aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-create.c
blob: 0af46d3c28a81091e2493643157789611f5bb0ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
/* CTF file creation.
   Copyright (C) 2019-2021 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <sys/param.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>

#include <elf.h>
#include "elf-bfd.h"

#ifndef EOVERFLOW
#define EOVERFLOW ERANGE
#endif

#ifndef roundup
#define roundup(x, y)  ((((x) + ((y) - 1)) / (y)) * (y))
#endif

/* Make sure the ptrtab has enough space for at least one more type.

   We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
   at a time.  */

static int
ctf_grow_ptrtab (ctf_dict_t *fp)
{
  size_t new_ptrtab_len = fp->ctf_ptrtab_len;

  /* We allocate one more ptrtab entry than we need, for the initial zero,
     plus one because the caller will probably allocate a new type.  */

  if (fp->ctf_ptrtab == NULL)
    new_ptrtab_len = 1024;
  else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
    new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;

  if (new_ptrtab_len != fp->ctf_ptrtab_len)
    {
      uint32_t *new_ptrtab;

      if ((new_ptrtab = realloc (fp->ctf_ptrtab,
				 new_ptrtab_len * sizeof (uint32_t))) == NULL)
	return (ctf_set_errno (fp, ENOMEM));

      fp->ctf_ptrtab = new_ptrtab;
      memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
	      (new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
      fp->ctf_ptrtab_len = new_ptrtab_len;
    }
  return 0;
}

/* To create an empty CTF dict, we just declare a zeroed header and call
   ctf_bufopen() on it.  If ctf_bufopen succeeds, we mark the new dict r/w and
   initialize the dynamic members.  We start assigning type IDs at 1 because
   type ID 0 is used as a sentinel and a not-found indicator.  */

ctf_dict_t *
ctf_create (int *errp)
{
  static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };

  ctf_dynhash_t *dthash;
  ctf_dynhash_t *dvhash;
  ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
  ctf_dynhash_t *objthash = NULL, *funchash = NULL;
  ctf_sect_t cts;
  ctf_dict_t *fp;

  libctf_init_debug();
  dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
			       NULL, NULL);
  if (dthash == NULL)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err;
    }

  dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			       NULL, NULL);
  if (dvhash == NULL)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err_dt;
    }

  structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				NULL, NULL);
  unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			       NULL, NULL);
  enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL);
  names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL);
  objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				 free, NULL);
  funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				 free, NULL);
  if (!structs || !unions || !enums || !names)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err_dv;
    }

  cts.cts_name = _CTF_SECTION;
  cts.cts_data = &hdr;
  cts.cts_size = sizeof (hdr);
  cts.cts_entsize = 1;

  if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL)
    goto err_dv;

  fp->ctf_structs.ctn_writable = structs;
  fp->ctf_unions.ctn_writable = unions;
  fp->ctf_enums.ctn_writable = enums;
  fp->ctf_names.ctn_writable = names;
  fp->ctf_objthash = objthash;
  fp->ctf_funchash = funchash;
  fp->ctf_dthash = dthash;
  fp->ctf_dvhash = dvhash;
  fp->ctf_dtoldid = 0;
  fp->ctf_snapshots = 1;
  fp->ctf_snapshot_lu = 0;
  fp->ctf_flags |= LCTF_DIRTY;

  ctf_set_ctl_hashes (fp);
  ctf_setmodel (fp, CTF_MODEL_NATIVE);
  if (ctf_grow_ptrtab (fp) < 0)
    {
      ctf_set_open_errno (errp, ctf_errno (fp));
      ctf_dict_close (fp);
      return NULL;
    }

  return fp;

 err_dv:
  ctf_dynhash_destroy (structs);
  ctf_dynhash_destroy (unions);
  ctf_dynhash_destroy (enums);
  ctf_dynhash_destroy (names);
  ctf_dynhash_destroy (objthash);
  ctf_dynhash_destroy (funchash);
  ctf_dynhash_destroy (dvhash);
 err_dt:
  ctf_dynhash_destroy (dthash);
 err:
  return NULL;
}

/* Delete data symbols that have been assigned names from the variable section.
   Must be called from within ctf_serialize, because that is the only place
   you can safely delete variables without messing up ctf_rollback.  */

static int
symtypetab_delete_nonstatic_vars (ctf_dict_t *fp)
{
  ctf_dvdef_t *dvd, *nvd;
  ctf_id_t type;

  for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
    {
      nvd = ctf_list_next (dvd);

      if (((type = (ctf_id_t) (uintptr_t)
	    ctf_dynhash_lookup (fp->ctf_objthash, dvd->dvd_name)) > 0)
	  && type == dvd->dvd_type)
	ctf_dvd_delete (fp, dvd);
    }

  return 0;
}

/* Determine if a symbol is "skippable" and should never appear in the
   symtypetab sections.  */

int
ctf_symtab_skippable (ctf_link_sym_t *sym)
{
  /* Never skip symbols whose name is not yet known.  */
  if (sym->st_nameidx_set)
    return 0;

  return (sym->st_name == NULL || sym->st_name[0] == 0
	  || sym->st_shndx == SHN_UNDEF
	  || strcmp (sym->st_name, "_START_") == 0
	  || strcmp (sym->st_name, "_END_") == 0
	  || (sym->st_type == STT_OBJECT && sym->st_shndx == SHN_EXTABS
	      && sym->st_value == 0));
}

/* Symtypetab emission flags.  */

#define CTF_SYMTYPETAB_EMIT_FUNCTION 0x1
#define CTF_SYMTYPETAB_EMIT_PAD 0x2
#define CTF_SYMTYPETAB_FORCE_INDEXED 0x4

/* Get the number of symbols in a symbol hash, the count of symbols, the maximum
   seen, the eventual size, without any padding elements, of the func/data and
   (if generated) index sections, and the size of accumulated padding elements.
   The linker-reported set of symbols is found in SYMFP.

   Also figure out if any symbols need to be moved to the variable section, and
   add them (if not already present).  */

_libctf_nonnull_
static int
symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
		    size_t *count, size_t *max, size_t *unpadsize,
		    size_t *padsize, size_t *idxsize, int flags)
{
  ctf_next_t *i = NULL;
  const void *name;
  const void *ctf_sym;
  ctf_dynhash_t *linker_known = NULL;
  int err;
  int beyond_max = 0;

  *count = 0;
  *max = 0;
  *unpadsize = 0;
  *idxsize = 0;
  *padsize = 0;

  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    {
      /* Make a dynhash citing only symbols reported by the linker of the
	 appropriate type, then traverse all potential-symbols we know the types
	 of, removing them from linker_known as we go.  Once this is done, the
	 only symbols remaining in linker_known are symbols we don't know the
	 types of: we must emit pads for those symbols that are below the
	 maximum symbol we will emit (any beyond that are simply skipped).  */

      if ((linker_known = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					      NULL, NULL)) == NULL)
	return (ctf_set_errno (fp, ENOMEM));

      while ((err = ctf_dynhash_cnext (symfp->ctf_dynsyms, &i,
				       &name, &ctf_sym)) == 0)
	{
	  ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;

	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (sym))
	    continue;

	  /* This should only be true briefly before all the names are
	     finalized, long before we get this far.  */
	  if (!ctf_assert (fp, !sym->st_nameidx_set))
	    return -1;				/* errno is set for us.  */

	  if (ctf_dynhash_cinsert (linker_known, name, ctf_sym) < 0)
	    {
	      ctf_dynhash_destroy (linker_known);
	      return (ctf_set_errno (fp, ENOMEM));
	    }
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols during "
				  "serialization"));
	  ctf_dynhash_destroy (linker_known);
	  return (ctf_set_errno (fp, err));
	}
    }

  while ((err = ctf_dynhash_cnext (symhash, &i, &name, NULL)) == 0)
    {
      ctf_link_sym_t *sym;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  /* Linker did not report symbol in symtab.  Remove it from the
	     set of known data symbols and continue.  */
	  if ((sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, name)) == NULL)
	    {
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }

	  /* We don't remove skippable symbols from the symhash because we don't
	     want them to be migrated into variables.  */
	  if (ctf_symtab_skippable (sym))
	    continue;

	  if ((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	      && sym->st_type != STT_FUNC)
	    {
	      ctf_err_warn (fp, 1, 0, _("Symbol %x added to CTF as a function "
					"but is of type %x\n"),
			    sym->st_symidx, sym->st_type);
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }
	  else if (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		   && sym->st_type != STT_OBJECT)
	    {
	      ctf_err_warn (fp, 1, 0, _("Symbol %x added to CTF as a data "
					"object but is of type %x\n"),
			    sym->st_symidx, sym->st_type);
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }

	  ctf_dynhash_remove (linker_known, name);
	}
      *unpadsize += sizeof (uint32_t);
      (*count)++;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  if (*max < sym->st_symidx)
	    *max = sym->st_symidx;
	}
      else
	(*max)++;
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (fp, 0, err, _("iterating over CTF symtypetab during "
				  "serialization"));
      ctf_dynhash_destroy (linker_known);
      return (ctf_set_errno (fp, err));
    }

  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    {
      while ((err = ctf_dynhash_cnext (linker_known, &i, NULL, &ctf_sym)) == 0)
	{
	  ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;

	  if (sym->st_symidx > *max)
	    beyond_max++;
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols "
				      "during CTF serialization"));
	  ctf_dynhash_destroy (linker_known);
	  return (ctf_set_errno (fp, err));
	}
    }

  *idxsize = *count * sizeof (uint32_t);
  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    *padsize = (ctf_dynhash_elements (linker_known) - beyond_max) * sizeof (uint32_t);

  ctf_dynhash_destroy (linker_known);
  return 0;
}

/* Emit an objt or func symtypetab into DP in a particular order defined by an
   array of ctf_link_sym_t or symbol names passed in.  The index has NIDX
   elements in it: unindexed output would terminate at symbol OUTMAX and is in
   any case no larger than SIZE bytes.  Some index elements are expected to be
   skipped: see symtypetab_density.  The linker-reported set of symbols (if any)
   is found in SYMFP. */
static int
emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
		 ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
		 uint32_t outmax, int size, int flags)
{
  uint32_t i;
  uint32_t *dpp = dp;
  ctf_dynhash_t *symhash;

  ctf_dprintf ("Emitting table of size %i, outmax %u, %u symtypetab entries, "
	       "flags %i\n", size, outmax, nidx, flags);

  /* Empty table? Nothing to do.  */
  if (size == 0)
    return 0;

  if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
    symhash = fp->ctf_funchash;
  else
    symhash = fp->ctf_objthash;

  for (i = 0; i < nidx; i++)
    {
      const char *sym_name;
      void *type;

      /* If we have a linker-reported set of symbols, we may be given that set
	 to work from, or a set of symbol names.  In both cases we want to look
	 at the corresponding linker-reported symbol (if any).  */
      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  ctf_link_sym_t *this_link_sym;

	  if (idx)
	    this_link_sym = idx[i];
	  else
	    this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, nameidx[i]);

	  /* Unreported symbol number.  No pad, no nothing.  */
	  if (!this_link_sym)
	    continue;

	  /* Symbol of the wrong type, or skippable?  This symbol is not in this
	     table.  */
	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && this_link_sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && this_link_sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (this_link_sym))
	    continue;

	  sym_name = this_link_sym->st_name;

	  /* Linker reports symbol of a different type to the symbol we actually
	     added?  Skip the symbol.  No pad, since the symbol doesn't actually
	     belong in this table at all.  (Warned about in
	     symtypetab_density.)  */
	  if ((this_link_sym->st_type == STT_FUNC)
	      && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
	    continue;

	  if ((this_link_sym->st_type == STT_OBJECT)
	      && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
	    continue;
	}
      else
	sym_name = nameidx[i];

      /* Symbol in index but no type set? Silently skip and (optionally)
	 pad.  (In force-indexed mode, this is also where we track symbols of
	 the wrong type for this round of insertion.)  */
      if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
	{
	  if (flags & CTF_SYMTYPETAB_EMIT_PAD)
	    *dpp++ = 0;
	  continue;
	}

      if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
	return -1;				/* errno is set for us.  */

      *dpp++ = (ctf_id_t) (uintptr_t) type;

      /* When emitting unindexed output, all later symbols are pads: stop
	 early.  */
      if ((flags & CTF_SYMTYPETAB_EMIT_PAD) && idx[i]->st_symidx == outmax)
	break;
    }

  return 0;
}

/* Emit an objt or func symtypetab index into DP in a paticular order defined by
   an array of symbol names passed in.  Stop at NIDX.  The linker-reported set
   of symbols (if any) is found in SYMFP. */
static int
emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
		       const char **idx, uint32_t nidx, int size, int flags)
{
  uint32_t i;
  uint32_t *dpp = dp;
  ctf_dynhash_t *symhash;

  ctf_dprintf ("Emitting index of size %i, %u entries reported by linker, "
	       "flags %i\n", size, nidx, flags);

  /* Empty table? Nothing to do.  */
  if (size == 0)
    return 0;

  if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
    symhash = fp->ctf_funchash;
  else
    symhash = fp->ctf_objthash;

  /* Indexes should always be unpadded.  */
  if (!ctf_assert (fp, !(flags & CTF_SYMTYPETAB_EMIT_PAD)))
    return -1;					/* errno is set for us.  */

  for (i = 0; i < nidx; i++)
    {
      const char *sym_name;
      void *type;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  ctf_link_sym_t *this_link_sym;

	  this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, idx[i]);

	  /* This is an index: unreported symbols should never appear in it.  */
	  if (!ctf_assert (fp, this_link_sym != NULL))
	    return -1;				/* errno is set for us.  */

	  /* Symbol of the wrong type, or skippable?  This symbol is not in this
	     table.  */
	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && this_link_sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && this_link_sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (this_link_sym))
	    continue;

	  sym_name = this_link_sym->st_name;

	  /* Linker reports symbol of a different type to the symbol we actually
	     added?  Skip the symbol.  */
	  if ((this_link_sym->st_type == STT_FUNC)
	      && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
	    continue;

	  if ((this_link_sym->st_type == STT_OBJECT)
	      && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
	    continue;
	}
      else
	sym_name = idx[i];

      /* Symbol in index and reported by linker, but no type set? Silently skip
	 and (optionally) pad.  (In force-indexed mode, this is also where we
	 track symbols of the wrong type for this round of insertion.)  */
      if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
	continue;

      ctf_str_add_ref (fp, sym_name, dpp++);

      if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) <= size))
	return -1;				/* errno is set for us.  */
    }

  return 0;
}

static unsigned char *
ctf_copy_smembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
{
  ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
  ctf_member_t ctm;

  for (; dmd != NULL; dmd = ctf_list_next (dmd))
    {
      ctf_member_t *copied;

      ctm.ctm_name = 0;
      ctm.ctm_type = (uint32_t) dmd->dmd_type;
      ctm.ctm_offset = (uint32_t) dmd->dmd_offset;

      memcpy (t, &ctm, sizeof (ctm));
      copied = (ctf_member_t *) t;
      if (dmd->dmd_name)
	ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctm_name);

      t += sizeof (ctm);
    }

  return t;
}

static unsigned char *
ctf_copy_lmembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
{
  ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
  ctf_lmember_t ctlm;

  for (; dmd != NULL; dmd = ctf_list_next (dmd))
    {
      ctf_lmember_t *copied;

      ctlm.ctlm_name = 0;
      ctlm.ctlm_type = (uint32_t) dmd->dmd_type;
      ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (dmd->dmd_offset);
      ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (dmd->dmd_offset);

      memcpy (t, &ctlm, sizeof (ctlm));
      copied = (ctf_lmember_t *) t;
      if (dmd->dmd_name)
	ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctlm_name);

      t += sizeof (ctlm);
    }

  return t;
}

static unsigned char *
ctf_copy_emembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
{
  ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
  ctf_enum_t cte;

  for (; dmd != NULL; dmd = ctf_list_next (dmd))
    {
      ctf_enum_t *copied;

      cte.cte_value = dmd->dmd_value;
      memcpy (t, &cte, sizeof (cte));
      copied = (ctf_enum_t *) t;
      ctf_str_add_ref (fp, dmd->dmd_name, &copied->cte_name);
      t += sizeof (cte);
    }

  return t;
}

/* Sort a newly-constructed static variable array.  */

typedef struct ctf_sort_var_arg_cb
{
  ctf_dict_t *fp;
  ctf_strs_t *strtab;
} ctf_sort_var_arg_cb_t;

static int
ctf_sort_var (const void *one_, const void *two_, void *arg_)
{
  const ctf_varent_t *one = one_;
  const ctf_varent_t *two = two_;
  ctf_sort_var_arg_cb_t *arg = arg_;

  return (strcmp (ctf_strraw_explicit (arg->fp, one->ctv_name, arg->strtab),
		  ctf_strraw_explicit (arg->fp, two->ctv_name, arg->strtab)));
}

/* Compatibility: just update the threshold for ctf_discard.  */
int
ctf_update (ctf_dict_t *fp)
{
  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  fp->ctf_dtoldid = fp->ctf_typemax;
  return 0;
}

/* If the specified CTF dict is writable and has been modified, reload this dict
   with the updated type definitions, ready for serialization.  In order to make
   this code and the rest of libctf as simple as possible, we perform updates by
   taking the dynamic type definitions and creating an in-memory CTF dict
   containing the definitions, and then call ctf_simple_open_internal() on it.
   We perform one extra trick here for the benefit of callers and to keep our
   code simple: ctf_simple_open_internal() will return a new ctf_dict_t, but we
   want to keep the fp constant for the caller, so after
   ctf_simple_open_internal() returns, we use memcpy to swap the interior of the
   old and new ctf_dict_t's, and then free the old.  */
int
ctf_serialize (ctf_dict_t *fp)
{
  ctf_dict_t ofp, *nfp;
  ctf_header_t hdr, *hdrp;
  ctf_dtdef_t *dtd;
  ctf_dvdef_t *dvd;
  ctf_varent_t *dvarents;
  ctf_strs_writable_t strtab;
  ctf_dict_t *symfp = fp;

  unsigned char *t;
  unsigned long i;
  int symflags = 0;
  size_t buf_size, type_size, objt_size, func_size;
  size_t objt_unpadsize, func_unpadsize, objt_padsize, func_padsize;
  size_t funcidx_size, objtidx_size;
  size_t nvars, nfuncs, nobjts, maxobjt, maxfunc;
  size_t ndynsyms = 0;
  const char **sym_name_order = NULL;
  unsigned char *buf = NULL, *newbuf;
  int err;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  /* Update required?  */
  if (!(fp->ctf_flags & LCTF_DIRTY))
    return 0;

  /* Fill in an initial CTF header.  We will leave the label, object,
     and function sections empty and only output a header, type section,
     and string table.  The type section begins at a 4-byte aligned
     boundary past the CTF header itself (at relative offset zero).  The flag
     indicating a new-style function info section (an array of CTF_K_FUNCTION
     type IDs in the types section) is flipped on.  */

  memset (&hdr, 0, sizeof (hdr));
  hdr.cth_magic = CTF_MAGIC;
  hdr.cth_version = CTF_VERSION;

  /* This is a new-format func info section, and the symtab and strtab come out
     of the dynsym and dynstr these days.  */
  hdr.cth_flags = (CTF_F_NEWFUNCINFO | CTF_F_DYNSTR);

  /* Iterate through the dynamic type definition list and compute the
     size of the CTF type section we will need to generate.  */

  for (type_size = 0, dtd = ctf_list_next (&fp->ctf_dtdefs);
       dtd != NULL; dtd = ctf_list_next (dtd))
    {
      uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

      if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
	type_size += sizeof (ctf_stype_t);
      else
	type_size += sizeof (ctf_type_t);

      switch (kind)
	{
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  type_size += sizeof (uint32_t);
	  break;
	case CTF_K_ARRAY:
	  type_size += sizeof (ctf_array_t);
	  break;
	case CTF_K_SLICE:
	  type_size += sizeof (ctf_slice_t);
	  break;
	case CTF_K_FUNCTION:
	  type_size += sizeof (uint32_t) * (vlen + (vlen & 1));
	  break;
	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
	    type_size += sizeof (ctf_member_t) * vlen;
	  else
	    type_size += sizeof (ctf_lmember_t) * vlen;
	  break;
	case CTF_K_ENUM:
	  type_size += sizeof (ctf_enum_t) * vlen;
	  break;
	}
    }

  /* Symbol table stuff is done only if the linker has told this dict about
     potential symbols (usually the case for parent dicts only).  The linker
     will report symbols to the parent dict in a parent/child link, as usual
     with all linker-related matters.  */

  if (!fp->ctf_dynsyms && fp->ctf_parent && fp->ctf_parent->ctf_dynsyms)
    symfp = fp->ctf_parent;

  /* No linker-reported symbols at all: ctf_link_shuffle_syms was never called.
     This must be an unsorted, indexed dict.  Otherwise, this is a sorted
     dict, and the header flags indicate as much.  */
  if (!symfp->ctf_dynsyms)
    symflags = CTF_SYMTYPETAB_FORCE_INDEXED;
  else
    hdr.cth_flags |= CTF_F_IDXSORTED;

  /* Work out the sizes of the object and function sections, and work out the
     number of pad (unassigned) symbols in each, and the overall size of the
     sections.  */

  if (symtypetab_density (fp, symfp, fp->ctf_objthash, &nobjts, &maxobjt,
			  &objt_unpadsize, &objt_padsize, &objtidx_size,
			  symflags) < 0)
    return -1;					/* errno is set for us.  */

  ctf_dprintf ("Object symtypetab: %i objects, max %i, unpadded size %i, "
	       "%i bytes of pads, index size %i\n", (int) nobjts, (int) maxobjt,
	       (int) objt_unpadsize, (int) objt_padsize, (int) objtidx_size);

  if (symtypetab_density (fp, symfp, fp->ctf_funchash, &nfuncs, &maxfunc,
			  &func_unpadsize, &func_padsize, &funcidx_size,
			  symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
    return -1;					/* errno is set for us.  */

  ctf_dprintf ("Function symtypetab: %i functions, max %i, unpadded size %i, "
	       "%i bytes of pads, index size %i\n", (int) nfuncs, (int) maxfunc,
	       (int) func_unpadsize, (int) func_padsize, (int) funcidx_size);

  /* If the linker has reported any symbols at all, those symbols that the
     linker has not reported are now removed from the ctf_objthash and
     ctf_funchash.  Delete entries from the variable section that duplicate
     newly-added data symbols.  There's no need to migrate new ones in, because
     linker invocations (even ld -r) can only introduce new symbols, not remove
     symbols that already exist, and the compiler always emits both a variable
     and a data symbol simultaneously.  */

  if (symtypetab_delete_nonstatic_vars (fp) < 0)
    return -1;

  /* It is worth indexing each section if it would save space to do so, due to
     reducing the number of pads sufficiently.  A pad is the same size as a
     single index entry: but index sections compress relatively poorly compared
     to constant pads, so it takes a lot of contiguous padding to equal one
     index section entry.  It would be nice to be able to *verify* whether we
     would save space after compression rather than guessing, but this seems
     difficult, since it would require complete reserialization.  Regardless, if
     the linker has not reported any symbols (e.g. if this is not a final link
     but just an ld -r), we must emit things in indexed fashion just as the
     compiler does.  */

  objt_size = objt_unpadsize;
  if (!(symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
      && ((objt_padsize + objt_unpadsize) * CTF_INDEX_PAD_THRESHOLD
	  > objt_padsize))
    {
      objt_size += objt_padsize;
      objtidx_size = 0;
    }

  func_size = func_unpadsize;
  if (!(symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
      && ((func_padsize + func_unpadsize) * CTF_INDEX_PAD_THRESHOLD
	  > func_padsize))
    {
      func_size += func_padsize;
      funcidx_size = 0;
    }

  /* Computing the number of entries in the CTF variable section is much
     simpler.  */

  for (nvars = 0, dvd = ctf_list_next (&fp->ctf_dvdefs);
       dvd != NULL; dvd = ctf_list_next (dvd), nvars++);

  /* Compute the size of the CTF buffer we need, sans only the string table,
     then allocate a new buffer and memcpy the finished header to the start of
     the buffer.  (We will adjust this later with strtab length info.)  */

  hdr.cth_lbloff = hdr.cth_objtoff = 0;
  hdr.cth_funcoff = hdr.cth_objtoff + objt_size;
  hdr.cth_objtidxoff = hdr.cth_funcoff + func_size;
  hdr.cth_funcidxoff = hdr.cth_objtidxoff + objtidx_size;
  hdr.cth_varoff = hdr.cth_funcidxoff + funcidx_size;
  hdr.cth_typeoff = hdr.cth_varoff + (nvars * sizeof (ctf_varent_t));
  hdr.cth_stroff = hdr.cth_typeoff + type_size;
  hdr.cth_strlen = 0;

  buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;

  if ((buf = malloc (buf_size)) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  memcpy (buf, &hdr, sizeof (ctf_header_t));
  t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;

  hdrp = (ctf_header_t *) buf;
  if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parname != NULL))
    ctf_str_add_ref (fp, fp->ctf_parname, &hdrp->cth_parname);
  if (fp->ctf_cuname != NULL)
    ctf_str_add_ref (fp, fp->ctf_cuname, &hdrp->cth_cuname);

  /* Sort the linker's symbols into name order if need be: if
     ctf_link_shuffle_syms has not been called at all, just use all the symbols
     that were added to this dict, and don't bother sorting them since this is
     probably an ld -r and will likely just be consumed by ld again, with no
     ctf_lookup_by_symbol()s ever done on it.  */

  if ((objtidx_size != 0) || (funcidx_size != 0))
    {
      ctf_next_t *i = NULL;
      void *symname;
      const char **walk;
      int err;

      if (symfp->ctf_dynsyms)
	ndynsyms = ctf_dynhash_elements (symfp->ctf_dynsyms);
      else
	ndynsyms = ctf_dynhash_elements (symfp->ctf_objthash)
	  + ctf_dynhash_elements (symfp->ctf_funchash);

      if ((sym_name_order = calloc (ndynsyms, sizeof (const char *))) == NULL)
	goto oom;

      walk = sym_name_order;

      if (symfp->ctf_dynsyms)
	{
	  while ((err = ctf_dynhash_next_sorted (symfp->ctf_dynsyms, &i, &symname,
						 NULL, ctf_dynhash_sort_by_name,
						 NULL)) == 0)
	    *walk++ = (const char *) symname;
	  if (err != ECTF_NEXT_END)
	    goto symerr;
	}
      else
	{
	  while ((err = ctf_dynhash_next (symfp->ctf_objthash, &i, &symname,
					  NULL)) == 0)
	    *walk++ = (const char *) symname;
	  if (err != ECTF_NEXT_END)
	    goto symerr;

	  while ((err = ctf_dynhash_next (symfp->ctf_funchash, &i, &symname,
					  NULL)) == 0)
	    *walk++ = (const char *) symname;
	  if (err != ECTF_NEXT_END)
	    goto symerr;
	}
    }

  /* Emit the object and function sections, and if necessary their indexes.
     Emission is done in symtab order if there is no index, and in index
     (name) order otherwise.  */

  if ((objtidx_size == 0) && symfp->ctf_dynsymidx)
    {
      ctf_dprintf ("Emitting unindexed objt symtypetab\n");
      if (emit_symtypetab (fp, symfp, (uint32_t *) t, symfp->ctf_dynsymidx,
			   NULL, symfp->ctf_dynsymmax + 1, maxobjt, objt_size,
			   symflags | CTF_SYMTYPETAB_EMIT_PAD) < 0)
	goto err;				/* errno is set for us.  */
    }
  else
    {
      ctf_dprintf ("Emitting indexed objt symtypetab\n");
      if (emit_symtypetab (fp, symfp, (uint32_t *) t, NULL, sym_name_order,
			   ndynsyms, maxobjt, objt_size, symflags) < 0)
	goto err;				/* errno is set for us.  */
    }

  t += objt_size;

  if ((funcidx_size == 0) && symfp->ctf_dynsymidx)
    {
      ctf_dprintf ("Emitting unindexed func symtypetab\n");
      if (emit_symtypetab (fp, symfp, (uint32_t *) t, symfp->ctf_dynsymidx,
			   NULL, symfp->ctf_dynsymmax + 1, maxfunc,
			   func_size, symflags | CTF_SYMTYPETAB_EMIT_FUNCTION
			   | CTF_SYMTYPETAB_EMIT_PAD) < 0)
	goto err;				/* errno is set for us.  */
    }
  else
    {
      ctf_dprintf ("Emitting indexed func symtypetab\n");
      if (emit_symtypetab (fp, symfp, (uint32_t *) t, NULL, sym_name_order,
			   ndynsyms, maxfunc, func_size,
			   symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
	goto err;				/* errno is set for us.  */
    }

  t += func_size;

  if (objtidx_size > 0)
    if (emit_symtypetab_index (fp, symfp, (uint32_t *) t, sym_name_order,
			       ndynsyms, objtidx_size, symflags) < 0)
      goto err;

  t += objtidx_size;

  if (funcidx_size > 0)
    if (emit_symtypetab_index (fp, symfp, (uint32_t *) t, sym_name_order,
			       ndynsyms, funcidx_size,
			       symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
      goto err;

  t += funcidx_size;
  free (sym_name_order);
  sym_name_order = NULL;

  /* Work over the variable list, translating everything into ctf_varent_t's and
     prepping the string table.  */

  dvarents = (ctf_varent_t *) t;
  for (i = 0, dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
       dvd = ctf_list_next (dvd), i++)
    {
      ctf_varent_t *var = &dvarents[i];

      ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
      var->ctv_type = (uint32_t) dvd->dvd_type;
    }
  assert (i == nvars);

  t += sizeof (ctf_varent_t) * nvars;

  assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_typeoff);

  /* We now take a final lap through the dynamic type definition list and copy
     the appropriate type records to the output buffer, noting down the
     strings as we go.  */

  for (dtd = ctf_list_next (&fp->ctf_dtdefs);
       dtd != NULL; dtd = ctf_list_next (dtd))
    {
      uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

      ctf_array_t cta;
      uint32_t encoding;
      size_t len;
      ctf_stype_t *copied;
      const char *name;

      if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
	len = sizeof (ctf_stype_t);
      else
	len = sizeof (ctf_type_t);

      memcpy (t, &dtd->dtd_data, len);
      copied = (ctf_stype_t *) t;  /* name is at the start: constant offset.  */
      if (copied->ctt_name
	  && (name = ctf_strraw (fp, copied->ctt_name)) != NULL)
	ctf_str_add_ref (fp, name, &copied->ctt_name);
      t += len;

      switch (kind)
	{
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  if (kind == CTF_K_INTEGER)
	    {
	      encoding = CTF_INT_DATA (dtd->dtd_u.dtu_enc.cte_format,
				       dtd->dtd_u.dtu_enc.cte_offset,
				       dtd->dtd_u.dtu_enc.cte_bits);
	    }
	  else
	    {
	      encoding = CTF_FP_DATA (dtd->dtd_u.dtu_enc.cte_format,
				      dtd->dtd_u.dtu_enc.cte_offset,
				      dtd->dtd_u.dtu_enc.cte_bits);
	    }
	  memcpy (t, &encoding, sizeof (encoding));
	  t += sizeof (encoding);
	  break;

	case CTF_K_SLICE:
	  memcpy (t, &dtd->dtd_u.dtu_slice, sizeof (struct ctf_slice));
	  t += sizeof (struct ctf_slice);
	  break;

	case CTF_K_ARRAY:
	  cta.cta_contents = (uint32_t) dtd->dtd_u.dtu_arr.ctr_contents;
	  cta.cta_index = (uint32_t) dtd->dtd_u.dtu_arr.ctr_index;
	  cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems;
	  memcpy (t, &cta, sizeof (cta));
	  t += sizeof (cta);
	  break;

	case CTF_K_FUNCTION:
	  {
	    uint32_t *argv = (uint32_t *) (uintptr_t) t;
	    uint32_t argc;

	    for (argc = 0; argc < vlen; argc++)
	      *argv++ = dtd->dtd_u.dtu_argv[argc];

	    if (vlen & 1)
	      *argv++ = 0;	/* Pad to 4-byte boundary.  */

	    t = (unsigned char *) argv;
	    break;
	  }

	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
	    t = ctf_copy_smembers (fp, dtd, t);
	  else
	    t = ctf_copy_lmembers (fp, dtd, t);
	  break;

	case CTF_K_ENUM:
	  t = ctf_copy_emembers (fp, dtd, t);
	  break;
	}
    }
  assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);

  /* Construct the final string table and fill out all the string refs with the
     final offsets.  Then purge the refs list, because we're about to move this
     strtab onto the end of the buf, invalidating all the offsets.  */
  strtab = ctf_str_write_strtab (fp);
  ctf_str_purge_refs (fp);

  if (strtab.cts_strs == NULL)
    goto oom;

  /* Now the string table is constructed, we can sort the buffer of
     ctf_varent_t's.  */
  ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) &strtab };
  ctf_qsort_r (dvarents, nvars, sizeof (ctf_varent_t), ctf_sort_var,
	       &sort_var_arg);

  if ((newbuf = ctf_realloc (fp, buf, buf_size + strtab.cts_len)) == NULL)
    {
      free (strtab.cts_strs);
      goto oom;
    }
  buf = newbuf;
  memcpy (buf + buf_size, strtab.cts_strs, strtab.cts_len);
  hdrp = (ctf_header_t *) buf;
  hdrp->cth_strlen = strtab.cts_len;
  buf_size += hdrp->cth_strlen;
  free (strtab.cts_strs);

  /* Finally, we are ready to ctf_simple_open() the new dict.  If this is
     successful, we then switch nfp and fp and free the old dict.  */

  if ((nfp = ctf_simple_open_internal ((char *) buf, buf_size, NULL, 0,
				       0, NULL, 0, fp->ctf_syn_ext_strtab,
				       1, &err)) == NULL)
    {
      free (buf);
      return (ctf_set_errno (fp, err));
    }

  (void) ctf_setmodel (nfp, ctf_getmodel (fp));

  nfp->ctf_parent = fp->ctf_parent;
  nfp->ctf_parent_unreffed = fp->ctf_parent_unreffed;
  nfp->ctf_refcnt = fp->ctf_refcnt;
  nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
  if (nfp->ctf_dynbase == NULL)
    nfp->ctf_dynbase = buf;		/* Make sure buf is freed on close.  */
  nfp->ctf_dthash = fp->ctf_dthash;
  nfp->ctf_dtdefs = fp->ctf_dtdefs;
  nfp->ctf_dvhash = fp->ctf_dvhash;
  nfp->ctf_dvdefs = fp->ctf_dvdefs;
  nfp->ctf_dtoldid = fp->ctf_dtoldid;
  nfp->ctf_add_processing = fp->ctf_add_processing;
  nfp->ctf_snapshots = fp->ctf_snapshots + 1;
  nfp->ctf_specific = fp->ctf_specific;
  nfp->ctf_nfuncidx = fp->ctf_nfuncidx;
  nfp->ctf_nobjtidx = fp->ctf_nobjtidx;
  nfp->ctf_objthash = fp->ctf_objthash;
  nfp->ctf_funchash = fp->ctf_funchash;
  nfp->ctf_dynsyms = fp->ctf_dynsyms;
  nfp->ctf_ptrtab = fp->ctf_ptrtab;
  nfp->ctf_dynsymidx = fp->ctf_dynsymidx;
  nfp->ctf_dynsymmax = fp->ctf_dynsymmax;
  nfp->ctf_ptrtab_len = fp->ctf_ptrtab_len;
  nfp->ctf_link_inputs = fp->ctf_link_inputs;
  nfp->ctf_link_outputs = fp->ctf_link_outputs;
  nfp->ctf_errs_warnings = fp->ctf_errs_warnings;
  nfp->ctf_funcidx_names = fp->ctf_funcidx_names;
  nfp->ctf_objtidx_names = fp->ctf_objtidx_names;
  nfp->ctf_funcidx_sxlate = fp->ctf_funcidx_sxlate;
  nfp->ctf_objtidx_sxlate = fp->ctf_objtidx_sxlate;
  nfp->ctf_str_prov_offset = fp->ctf_str_prov_offset;
  nfp->ctf_syn_ext_strtab = fp->ctf_syn_ext_strtab;
  nfp->ctf_in_flight_dynsyms = fp->ctf_in_flight_dynsyms;
  nfp->ctf_link_in_cu_mapping = fp->ctf_link_in_cu_mapping;
  nfp->ctf_link_out_cu_mapping = fp->ctf_link_out_cu_mapping;
  nfp->ctf_link_type_mapping = fp->ctf_link_type_mapping;
  nfp->ctf_link_memb_name_changer = fp->ctf_link_memb_name_changer;
  nfp->ctf_link_memb_name_changer_arg = fp->ctf_link_memb_name_changer_arg;
  nfp->ctf_link_variable_filter = fp->ctf_link_variable_filter;
  nfp->ctf_link_variable_filter_arg = fp->ctf_link_variable_filter_arg;
  nfp->ctf_symsect_little_endian = fp->ctf_symsect_little_endian;
  nfp->ctf_link_flags = fp->ctf_link_flags;
  nfp->ctf_dedup_atoms = fp->ctf_dedup_atoms;
  nfp->ctf_dedup_atoms_alloc = fp->ctf_dedup_atoms_alloc;
  memcpy (&nfp->ctf_dedup, &fp->ctf_dedup, sizeof (fp->ctf_dedup));

  nfp->ctf_snapshot_lu = fp->ctf_snapshots;

  memcpy (&nfp->ctf_lookups, fp->ctf_lookups, sizeof (fp->ctf_lookups));
  nfp->ctf_structs = fp->ctf_structs;
  nfp->ctf_unions = fp->ctf_unions;
  nfp->ctf_enums = fp->ctf_enums;
  nfp->ctf_names = fp->ctf_names;

  fp->ctf_dthash = NULL;
  ctf_str_free_atoms (nfp);
  nfp->ctf_str_atoms = fp->ctf_str_atoms;
  nfp->ctf_prov_strtab = fp->ctf_prov_strtab;
  fp->ctf_str_atoms = NULL;
  fp->ctf_prov_strtab = NULL;
  memset (&fp->ctf_dtdefs, 0, sizeof (ctf_list_t));
  memset (&fp->ctf_errs_warnings, 0, sizeof (ctf_list_t));
  fp->ctf_add_processing = NULL;
  fp->ctf_ptrtab = NULL;
  fp->ctf_funcidx_names = NULL;
  fp->ctf_objtidx_names = NULL;
  fp->ctf_funcidx_sxlate = NULL;
  fp->ctf_objtidx_sxlate = NULL;
  fp->ctf_objthash = NULL;
  fp->ctf_funchash = NULL;
  fp->ctf_dynsyms = NULL;
  fp->ctf_dynsymidx = NULL;
  fp->ctf_link_inputs = NULL;
  fp->ctf_link_outputs = NULL;
  fp->ctf_syn_ext_strtab = NULL;
  fp->ctf_link_in_cu_mapping = NULL;
  fp->ctf_link_out_cu_mapping = NULL;
  fp->ctf_link_type_mapping = NULL;
  fp->ctf_dedup_atoms = NULL;
  fp->ctf_dedup_atoms_alloc = NULL;
  fp->ctf_parent_unreffed = 1;

  fp->ctf_dvhash = NULL;
  memset (&fp->ctf_dvdefs, 0, sizeof (ctf_list_t));
  memset (fp->ctf_lookups, 0, sizeof (fp->ctf_lookups));
  memset (&fp->ctf_in_flight_dynsyms, 0, sizeof (fp->ctf_in_flight_dynsyms));
  memset (&fp->ctf_dedup, 0, sizeof (fp->ctf_dedup));
  fp->ctf_structs.ctn_writable = NULL;
  fp->ctf_unions.ctn_writable = NULL;
  fp->ctf_enums.ctn_writable = NULL;
  fp->ctf_names.ctn_writable = NULL;

  memcpy (&ofp, fp, sizeof (ctf_dict_t));
  memcpy (fp, nfp, sizeof (ctf_dict_t));
  memcpy (nfp, &ofp, sizeof (ctf_dict_t));

  nfp->ctf_refcnt = 1;				/* Force nfp to be freed.  */
  ctf_dict_close (nfp);

  return 0;

symerr:
  ctf_err_warn (fp, 0, err, _("error serializing symtypetabs"));
  goto err;
oom:
  free (buf);
  free (sym_name_order);
  return (ctf_set_errno (fp, EAGAIN));
err:
  free (buf);
  free (sym_name_order);
  return -1;					/* errno is set for us.  */
}

ctf_names_t *
ctf_name_table (ctf_dict_t *fp, int kind)
{
  switch (kind)
    {
    case CTF_K_STRUCT:
      return &fp->ctf_structs;
    case CTF_K_UNION:
      return &fp->ctf_unions;
    case CTF_K_ENUM:
      return &fp->ctf_enums;
    default:
      return &fp->ctf_names;
    }
}

int
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
{
  const char *name;
  if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
			  dtd) < 0)
    {
      ctf_set_errno (fp, ENOMEM);
      return -1;
    }

  if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
      && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
    {
      if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable,
			      (char *) name, (void *) (uintptr_t)
			      dtd->dtd_type) < 0)
	{
	  ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
			      dtd->dtd_type);
	  ctf_set_errno (fp, ENOMEM);
	  return -1;
	}
    }
  ctf_list_append (&fp->ctf_dtdefs, dtd);
  return 0;
}

void
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
{
  ctf_dmdef_t *dmd, *nmd;
  int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  int name_kind = kind;
  const char *name;

  ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);

  switch (kind)
    {
    case CTF_K_STRUCT:
    case CTF_K_UNION:
    case CTF_K_ENUM:
      for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
	   dmd != NULL; dmd = nmd)
	{
	  if (dmd->dmd_name != NULL)
	      free (dmd->dmd_name);
	  nmd = ctf_list_next (dmd);
	  free (dmd);
	}
      break;
    case CTF_K_FUNCTION:
      free (dtd->dtd_u.dtu_argv);
      break;
    case CTF_K_FORWARD:
      name_kind = dtd->dtd_data.ctt_type;
      break;
    }

  if (dtd->dtd_data.ctt_name
      && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
      && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
    {
      ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable,
			  name);
      ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
    }

  ctf_list_delete (&fp->ctf_dtdefs, dtd);
  free (dtd);
}

ctf_dtdef_t *
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
{
  return (ctf_dtdef_t *)
    ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
}

ctf_dtdef_t *
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
{
  ctf_id_t idx;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return NULL;

  if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
    fp = fp->ctf_parent;

  idx = LCTF_TYPE_TO_INDEX(fp, id);

  if ((unsigned long) idx <= fp->ctf_typemax)
    return ctf_dtd_lookup (fp, id);
  return NULL;
}

int
ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
{
  if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
    {
      ctf_set_errno (fp, ENOMEM);
      return -1;
    }
  ctf_list_append (&fp->ctf_dvdefs, dvd);
  return 0;
}

void
ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
{
  ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
  free (dvd->dvd_name);

  ctf_list_delete (&fp->ctf_dvdefs, dvd);
  free (dvd);
}

ctf_dvdef_t *
ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
{
  return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
}

/* Discard all of the dynamic type definitions and variable definitions that
   have been added to the dict since the last call to ctf_update().  We locate
   such types by scanning the dtd list and deleting elements that have type IDs
   greater than ctf_dtoldid, which is set by ctf_update(), above, and by
   scanning the variable list and deleting elements that have update IDs equal
   to the current value of the last-update snapshot count (indicating that they
   were added after the most recent call to ctf_update()).  */
int
ctf_discard (ctf_dict_t *fp)
{
  ctf_snapshot_id_t last_update =
    { fp->ctf_dtoldid,
      fp->ctf_snapshot_lu + 1 };

  /* Update required?  */
  if (!(fp->ctf_flags & LCTF_DIRTY))
    return 0;

  return (ctf_rollback (fp, last_update));
}

ctf_snapshot_id_t
ctf_snapshot (ctf_dict_t *fp)
{
  ctf_snapshot_id_t snapid;
  snapid.dtd_id = fp->ctf_typemax;
  snapid.snapshot_id = fp->ctf_snapshots++;
  return snapid;
}

/* Like ctf_discard(), only discards everything after a particular ID.  */
int
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
{
  ctf_dtdef_t *dtd, *ntd;
  ctf_dvdef_t *dvd, *nvd;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (fp->ctf_snapshot_lu >= id.snapshot_id)
    return (ctf_set_errno (fp, ECTF_OVERROLLBACK));

  for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
    {
      int kind;
      const char *name;

      ntd = ctf_list_next (dtd);

      if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
	continue;

      kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      if (kind == CTF_K_FORWARD)
	kind = dtd->dtd_data.ctt_type;

      if (dtd->dtd_data.ctt_name
	  && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
	  && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
	{
	  ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable,
			      name);
	  ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
	}

      ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
      ctf_dtd_delete (fp, dtd);
    }

  for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
    {
      nvd = ctf_list_next (dvd);

      if (dvd->dvd_snapshots <= id.snapshot_id)
	continue;

      ctf_dvd_delete (fp, dvd);
    }

  fp->ctf_typemax = id.dtd_id;
  fp->ctf_snapshots = id.snapshot_id;

  if (fp->ctf_snapshots == fp->ctf_snapshot_lu)
    fp->ctf_flags &= ~LCTF_DIRTY;

  return 0;
}

static ctf_id_t
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
		 ctf_dtdef_t **rp)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;

  if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
    return (ctf_set_errno (fp, EINVAL));

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
    return (ctf_set_errno (fp, ECTF_FULL));

  if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
    return (ctf_set_errno (fp, ECTF_FULL));

  /* Make sure ptrtab always grows to be big enough for all types.  */
  if (ctf_grow_ptrtab (fp) < 0)
      return CTF_ERR;		/* errno is set for us. */

  if ((dtd = malloc (sizeof (ctf_dtdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  type = ++fp->ctf_typemax;
  type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));

  memset (dtd, 0, sizeof (ctf_dtdef_t));
  dtd->dtd_data.ctt_name = ctf_str_add_ref (fp, name, &dtd->dtd_data.ctt_name);
  dtd->dtd_type = type;

  if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
    {
      free (dtd);
      return (ctf_set_errno (fp, EAGAIN));
    }

  if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
    {
      free (dtd);
      return CTF_ERR;			/* errno is set for us.  */
    }
  fp->ctf_flags |= LCTF_DIRTY;

  *rp = dtd;
  return type;
}

/* When encoding integer sizes, we want to convert a byte count in the range
   1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc).  The clp2() function
   is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.  */
static size_t
clp2 (size_t x)
{
  x--;

  x |= (x >> 1);
  x |= (x >> 2);
  x |= (x >> 4);
  x |= (x >> 8);
  x |= (x >> 16);

  return (x + 1);
}

ctf_id_t
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
		 const char *name, const ctf_encoding_t *ep, uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;

  if (ep == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if ((type = ctf_add_generic (fp, flag, name, kind, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
  dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
				 / CHAR_BIT);
  dtd->dtd_u.dtu_enc = *ep;

  return type;
}

ctf_id_t
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;
  int child = fp->ctf_flags & LCTF_CHILD;

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, NULL, kind, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
  dtd->dtd_data.ctt_type = (uint32_t) ref;

  if (kind != CTF_K_POINTER)
    return type;

  /* If we are adding a pointer, update the ptrtab, both the directly pointed-to
     type and (if an anonymous typedef node is being pointed at) the type that
     points at too.  Note that ctf_typemax is at this point one higher than we
     want to check against, because it's just been incremented for the addition
     of this type.  */

  uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
  uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);

  if (LCTF_TYPE_ISCHILD (fp, ref) == child
      && ref_idx < fp->ctf_typemax)
    {
      fp->ctf_ptrtab[ref_idx] = type_idx;

      ctf_id_t refref_idx = LCTF_TYPE_TO_INDEX (fp, dtd->dtd_data.ctt_type);

      if (tmp == fp
	  && (LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) == CTF_K_TYPEDEF)
	  && strcmp (ctf_strptr (fp, dtd->dtd_data.ctt_name), "") == 0
	  && refref_idx < fp->ctf_typemax)
	fp->ctf_ptrtab[refref_idx] = type_idx;
    }

  return type;
}

ctf_id_t
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
	       const ctf_encoding_t *ep)
{
  ctf_dtdef_t *dtd;
  ctf_id_t resolved_ref = ref;
  ctf_id_t type;
  int kind;
  const ctf_type_t *tp;
  ctf_dict_t *tmp = fp;

  if (ep == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
    return (ctf_set_errno (fp, ECTF_SLICEOVERFLOW));

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
    return CTF_ERR;		/* errno is set for us.  */

  /* Make sure we ultimately point to an integral type.  We also allow slices to
     point to the unimplemented type, for now, because the compiler can emit
     such slices, though they're not very much use.  */

  resolved_ref = ctf_type_resolve_unsliced (tmp, ref);
  kind = ctf_type_kind_unsliced (tmp, resolved_ref);

  if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
      (kind != CTF_K_ENUM)
      && (ref != 0))
    return (ctf_set_errno (fp, ECTF_NOTINTFP));

  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
  dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
				 / CHAR_BIT);
  dtd->dtd_u.dtu_slice.cts_type = (uint32_t) ref;
  dtd->dtd_u.dtu_slice.cts_bits = ep->cte_bits;
  dtd->dtd_u.dtu_slice.cts_offset = ep->cte_offset;

  return type;
}

ctf_id_t
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
		 const char *name, const ctf_encoding_t *ep)
{
  return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
}

ctf_id_t
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
	       const char *name, const ctf_encoding_t *ep)
{
  return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
}

ctf_id_t
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
}

ctf_id_t
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;

  if (arp == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if (arp->ctr_contents != 0
      && ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  tmp = fp;
  if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
  dtd->dtd_data.ctt_size = 0;
  dtd->dtd_u.dtu_arr = *arp;

  return type;
}

int
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL
      || LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
    return (ctf_set_errno (fp, ECTF_BADID));

  fp->ctf_flags |= LCTF_DIRTY;
  dtd->dtd_u.dtu_arr = *arp;

  return 0;
}

ctf_id_t
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
		  const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  uint32_t vlen;
  uint32_t *vdat = NULL;
  ctf_dict_t *tmp = fp;
  size_t i;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
      || (ctc->ctc_argc != 0 && argv == NULL))
    return (ctf_set_errno (fp, EINVAL));

  vlen = ctc->ctc_argc;
  if (ctc->ctc_flags & CTF_FUNC_VARARG)
    vlen++;	       /* Add trailing zero to indicate varargs (see below).  */

  if (ctc->ctc_return != 0
      && ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if (vlen > CTF_MAX_VLEN)
    return (ctf_set_errno (fp, EOVERFLOW));

  if (vlen != 0 && (vdat = malloc (sizeof (ctf_id_t) * vlen)) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  for (i = 0; i < ctc->ctc_argc; i++)
    {
      tmp = fp;
      if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
	{
	  free (vdat);
	  return CTF_ERR;	   /* errno is set for us.  */
	}
      vdat[i] = (uint32_t) argv[i];
    }

  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
			       &dtd)) == CTF_ERR)
    {
      free (vdat);
      return CTF_ERR;		   /* errno is set for us.  */
    }

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
  dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;

  if (ctc->ctc_flags & CTF_FUNC_VARARG)
    vdat[vlen - 1] = 0;		   /* Add trailing zero to indicate varargs.  */
  dtd->dtd_u.dtu_argv = vdat;

  return type;
}

ctf_id_t
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
		      size_t size)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;

  /* Promote root-visible forwards to structs.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
				    &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);

  if (size > CTF_MAX_SIZE)
    {
      dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
      dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
      dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
    }
  else
    dtd->dtd_data.ctt_size = (uint32_t) size;

  return type;
}

ctf_id_t
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  return (ctf_add_struct_sized (fp, flag, name, 0));
}

ctf_id_t
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
		     size_t size)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;

  /* Promote root-visible forwards to unions.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
				    &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);

  if (size > CTF_MAX_SIZE)
    {
      dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
      dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
      dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
    }
  else
    dtd->dtd_data.ctt_size = (uint32_t) size;

  return type;
}

ctf_id_t
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  return (ctf_add_union_sized (fp, flag, name, 0));
}

ctf_id_t
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;

  /* Promote root-visible forwards to enums.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
				    &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
  dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;

  return type;
}

ctf_id_t
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
		      const ctf_encoding_t *ep)
{
  ctf_id_t type = 0;

  /* First, create the enum if need be, using most of the same machinery as
     ctf_add_enum(), to ensure that we do not allow things past that are not
     enums or forwards to them.  (This includes other slices: you cannot slice a
     slice, which would be a useless thing to do anyway.)  */

  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);

  if (type != 0)
    {
      if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
	  (ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
	return (ctf_set_errno (fp, ECTF_NOTINTFP));
    }
  else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  /* Now attach a suitable slice to it.  */

  return ctf_add_slice (fp, flag, type, ep);
}

ctf_id_t
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
		 uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;

  if (!ctf_forwardable_kind (kind))
    return (ctf_set_errno (fp, ECTF_NOTSUE));

  /* If the type is already defined or exists as a forward tag, just
     return the ctf_id_t of the existing definition.  */

  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, kind, name);

  if (type)
    return type;

  if ((type = ctf_add_generic (fp, flag, name, kind, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
  dtd->dtd_data.ctt_type = kind;

  return type;
}

ctf_id_t
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
		 ctf_id_t ref)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF,
			       &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
  dtd->dtd_data.ctt_type = (uint32_t) ref;

  return type;
}

ctf_id_t
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
}

ctf_id_t
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
}

ctf_id_t
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
}

int
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
		    int value)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
  ctf_dmdef_t *dmd;

  uint32_t kind, vlen, root;
  char *s;

  if (name == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL)
    return (ctf_set_errno (fp, ECTF_BADID));

  kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
  vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

  if (kind != CTF_K_ENUM)
    return (ctf_set_errno (fp, ECTF_NOTENUM));

  if (vlen == CTF_MAX_VLEN)
    return (ctf_set_errno (fp, ECTF_DTFULL));

  for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
       dmd != NULL; dmd = ctf_list_next (dmd))
    {
      if (strcmp (dmd->dmd_name, name) == 0)
	return (ctf_set_errno (fp, ECTF_DUPLICATE));
    }

  if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  if ((s = strdup (name)) == NULL)
    {
      free (dmd);
      return (ctf_set_errno (fp, EAGAIN));
    }

  dmd->dmd_name = s;
  dmd->dmd_type = CTF_ERR;
  dmd->dmd_offset = 0;
  dmd->dmd_value = value;

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
  ctf_list_append (&dtd->dtd_u.dtu_members, dmd);

  fp->ctf_flags |= LCTF_DIRTY;

  return 0;
}

int
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
		       ctf_id_t type, unsigned long bit_offset)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);
  ctf_dmdef_t *dmd;

  ssize_t msize, malign, ssize;
  uint32_t kind, vlen, root;
  char *s = NULL;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL)
    return (ctf_set_errno (fp, ECTF_BADID));

  if (name != NULL && name[0] == '\0')
    name = NULL;

  kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
  vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

  if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
    return (ctf_set_errno (fp, ECTF_NOTSOU));

  if (vlen == CTF_MAX_VLEN)
    return (ctf_set_errno (fp, ECTF_DTFULL));

  if (name != NULL)
    {
      for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
	   dmd != NULL; dmd = ctf_list_next (dmd))
	{
	  if (dmd->dmd_name != NULL && strcmp (dmd->dmd_name, name) == 0)
	    return (ctf_set_errno (fp, ECTF_DUPLICATE));
	}
    }

  if ((msize = ctf_type_size (fp, type)) < 0 ||
      (malign = ctf_type_align (fp, type)) < 0)
    {
      /* The unimplemented type, and any type that resolves to it, has no size
	 and no alignment: it can correspond to any number of compiler-inserted
	 types.  */

      if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
	{
	  msize = 0;
	  malign = 0;
	  ctf_set_errno (fp, 0);
	}
      else
	return -1;		/* errno is set for us.  */
    }

  if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  if (name != NULL && (s = strdup (name)) == NULL)
    {
      free (dmd);
      return (ctf_set_errno (fp, EAGAIN));
    }

  dmd->dmd_name = s;
  dmd->dmd_type = type;
  dmd->dmd_value = -1;

  if (kind == CTF_K_STRUCT && vlen != 0)
    {
      if (bit_offset == (unsigned long) - 1)
	{
	  /* Natural alignment.  */

	  ctf_dmdef_t *lmd = ctf_list_prev (&dtd->dtd_u.dtu_members);
	  ctf_id_t ltype = ctf_type_resolve (fp, lmd->dmd_type);
	  size_t off = lmd->dmd_offset;

	  ctf_encoding_t linfo;
	  ssize_t lsize;

	  /* Propagate any error from ctf_type_resolve.  If the last member was
	     of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
	     cannot insert right after such a member without explicit offset
	     specification, because its alignment and size is not known.  */
	  if (ltype == CTF_ERR)
	    {
	      free (dmd);
	      return -1;	/* errno is set for us.  */
	    }

	  if (ctf_type_encoding (fp, ltype, &linfo) == 0)
	    off += linfo.cte_bits;
	  else if ((lsize = ctf_type_size (fp, ltype)) > 0)
	    off += lsize * CHAR_BIT;

	  /* Round up the offset of the end of the last member to
	     the next byte boundary, convert 'off' to bytes, and
	     then round it up again to the next multiple of the
	     alignment required by the new member.  Finally,
	     convert back to bits and store the result in
	     dmd_offset.  Technically we could do more efficient
	     packing if the new member is a bit-field, but we're
	     the "compiler" and ANSI says we can do as we choose.  */

	  off = roundup (off, CHAR_BIT) / CHAR_BIT;
	  off = roundup (off, MAX (malign, 1));
	  dmd->dmd_offset = off * CHAR_BIT;
	  ssize = off + msize;
	}
      else
	{
	  /* Specified offset in bits.  */

	  dmd->dmd_offset = bit_offset;
	  ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
	  ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
	}
    }
  else
    {
      dmd->dmd_offset = 0;
      ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
      ssize = MAX (ssize, msize);
    }

  if ((size_t) ssize > CTF_MAX_SIZE)
    {
      dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
      dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
      dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
    }
  else
    dtd->dtd_data.ctt_size = (uint32_t) ssize;

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
  ctf_list_append (&dtd->dtd_u.dtu_members, dmd);

  fp->ctf_flags |= LCTF_DIRTY;
  return 0;
}

int
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
			ctf_id_t type, unsigned long bit_offset,
			const ctf_encoding_t encoding)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
  int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  int otype = type;

  if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
    return (ctf_set_errno (fp, ECTF_NOTINTFP));

  if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
    return -1;			/* errno is set for us.  */

  return ctf_add_member_offset (fp, souid, name, type, bit_offset);
}

int
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
		ctf_id_t type)
{
  return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
}

int
ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
{
  ctf_dvdef_t *dvd;
  ctf_dict_t *tmp = fp;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctf_dvd_lookup (fp, name) != NULL)
    return (ctf_set_errno (fp, ECTF_DUPLICATE));

  if (ctf_lookup_by_id (&tmp, ref) == NULL)
    return -1;			/* errno is set for us.  */

  /* Make sure this type is representable.  */
  if ((ctf_type_resolve (fp, ref) == CTF_ERR)
      && (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
    return -1;

  if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
    {
      free (dvd);
      return (ctf_set_errno (fp, EAGAIN));
    }
  dvd->dvd_type = ref;
  dvd->dvd_snapshots = fp->ctf_snapshots;

  if (ctf_dvd_insert (fp, dvd) < 0)
    {
      free (dvd->dvd_name);
      free (dvd);
      return -1;			/* errno is set for us.  */
    }

  fp->ctf_flags |= LCTF_DIRTY;
  return 0;
}

int
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
{
  ctf_dict_t *tmp = fp;
  char *dupname;
  ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL ||
      ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL)
    return (ctf_set_errno (fp, ECTF_DUPLICATE));

  if (ctf_lookup_by_id (&tmp, id) == NULL)
    return -1;                                  /* errno is set for us.  */

  if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
    return (ctf_set_errno (fp, ECTF_NOTFUNC));

  if ((dupname = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));

  if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
    {
      free (dupname);
      return (ctf_set_errno (fp, ENOMEM));
    }
  return 0;
}

int
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
{
  return (ctf_add_funcobjt_sym (fp, 0, name, id));
}

int
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
{
  return (ctf_add_funcobjt_sym (fp, 1, name, id));
}

typedef struct ctf_bundle
{
  ctf_dict_t *ctb_dict;		/* CTF dict handle.  */
  ctf_id_t ctb_type;		/* CTF type identifier.  */
  ctf_dtdef_t *ctb_dtd;		/* CTF dynamic type definition (if any).  */
} ctf_bundle_t;

static int
enumcmp (const char *name, int value, void *arg)
{
  ctf_bundle_t *ctb = arg;
  int bvalue;

  if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
    {
      ctf_err_warn (ctb->ctb_dict, 0, 0,
		    _("conflict due to enum %s iteration error"), name);
      return 1;
    }
  if (value != bvalue)
    {
      ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
		    _("conflict due to enum value change: %i versus %i"),
		    value, bvalue);
      return 1;
    }
  return 0;
}

static int
enumadd (const char *name, int value, void *arg)
{
  ctf_bundle_t *ctb = arg;

  return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
			      name, value) < 0);
}

static int
membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
	 void *arg)
{
  ctf_bundle_t *ctb = arg;
  ctf_membinfo_t ctm;

  /* Don't check nameless members (e.g. anonymous structs/unions) against each
     other.  */
  if (name[0] == 0)
    return 0;

  if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
    {
      ctf_err_warn (ctb->ctb_dict, 0, 0,
		    _("conflict due to struct member %s iteration error"),
		    name);
      return 1;
    }
  if (ctm.ctm_offset != offset)
    {
      ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
		    _("conflict due to struct member %s offset change: "
		      "%lx versus %lx"),
		    name, ctm.ctm_offset, offset);
      return 1;
    }
  return 0;
}

static int
membadd (const char *name, ctf_id_t type, unsigned long offset, void *arg)
{
  ctf_bundle_t *ctb = arg;
  ctf_dmdef_t *dmd;
  char *s = NULL;

  if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
    return (ctf_set_errno (ctb->ctb_dict, EAGAIN));

  if (name != NULL && (s = strdup (name)) == NULL)
    {
      free (dmd);
      return (ctf_set_errno (ctb->ctb_dict, EAGAIN));
    }

  /* For now, dmd_type is copied as the src_fp's type; it is reset to an
    equivalent dst_fp type by a final loop in ctf_add_type(), below.  */
  dmd->dmd_name = s;
  dmd->dmd_type = type;
  dmd->dmd_offset = offset;
  dmd->dmd_value = -1;

  ctf_list_append (&ctb->ctb_dtd->dtd_u.dtu_members, dmd);

  ctb->ctb_dict->ctf_flags |= LCTF_DIRTY;
  return 0;
}

/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
   to a dynamic destination dictionary.  This routine operates recursively by
   following the source type's links and embedded member types.  If the
   destination dict already contains a named type which has the same attributes,
   then we succeed and return this type but no changes occur.  */
static ctf_id_t
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
		       ctf_dict_t *proc_tracking_fp)
{
  ctf_id_t dst_type = CTF_ERR;
  uint32_t dst_kind = CTF_K_UNKNOWN;
  ctf_dict_t *tmp_fp = dst_fp;
  ctf_id_t tmp;

  const char *name;
  uint32_t kind, forward_kind, flag, vlen;

  const ctf_type_t *src_tp, *dst_tp;
  ctf_bundle_t src, dst;
  ctf_encoding_t src_en, dst_en;
  ctf_arinfo_t src_ar, dst_ar;

  ctf_funcinfo_t ctc;

  ctf_id_t orig_src_type = src_type;

  if (!(dst_fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (dst_fp, ECTF_RDONLY));

  if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
    return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

  if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
      && (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
    return (ctf_set_errno (dst_fp, ECTF_NONREPRESENTABLE));

  name = ctf_strptr (src_fp, src_tp->ctt_name);
  kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
  flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
  vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);

  /* If this is a type we are currently in the middle of adding, hand it
     straight back.  (This lets us handle self-referential structures without
     considering forwards and empty structures the same as their completed
     forms.)  */

  tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);

  if (tmp != 0)
    {
      if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
			      (void *) (uintptr_t) src_type))
	return tmp;

      /* If this type has already been added from this dictionary, and is the
	 same kind and (if a struct or union) has the same number of members,
	 hand it straight back.  */

      if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
	{
	  if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
	      || kind == CTF_K_ENUM)
	    {
	      if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
		if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
		  return tmp;
	    }
	  else
	    return tmp;
	}
    }

  forward_kind = kind;
  if (kind == CTF_K_FORWARD)
    forward_kind = src_tp->ctt_type;

  /* If the source type has a name and is a root type (visible at the top-level
     scope), lookup the name in the destination dictionary and verify that it is
     of the same kind before we do anything else.  */

  if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
      && (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
    {
      dst_type = tmp;
      dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
    }

  /* If an identically named dst_type exists, fail with ECTF_CONFLICT
     unless dst_type is a forward declaration and src_type is a struct,
     union, or enum (i.e. the definition of the previous forward decl).

     We also allow addition in the opposite order (addition of a forward when a
     struct, union, or enum already exists), which is a NOP and returns the
     already-present struct, union, or enum.  */

  if (dst_type != CTF_ERR && dst_kind != kind)
    {
      if (kind == CTF_K_FORWARD
	  && (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
	      || dst_kind == CTF_K_UNION))
	{
	  ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
	  return dst_type;
	}

      if (dst_kind != CTF_K_FORWARD
	  || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
	      && kind != CTF_K_UNION))
	{
	  ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			_("ctf_add_type: conflict for type %s: "
			  "kinds differ, new: %i; old (ID %lx): %i"),
			name, kind, dst_type, dst_kind);
	  return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	}
    }

  /* We take special action for an integer, float, or slice since it is
     described not only by its name but also its encoding.  For integers,
     bit-fields exploit this degeneracy.  */

  if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
    {
      if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
	return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

      if (dst_type != CTF_ERR)
	{
	  ctf_dict_t *fp = dst_fp;

	  if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
	    return CTF_ERR;

	  if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
	    return CTF_ERR;			/* errno set for us.  */

	  if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
	    {
	      /* The type that we found in the hash is also root-visible.  If
		 the two types match then use the existing one; otherwise,
		 declare a conflict.  Note: slices are not certain to match
		 even if there is no conflict: we must check the contained type
		 too.  */

	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
		{
		  if (kind != CTF_K_SLICE)
		    {
		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
		      return dst_type;
		    }
		}
	      else
		  {
		    return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
		  }
	    }
	  else
	    {
	      /* We found a non-root-visible type in the hash.  If its encoding
		 is the same, we can reuse it, unless it is a slice.  */

	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
		{
		  if (kind != CTF_K_SLICE)
		    {
		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
		      return dst_type;
		    }
		}
	    }
	}
    }

  src.ctb_dict = src_fp;
  src.ctb_type = src_type;
  src.ctb_dtd = NULL;

  dst.ctb_dict = dst_fp;
  dst.ctb_type = dst_type;
  dst.ctb_dtd = NULL;

  /* Now perform kind-specific processing.  If dst_type is CTF_ERR, then we add
     a new type with the same properties as src_type to dst_fp.  If dst_type is
     not CTF_ERR, then we verify that dst_type has the same attributes as
     src_type.  We recurse for embedded references.  Before we start, we note
     that we are processing this type, to prevent infinite recursion: we do not
     re-process any type that appears in this list.  The list is emptied
     wholesale at the end of processing everything in this recursive stack.  */

  if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
			  (void *) (uintptr_t) src_type, (void *) 1) < 0)
    return ctf_set_errno (dst_fp, ENOMEM);

  switch (kind)
    {
    case CTF_K_INTEGER:
      /*  If we found a match we will have either returned it or declared a
	  conflict.  */
      dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
      break;

    case CTF_K_FLOAT:
      /* If we found a match we will have either returned it or declared a
       conflict.  */
      dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
      break;

    case CTF_K_SLICE:
      /* We have checked for conflicting encodings: now try to add the
	 contained type.  */
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
      break;

    case CTF_K_POINTER:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
      break;

    case CTF_K_ARRAY:
      if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
	return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

      src_ar.ctr_contents =
	ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
			       proc_tracking_fp);
      src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
						src_ar.ctr_index,
						proc_tracking_fp);
      src_ar.ctr_nelems = src_ar.ctr_nelems;

      if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      if (dst_type != CTF_ERR)
	{
	  if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
	    return CTF_ERR;			/* errno is set for us.  */

	  if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
	    {
	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			    _("conflict for type %s against ID %lx: array info "
			      "differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
			    name, dst_type, src_ar.ctr_contents,
			    src_ar.ctr_index, src_ar.ctr_nelems,
			    dst_ar.ctr_contents, dst_ar.ctr_index,
			    dst_ar.ctr_nelems);
	      return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	    }
	}
      else
	dst_type = ctf_add_array (dst_fp, flag, &src_ar);
      break;

    case CTF_K_FUNCTION:
      ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
					      src_tp->ctt_type,
					      proc_tracking_fp);
      ctc.ctc_argc = 0;
      ctc.ctc_flags = 0;

      if (ctc.ctc_return == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
      break;

    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	ctf_dmdef_t *dmd;
	int errs = 0;
	size_t size;
	ssize_t ssize;
	ctf_dtdef_t *dtd;

	/* Technically to match a struct or union we need to check both
	   ways (src members vs. dst, dst members vs. src) but we make
	   this more optimal by only checking src vs. dst and comparing
	   the total size of the structure (which we must do anyway)
	   which covers the possibility of dst members not in src.
	   This optimization can be defeated for unions, but is so
	   pathological as to render it irrelevant for our purposes.  */

	if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
	    && dst_kind != CTF_K_FORWARD)
	  {
	    if (ctf_type_size (src_fp, src_type) !=
		ctf_type_size (dst_fp, dst_type))
	      {
		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			      _("conflict for type %s against ID %lx: union "
				"size differs, old %li, new %li"), name,
			      dst_type, (long) ctf_type_size (src_fp, src_type),
			      (long) ctf_type_size (dst_fp, dst_type));
		return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	      }

	    if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
	      {
		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			      _("conflict for type %s against ID %lx: members "
				"differ, see above"), name, dst_type);
		return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	      }

	    break;
	  }

	/* Unlike the other cases, copying structs and unions is done
	   manually so as to avoid repeated lookups in ctf_add_member
	   and to ensure the exact same member offsets as in src_type.  */

	dst_type = ctf_add_generic (dst_fp, flag, name, kind, &dtd);
	if (dst_type == CTF_ERR)
	  return CTF_ERR;			/* errno is set for us.  */

	dst.ctb_type = dst_type;
	dst.ctb_dtd = dtd;

	/* Pre-emptively add this struct to the type mapping so that
	   structures that refer to themselves work.  */
	ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);

	if (ctf_member_iter (src_fp, src_type, membadd, &dst) != 0)
	  errs++;	       /* Increment errs and fail at bottom of case.  */

	if ((ssize = ctf_type_size (src_fp, src_type)) < 0)
	  return CTF_ERR;			/* errno is set for us.  */

	size = (size_t) ssize;
	if (size > CTF_MAX_SIZE)
	  {
	    dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
	    dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
	    dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
	  }
	else
	  dtd->dtd_data.ctt_size = (uint32_t) size;

	dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, vlen);

	/* Make a final pass through the members changing each dmd_type (a
	   src_fp type) to an equivalent type in dst_fp.  We pass through all
	   members, leaving any that fail set to CTF_ERR, unless they fail
	   because they are marking a member of type not representable in this
	   version of CTF, in which case we just want to silently omit them:
	   no consumer can do anything with them anyway.  */
	for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
	     dmd != NULL; dmd = ctf_list_next (dmd))
	  {
	    ctf_dict_t *dst = dst_fp;
	    ctf_id_t memb_type;

	    memb_type = ctf_type_mapping (src_fp, dmd->dmd_type, &dst);
	    if (memb_type == 0)
	      {
		if ((dmd->dmd_type =
		     ctf_add_type_internal (dst_fp, src_fp, dmd->dmd_type,
					    proc_tracking_fp)) == CTF_ERR)
		  {
		    if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
		      errs++;
		  }
	      }
	    else
	      dmd->dmd_type = memb_type;
	  }

	if (errs)
	  return CTF_ERR;			/* errno is set for us.  */
	break;
      }

    case CTF_K_ENUM:
      if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
	  && dst_kind != CTF_K_FORWARD)
	{
	  if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
	      || ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
	    {
	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			    _("conflict for enum %s against ID %lx: members "
			      "differ, see above"), name, dst_type);
	      return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	    }
	}
      else
	{
	  dst_type = ctf_add_enum (dst_fp, flag, name);
	  if ((dst.ctb_type = dst_type) == CTF_ERR
	      || ctf_enum_iter (src_fp, src_type, enumadd, &dst))
	    return CTF_ERR;			/* errno is set for us */
	}
      break;

    case CTF_K_FORWARD:
      if (dst_type == CTF_ERR)
	  dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
      break;

    case CTF_K_TYPEDEF:
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      /* If dst_type is not CTF_ERR at this point, we should check if
	 ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
	 ECTF_CONFLICT.  However, this causes problems with bitness typedefs
	 that vary based on things like if 32-bit then pid_t is int otherwise
	 long.  We therefore omit this check and assume that if the identically
	 named typedef already exists in dst_fp, it is correct or
	 equivalent.  */

      if (dst_type == CTF_ERR)
	  dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);

      break;

    default:
      return (ctf_set_errno (dst_fp, ECTF_CORRUPT));
    }

  if (dst_type != CTF_ERR)
    ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
  return dst_type;
}

ctf_id_t
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
{
  ctf_id_t id;

  if (!src_fp->ctf_add_processing)
    src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
						     ctf_hash_eq_integer,
						     NULL, NULL);

  /* We store the hash on the source, because it contains only source type IDs:
     but callers will invariably expect errors to appear on the dest.  */
  if (!src_fp->ctf_add_processing)
    return (ctf_set_errno (dst_fp, ENOMEM));

  id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
  ctf_dynhash_empty (src_fp->ctf_add_processing);

  return id;
}

/* Write the compressed CTF data stream to the specified gzFile descriptor.  */
int
ctf_gzwrite (ctf_dict_t *fp, gzFile fd)
{
  const unsigned char *buf;
  ssize_t resid;
  ssize_t len;

  resid = sizeof (ctf_header_t);
  buf = (unsigned char *) fp->ctf_header;
  while (resid != 0)
    {
      if ((len = gzwrite (fd, buf, resid)) <= 0)
	return (ctf_set_errno (fp, errno));
      resid -= len;
      buf += len;
    }

  resid = fp->ctf_size;
  buf = fp->ctf_buf;
  while (resid != 0)
    {
      if ((len = gzwrite (fd, buf, resid)) <= 0)
	return (ctf_set_errno (fp, errno));
      resid -= len;
      buf += len;
    }

  return 0;
}

/* Compress the specified CTF data stream and write it to the specified file
   descriptor.  */
int
ctf_compress_write (ctf_dict_t *fp, int fd)
{
  unsigned char *buf;
  unsigned char *bp;
  ctf_header_t h;
  ctf_header_t *hp = &h;
  ssize_t header_len = sizeof (ctf_header_t);
  ssize_t compress_len;
  ssize_t len;
  int rc;
  int err = 0;

  if (ctf_serialize (fp) < 0)
    return -1;					/* errno is set for us.  */

  memcpy (hp, fp->ctf_header, header_len);
  hp->cth_flags |= CTF_F_COMPRESS;
  compress_len = compressBound (fp->ctf_size);

  if ((buf = malloc (compress_len)) == NULL)
    {
      ctf_err_warn (fp, 0, 0, _("ctf_compress_write: cannot allocate %li bytes"),
		    (unsigned long) compress_len);
      return (ctf_set_errno (fp, ECTF_ZALLOC));
    }

  if ((rc = compress (buf, (uLongf *) &compress_len,
		      fp->ctf_buf, fp->ctf_size)) != Z_OK)
    {
      err = ctf_set_errno (fp, ECTF_COMPRESS);
      ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
      goto ret;
    }

  while (header_len > 0)
    {
      if ((len = write (fd, hp, header_len)) < 0)
	{
	  err = ctf_set_errno (fp, errno);
	  ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing header"));
	  goto ret;
	}
      header_len -= len;
      hp += len;
    }

  bp = buf;
  while (compress_len > 0)
    {
      if ((len = write (fd, bp, compress_len)) < 0)
	{
	  err = ctf_set_errno (fp, errno);
	  ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
	  goto ret;
	}
      compress_len -= len;
      bp += len;
    }

ret:
  free (buf);
  return err;
}

/* Optionally compress the specified CTF data stream and return it as a new
   dynamically-allocated string.  */
unsigned char *
ctf_write_mem (ctf_dict_t *fp, size_t *size, size_t threshold)
{
  unsigned char *buf;
  unsigned char *bp;
  ctf_header_t *hp;
  ssize_t header_len = sizeof (ctf_header_t);
  ssize_t compress_len;
  int rc;

  if (ctf_serialize (fp) < 0)
    return NULL;				/* errno is set for us.  */

  compress_len = compressBound (fp->ctf_size);
  if (fp->ctf_size < threshold)
    compress_len = fp->ctf_size;
  if ((buf = malloc (compress_len
		     + sizeof (struct ctf_header))) == NULL)
    {
      ctf_set_errno (fp, ENOMEM);
      ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
		    (unsigned long) (compress_len + sizeof (struct ctf_header)));
      return NULL;
    }

  hp = (ctf_header_t *) buf;
  memcpy (hp, fp->ctf_header, header_len);
  bp = buf + sizeof (struct ctf_header);
  *size = sizeof (struct ctf_header);

  if (fp->ctf_size < threshold)
    {
      hp->cth_flags &= ~CTF_F_COMPRESS;
      memcpy (bp, fp->ctf_buf, fp->ctf_size);
      *size += fp->ctf_size;
    }
  else
    {
      hp->cth_flags |= CTF_F_COMPRESS;
      if ((rc = compress (bp, (uLongf *) &compress_len,
			  fp->ctf_buf, fp->ctf_size)) != Z_OK)
	{
	  ctf_set_errno (fp, ECTF_COMPRESS);
	  ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
	  free (buf);
	  return NULL;
	}
      *size += compress_len;
    }
  return buf;
}

/* Write the uncompressed CTF data stream to the specified file descriptor.  */
int
ctf_write (ctf_dict_t *fp, int fd)
{
  const unsigned char *buf;
  ssize_t resid;
  ssize_t len;

  if (ctf_serialize (fp) < 0)
    return -1;					/* errno is set for us.  */

  resid = sizeof (ctf_header_t);
  buf = (unsigned char *) fp->ctf_header;
  while (resid != 0)
    {
      if ((len = write (fd, buf, resid)) <= 0)
	{
	  ctf_err_warn (fp, 0, errno, _("ctf_write: error writing header"));
	  return (ctf_set_errno (fp, errno));
	}
      resid -= len;
      buf += len;
    }

  resid = fp->ctf_size;
  buf = fp->ctf_buf;
  while (resid != 0)
    {
      if ((len = write (fd, buf, resid)) <= 0)
	{
	  ctf_err_warn (fp, 0, errno, _("ctf_write: error writing"));
	  return (ctf_set_errno (fp, errno));
	}
      resid -= len;
      buf += len;
    }

  return 0;
}