nothing if the type to which this forwards already exists,
	 and will be replaced with such a type if it appears later.  */

      errtype = _("forward");
      if ((new_type = ctf_add_forward (target, isroot, name,
				       ctf_type_kind_forwarded (input, type)))
	  == CTF_ERR)
	goto err_target;
      break;

    case CTF_K_FLOAT:
    case CTF_K_INTEGER:
      errtype = _("float/int");
      if (ctf_type_encoding (input, type, &ep) < 0)
	goto err_input;				/* errno is set for us.  */
      if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
	  == CTF_ERR)
	goto err_target;
      break;

    case CTF_K_ENUM:
      {
	int val;
	errtype = _("enum");
	if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
	  goto err_input;				/* errno is set for us.  */

	while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
	  {
	    if (ctf_add_enumerator (target, new_type, name, val) < 0)
	      {
		ctf_err_warn (target, 0, ctf_errno (target),
			      _("%s (%i): cannot add enumeration value %s "
				"from input type %lx"),
			      ctf_link_input_name (input), input_num, name,
			      type);
		ctf_next_destroy (i);
		return ctf_set_errno (output, ctf_errno (target));
	      }
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  goto err_input;
	break;
      }

    case CTF_K_TYPEDEF:
      errtype = _("typedef");

      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;				/* errno is set for us.  */

      if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
	goto err_target;			/* errno is set for us.  */
      break;

    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
      errtype = _("pointer or cvr-qual");

      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;				/* errno is set for us.  */

      if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
	goto err_target;			/* errno is set for us.  */
      break;

    case CTF_K_SLICE:
      errtype = _("slice");

      if (ctf_type_encoding (input, type, &ep) < 0)
	goto err_input;				/* errno is set for us.  */

      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;

      if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
	goto err_target;
      break;

    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;

	errtype = _("array info");
	if (ctf_array_info (input, type, &ar) < 0)
	  goto err_input;

	ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
						  ninputs, parents, input,
						  input_num, ar.ctr_contents);
	ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					       parents, input, input_num,
					       ar.ctr_index);

	if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
	  goto err_input;

	if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
	  goto err_target;

	break;
      }

    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;

	errtype = _("function");
	if (ctf_func_type_info (input, type, &fi) < 0)
	  goto err_input;

	fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
						parents, input, input_num,
						fi.ctc_return);
	if (fi.ctc_return == CTF_ERR)
	  goto err_input;

	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    ctf_set_errno (input, ENOMEM);
	    goto err_input;
	  }

	errtype = _("function args");
	if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
	  {
	    free (args);
	    goto err_input;
	  }

	for (j = 0; j < fi.ctc_argc; j++)
	  {
	    args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					      parents, input, input_num,
					      args[j]);
	    if (args[j] == CTF_ERR)
	      goto err_input;
	  }

	if ((new_type = ctf_add_function (target, isroot,
					  &fi, args)) == CTF_ERR)
	  {
	    free (args);
	    goto err_target;
	  }
	free (args);
	break;
      }

    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	size_t size = ctf_type_size (input, type);
	void *out_id;
	/* Insert the structure itself, so other types can refer to it.  */

	errtype = _("structure/union");
	if (kind == CTF_K_STRUCT)
	  new_type = ctf_add_struct_sized (target, isroot, name, size);
	else
	  new_type = ctf_add_union_sized (target, isroot, name, size);

	if (new_type == CTF_ERR)
	  goto err_target;

	out_id = CTF_DEDUP_GID (output, output_num, new_type);
	ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
		     id, out_id);
	/* Record the need to emit the members of this structure later.  */
	if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
	  {
	    ctf_set_errno (target, errno);
	    goto err_target;
	  }
	break;
      }
    default:
      ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
					       "input type %lx"),
		    ctf_link_input_name (input), type);
      return ctf_set_errno (output, ECTF_CORRUPT);
    }

  if (!emission_hashed
      && new_type != 0
      && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
			      hval, (void *) (uintptr_t) new_type) < 0)
    {
      ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
					 "global type IDs"));
	return ctf_set_errno (output, ENOMEM);
    }

  if (!emission_hashed && new_type != 0)
    ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
		 "target %p (%s)\n", depth, hval, input_num, type, new_type,
		 (void *) target, ctf_link_input_name (target));

  return 0;

 oom_hash:
  ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
				     "hashes"));
  return ctf_set_errno (output, ENOMEM);

 err_input:
  ctf_err_warn (output, 0, ctf_errno (input),
		_("%s (%i): while emitting deduplicated %s, error getting "
		  "input type %lx"), ctf_link_input_name (input),
		input_num, errtype, type);
  return ctf_set_errno (output, ctf_errno (input));
 err_target:
  ctf_err_warn (output, 0, ctf_errno (target),
		_("%s (%i): while emitting deduplicated %s, error emitting "
		  "target type from input type %lx"),
		ctf_link_input_name (input), input_num,
		errtype, type);
  return ctf_set_errno (output, ctf_errno (target));
}

/* Traverse the cd_emission_struct_members and emit the members of all
   structures and unions.  All other types are emitted and complete by this
   point.  */

static int
ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
			       uint32_t ninputs, uint32_t *parents)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  void *input_id, *target_id;
  int err;
  ctf_dict_t *err_fp, *input_fp;
  int input_num;
  ctf_id_t err_type;

  while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
				  &input_id, &target_id)) == 0)
    {
      ctf_next_t *j = NULL;
      ctf_dict_t *target;
      uint32_t target_num;
      ctf_id_t input_type, target_type;
      ssize_t offset;
      ctf_id_t membtype;
      const char *name;

      input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
      input_fp = inputs[input_num];
      input_type = CTF_DEDUP_GID_TO_TYPE (input_id);

      /* The output is either -1 (for the shared, parent output dict) or the
	 number of the corresponding input.  */
      target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
      if (target_num == (uint32_t) -1)
	target = output;
      else
	{
	  target = inputs[target_num]->ctf_dedup.cd_output;
	  if (!ctf_assert (output, target))
	    {
	      err_fp = output;
	      err_type = input_type;
	      goto err_target;
	    }
	}
      target_type = CTF_DEDUP_GID_TO_TYPE (target_id);

      while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
					&membtype, 0)) >= 0)
	{
	  err_fp = target;
	  err_type = target_type;
	  if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
						  ninputs, parents, input_fp,
						  input_num,
						  membtype)) == CTF_ERR)
	    {
	      ctf_next_destroy (j);
	      goto err_target;
	    }

	  if (name == NULL)
	    name = "";
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	  ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
#endif
	  if (ctf_add_member_offset (target, target_type, name,
				     membtype, offset) < 0)
	    {
	      ctf_next_destroy (j);
	      goto err_target;
	    }
	}
      if (ctf_errno (input_fp) != ECTF_NEXT_END)
	{
	  err = ctf_errno (input_fp);
	  ctf_next_destroy (i);
	  goto iterr;
	}
    }
  if (err != ECTF_NEXT_END)
    goto iterr;

  return 0;
 err_target:
  ctf_next_destroy (i);
  ctf_err_warn (output, 0, ctf_errno (err_fp),
		_("%s (%i): error emitting members for structure type %lx"),
		ctf_link_input_name (input_fp), input_num, err_type);
  return ctf_set_errno (output, ctf_errno (err_fp));
 iterr:
  ctf_err_warn (output, 0, err, _("iteration failure emitting "
				  "structure members"));
  return ctf_set_errno (output, err);
}

/* Emit deduplicated types into the outputs.  The shared type repository is
   OUTPUT, on which the ctf_dedup function must have already been called.  The
   PARENTS array contains the INPUTS index of the parent dict for every child
   dict at the corresponding index in the INPUTS (for non-child dicts, the value
   is undefined).

   Return an array of fps with content emitted into them (starting with OUTPUT,
   which is the parent of all others, then all the newly-generated outputs).

   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
   mapping: only one output will result.  */

ctf_dict_t **
ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
		uint32_t *parents, uint32_t *noutputs, int cu_mapped)
{
  size_t num_outputs = 1;		/* Always at least one output: us.  */
  ctf_dict_t **outputs;
  ctf_dict_t **walk;
  size_t i;

  ctf_dprintf ("Triggering emission.\n");
  if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
				     ctf_dedup_emit_type, &cu_mapped) < 0)
    return NULL;				/* errno is set for us.  */

  ctf_dprintf ("Populating struct members.\n");
  if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
    return NULL;				/* errno is set for us.  */

  for (i = 0; i < ninputs; i++)
    {
      if (inputs[i]->ctf_dedup.cd_output)
	num_outputs++;
    }

  if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
    return NULL;

  if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
    {
      ctf_err_warn (output, 0, ENOMEM,
		    _("out of memory allocating link outputs array"));
      ctf_set_errno (output, ENOMEM);
      return NULL;
    }
  *noutputs = num_outputs;

  walk = outputs;
  *walk = output;
  output->ctf_refcnt++;
  walk++;

  for (i = 0; i < ninputs; i++)
    {
      if (inputs[i]->ctf_dedup.cd_output)
	{
	  *walk = inputs[i]->ctf_dedup.cd_output;
	  inputs[i]->ctf_dedup.cd_output = NULL;
	  walk++;
	}
    }

  return outputs;
}

/* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
   must be the shared dict or have it as a parent: return 0 if none.  The SRC_FP
   must be a past input to ctf_dedup.  */

ctf_id_t
ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
{
  ctf_dict_t *output = NULL;
  ctf_dedup_t *d;
  int input_num;
  void *num_ptr;
  void *type_ptr;
  int found;
  const char *hval;

  /* It is an error (an internal error in the caller, in ctf-link.c) to call
     this with an FP that is not a per-CU output or shared output dict, or with
     a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
     error in ctf-dedup for the type passed not to have been hashed, though if
     the src_fp is a child dict and the type is not a child type, it will have
     been hashed under the GID corresponding to the parent.  */

  if (fp->ctf_dedup.cd_type_hashes != NULL)
    output = fp;
  else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
    output = fp->ctf_parent;
  else
    {
      ctf_set_errno (fp, ECTF_INTERNAL);
      ctf_err_warn (fp, 0, ECTF_INTERNAL,
		    _("dict %p passed to ctf_dedup_type_mapping is not a "
		      "deduplicated output"), (void *) fp);
      return CTF_ERR;
    }

  if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
    src_fp = src_fp->ctf_parent;

  d = &output->ctf_dedup;

  found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
  if (!ctf_assert (output, found != 0))
    return CTF_ERR;				/* errno is set for us.  */
  input_num = (uintptr_t) num_ptr;

  hval = ctf_dynhash_lookup (d->cd_type_hashes,
			     CTF_DEDUP_GID (output, input_num, src_type));

  if (!ctf_assert (output, hval != NULL))
    return CTF_ERR;				/* errno is set for us.  */

  /* The emission hashes may be unset if this dict was created after
     deduplication to house variables or other things that would conflict if
     stored in the shared dict.  */
  if (fp->ctf_dedup.cd_output_emission_hashes)
    if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
			       NULL, &type_ptr))
      return (ctf_id_t) (uintptr_t) type_ptr;

  if (fp->ctf_parent)
    {
      ctf_dict_t *pfp = fp->ctf_parent;
      if (pfp->ctf_dedup.cd_output_emission_hashes)
	if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
				   hval, NULL, &type_ptr))
	  return (ctf_id_t) (uintptr_t) type_ptr;
    }

  return 0;
}