aboutsummaryrefslogtreecommitdiff
path: root/gprof/hist.c
blob: e87d846a462e26d9d1619856179c56b37f01f459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*
 * Histogram related operations.
 */
#include <stdio.h>
#include "libiberty.h"
#include "gprof.h"
#include "core.h"
#include "gmon_io.h"
#include "gmon_out.h"
#include "hist.h"
#include "symtab.h"
#include "sym_ids.h"
#include "utils.h"

#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))

static void scale_and_align_entries PARAMS ((void));

/* declarations of automatically generated functions to output blurbs: */
extern void flat_blurb PARAMS ((FILE * fp));

bfd_vma s_lowpc;		/* lowest address in .text */
bfd_vma s_highpc = 0;		/* highest address in .text */
bfd_vma lowpc, highpc;		/* same, but expressed in UNITs */
int hist_num_bins = 0;		/* number of histogram samples */
int *hist_sample = 0;		/* histogram samples (shorts in the file!) */
double hist_scale;
char hist_dimension[sizeof (((struct gmon_hist_hdr *) 0)->dimen) + 1] =
  "seconds";
char hist_dimension_abbrev = 's';

static double accum_time;	/* accumulated time so far for print_line() */
static double total_time;	/* total time for all routines */
/*
 * Table of SI prefixes for powers of 10 (used to automatically
 * scale some of the values in the flat profile).
 */
const struct
  {
    char prefix;
    double scale;
  }
SItab[] =
{
  {
    'T', 1e-12
  }
  ,				/* tera */
  {
    'G', 1e-09
  }
  ,				/* giga */
  {
    'M', 1e-06
  }
  ,				/* mega */
  {
    'K', 1e-03
  }
  ,				/* kilo */
  {
    ' ', 1e-00
  }
  ,
  {
    'm', 1e+03
  }
  ,				/* milli */
  {
    'u', 1e+06
  }
  ,				/* micro */
  {
    'n', 1e+09
  }
  ,				/* nano */
  {
    'p', 1e+12
  }
  ,				/* pico */
  {
    'f', 1e+15
  }
  ,				/* femto */
  {
    'a', 1e+18
  }
  ,				/* ato */
};

/*
 * Read the histogram from file IFP.  FILENAME is the name of IFP and
 * is provided for formatting error messages only.
 */
void
DEFUN (hist_read_rec, (ifp, filename), FILE * ifp AND const char *filename)
{
  struct gmon_hist_hdr hdr;
  bfd_vma n_lowpc, n_highpc;
  int i, ncnt, profrate;
  UNIT count;

  if (fread (&hdr, sizeof (hdr), 1, ifp) != 1)
    {
      fprintf (stderr, "%s: %s: unexpected end of file\n",
	       whoami, filename);
      done (1);
    }

  n_lowpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.low_pc);
  n_highpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.high_pc);
  ncnt = bfd_get_32 (core_bfd, (bfd_byte *) hdr.hist_size);
  profrate = bfd_get_32 (core_bfd, (bfd_byte *) hdr.prof_rate);
  strncpy (hist_dimension, hdr.dimen, sizeof (hdr.dimen));
  hist_dimension[sizeof (hdr.dimen)] = '\0';
  hist_dimension_abbrev = hdr.dimen_abbrev;

  if (!s_highpc)
    {

      /* this is the first histogram record: */

      s_lowpc = n_lowpc;
      s_highpc = n_highpc;
      lowpc = (bfd_vma) n_lowpc / sizeof (UNIT);
      highpc = (bfd_vma) n_highpc / sizeof (UNIT);
      hist_num_bins = ncnt;
      hz = profrate;
    }

  DBG (SAMPLEDEBUG,
       printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %d\n",
	       n_lowpc, n_highpc, ncnt);
       printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %d\n",
	       s_lowpc, s_highpc, hist_num_bins);
       printf ("[hist_read_rec]   lowpc 0x%lx   highpc 0x%lx\n",
	       lowpc, highpc));

  if (n_lowpc != s_lowpc || n_highpc != s_highpc
      || ncnt != hist_num_bins || hz != profrate)
    {
      fprintf (stderr, "%s: `%s' is incompatible with first gmon file\n",
	       whoami, filename);
      done (1);
    }

  if (!hist_sample)
    {
      hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0]));
      memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0]));
    }

  for (i = 0; i < hist_num_bins; ++i)
    {
      if (fread (&count[0], sizeof (count), 1, ifp) != 1)
	{
	  fprintf (stderr,
		   "%s: %s: unexpected EOF after reading %d of %d samples\n",
		   whoami, filename, i, hist_num_bins);
	  done (1);
	}
      hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
    }
}


/*
 * Write execution histogram to file OFP.  FILENAME is the name
 * of OFP and is provided for formatting error-messages only.
 */
void
DEFUN (hist_write_hist, (ofp, filename), FILE * ofp AND const char *filename)
{
  struct gmon_hist_hdr hdr;
  unsigned char tag;
  UNIT count;
  int i;

  /* write header: */

  tag = GMON_TAG_TIME_HIST;
  put_vma (core_bfd, s_lowpc, (bfd_byte *) hdr.low_pc);
  put_vma (core_bfd, s_highpc, (bfd_byte *) hdr.high_pc);
  bfd_put_32 (core_bfd, hist_num_bins, (bfd_byte *) hdr.hist_size);
  bfd_put_32 (core_bfd, hz, (bfd_byte *) hdr.prof_rate);
  strncpy (hdr.dimen, hist_dimension, sizeof (hdr.dimen));
  hdr.dimen_abbrev = hist_dimension_abbrev;

  if (fwrite (&tag, sizeof (tag), 1, ofp) != 1
      || fwrite (&hdr, sizeof (hdr), 1, ofp) != 1)
    {
      perror (filename);
      done (1);
    }

  for (i = 0; i < hist_num_bins; ++i)
    {
      bfd_put_16 (core_bfd, hist_sample[i], (bfd_byte *) & count[0]);
      if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
	{
	  perror (filename);
	  done (1);
	}
    }
}


/*
 * Calculate scaled entry point addresses (to save time in
 * hist_assign_samples), and, on architectures that have procedure
 * entry masks at the start of a function, possibly push the scaled
 * entry points over the procedure entry mask, if it turns out that
 * the entry point is in one bin and the code for a routine is in the
 * next bin.
 */
static void
scale_and_align_entries ()
{
  Sym *sym;
  bfd_vma bin_of_entry;
  bfd_vma bin_of_code;

  for (sym = symtab.base; sym < symtab.limit; sym++)
    {
      sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
      bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale;
      bin_of_code = (sym->hist.scaled_addr + UNITS_TO_CODE - lowpc) / hist_scale;
      if (bin_of_entry < bin_of_code)
	{
	  DBG (SAMPLEDEBUG,
	       printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
		       sym->hist.scaled_addr,
		       sym->hist.scaled_addr + UNITS_TO_CODE));
	  sym->hist.scaled_addr += UNITS_TO_CODE;
	}
    }
}


/*
 * Assign samples to the symbol to which they belong.
 *
 * Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
 * which may overlap one more symbol address ranges.  If a symbol
 * overlaps with the bin's address range by O percent, then O percent
 * of the bin's count is credited to that symbol.
 *
 * There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
 * with respect to the symbol's address range [SYM_LOW_PC,
 * SYM_HIGH_PC) as shown in the following diagram.  OVERLAP computes
 * the distance (in UNITs) between the arrows, the fraction of the
 * sample that is to be credited to the symbol which starts at
 * SYM_LOW_PC.
 *
 *        sym_low_pc                                      sym_high_pc
 *             |                                               |
 *             v                                               v
 *
 *             +-----------------------------------------------+
 *             |                                               |
 *        |  ->|    |<-         ->|         |<-         ->|    |<-  |
 *        |         |             |         |             |         |
 *        +---------+             +---------+             +---------+
 *
 *        ^         ^             ^         ^             ^         ^
 *        |         |             |         |             |         |
 *   bin_low_pc bin_high_pc  bin_low_pc bin_high_pc  bin_low_pc bin_high_pc
 *
 * For the VAX we assert that samples will never fall in the first two
 * bytes of any routine, since that is the entry mask, thus we call
 * scale_and_align_entries() to adjust the entry points if the entry
 * mask falls in one bin but the code for the routine doesn't start
 * until the next bin.  In conjunction with the alignment of routine
 * addresses, this should allow us to have only one sample for every
 * four bytes of text space and never have any overlap (the two end
 * cases, above).
 */
void
DEFUN_VOID (hist_assign_samples)
{
  bfd_vma bin_low_pc, bin_high_pc;
  bfd_vma sym_low_pc, sym_high_pc;
  bfd_vma overlap, addr;
  int bin_count, i, j;
  double time, credit;

  /* read samples and assign to symbols: */
  hist_scale = highpc - lowpc;
  hist_scale /= hist_num_bins;
  scale_and_align_entries ();

  /* iterate over all sample bins: */

  for (i = 0, j = 1; i < hist_num_bins; ++i)
    {
      bin_count = hist_sample[i];
      if (!bin_count)
	{
	  continue;
	}
      bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
      bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
      time = bin_count;
      DBG (SAMPLEDEBUG,
	   printf (
      "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%d\n",
		    sizeof (UNIT) * bin_low_pc, sizeof (UNIT) * bin_high_pc,
		    bin_count));
      total_time += time;

      /* credit all symbols that are covered by bin I: */

      for (j = j - 1; j < symtab.len; ++j)
	{
	  sym_low_pc = symtab.base[j].hist.scaled_addr;
	  sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
	  /*
	   * If high end of bin is below entry address, go for next
	   * bin:
	   */
	  if (bin_high_pc < sym_low_pc)
	    {
	      break;
	    }
	  /*
	   * If low end of bin is above high end of symbol, go for
	   * next symbol.
	   */
	  if (bin_low_pc >= sym_high_pc)
	    {
	      continue;
	    }
	  overlap =
	    MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
	  if (overlap > 0)
	    {
	      DBG (SAMPLEDEBUG,
		   printf (
			    "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
			    symtab.base[j].addr, sizeof (UNIT) * sym_high_pc,
			    symtab.base[j].name, overlap * time / hist_scale,
			    overlap));
	      addr = symtab.base[j].addr;
	      credit = overlap * time / hist_scale;
	      /*
	       * Credit symbol if it appears in INCL_FLAT or that
	       * table is empty and it does not appear it in
	       * EXCL_FLAT.
	       */
	      if (sym_lookup (&syms[INCL_FLAT], addr)
		  || (syms[INCL_FLAT].len == 0
		      && !sym_lookup (&syms[EXCL_FLAT], addr)))
		{
		  symtab.base[j].hist.time += credit;
		}
	      else
		{
		  total_time -= credit;
		}
	    }
	}
    }
  DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
			    total_time));
}


/*
 * Print header for flag histogram profile:
 */
static void
DEFUN (print_header, (prefix), const char prefix)
{
  char unit[64];

  sprintf (unit, "%c%c/call", prefix, hist_dimension_abbrev);

  if (bsd_style_output)
    {
      printf ("\ngranularity: each sample hit covers %ld byte(s)",
	      (long) hist_scale * sizeof (UNIT));
      if (total_time > 0.0)
	{
	  printf (" for %.2f%% of %.2f %s\n\n",
		  100.0 / total_time, total_time / hz, hist_dimension);
	}
    }
  else
    {
      printf ("\nEach sample counts as %g %s.\n", 1.0 / hz, hist_dimension);
    }

  if (total_time <= 0.0)
    {
      printf (" no time accumulated\n\n");
      /* this doesn't hurt since all the numerators will be zero: */
      total_time = 1.0;
    }

  printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
	  "%  ", "cumulative", "self  ", "", "self  ", "total ", "");
  printf ("%5.5s %9.9s  %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
	  "time", hist_dimension, hist_dimension, "calls", unit, unit,
	  "name");
}


static void
DEFUN (print_line, (sym, scale), Sym * sym AND double scale)
{
  if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
    {
      return;
    }

  accum_time += sym->hist.time;
  if (bsd_style_output)
    {
      printf ("%5.1f %10.2f %8.2f",
	      total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
	      accum_time / hz, sym->hist.time / hz);
    }
  else
    {
      printf ("%6.2f %9.2f %8.2f",
	      total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
	      accum_time / hz, sym->hist.time / hz);
    }
  if (sym->ncalls)
    {
      printf (" %8d %8.2f %8.2f  ",
	      sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
	  scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
    }
  else
    {
      printf (" %8.8s %8.8s %8.8s  ", "", "", "");
    }
  if (bsd_style_output)
    {
      print_name (sym);
    }
  else
    {
      print_name_only (sym);
    }
  printf ("\n");
}


/*
 * Compare LP and RP.  The primary comparison key is execution time,
 * the secondary is number of invocation, and the tertiary is the
 * lexicographic order of the function names.
 */
static int
DEFUN (cmp_time, (lp, rp), const PTR lp AND const PTR rp)
{
  const Sym *left = *(const Sym **) lp;
  const Sym *right = *(const Sym **) rp;
  double time_diff;
  long call_diff;

  time_diff = right->hist.time - left->hist.time;
  if (time_diff > 0.0)
    {
      return 1;
    }
  if (time_diff < 0.0)
    {
      return -1;
    }

  call_diff = right->ncalls - left->ncalls;
  if (call_diff > 0)
    {
      return 1;
    }
  if (call_diff < 0)
    {
      return -1;
    }

  return strcmp (left->name, right->name);
}


/*
 * Print the flat histogram profile.
 */
void
DEFUN_VOID (hist_print)
{
  Sym **time_sorted_syms, *top_dog, *sym;
  int index, log_scale;
  double top_time, time;
  bfd_vma addr;

  if (first_output)
    {
      first_output = FALSE;
    }
  else
    {
      printf ("\f\n");
    }

  accum_time = 0.0;
  if (bsd_style_output)
    {
      if (print_descriptions)
	{
	  printf ("\n\n\nflat profile:\n");
	  flat_blurb (stdout);
	}
    }
  else
    {
      printf ("Flat profile:\n");
    }
  /*
   * Sort the symbol table by time (call-count and name as secondary
   * and tertiary keys):
   */
  time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
  for (index = 0; index < symtab.len; ++index)
    {
      time_sorted_syms[index] = &symtab.base[index];
    }
  qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);

  if (bsd_style_output)
    {
      log_scale = 5;		/* milli-seconds is BSD-default */
    }
  else
    {
      /*
       * Search for symbol with highest per-call execution time and
       * scale accordingly:
       */
      log_scale = 0;
      top_dog = 0;
      top_time = 0.0;
      for (index = 0; index < symtab.len; ++index)
	{
	  sym = time_sorted_syms[index];
	  if (sym->ncalls)
	    {
	      time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
	      if (time > top_time)
		{
		  top_dog = sym;
		  top_time = time;
		}
	    }
	}
      if (top_dog && top_dog->ncalls && top_time > 0.0)
	{
	  top_time /= hz;
	  while (SItab[log_scale].scale * top_time < 1000.0
		 && log_scale < sizeof (SItab) / sizeof (SItab[0]) - 1)
	    {
	      ++log_scale;
	    }
	}
    }

  /*
   * For now, the dimension is always seconds.  In the future, we
   * may also want to support other (pseudo-)dimensions (such as
   * I-cache misses etc.).
   */
  print_header (SItab[log_scale].prefix);
  for (index = 0; index < symtab.len; ++index)
    {
      addr = time_sorted_syms[index]->addr;
      /*
       * Print symbol if its in INCL_FLAT table or that table
       * is empty and the symbol is not in EXCL_FLAT.
       */
      if (sym_lookup (&syms[INCL_FLAT], addr)
	  || (syms[INCL_FLAT].len == 0
	      && !sym_lookup (&syms[EXCL_FLAT], addr)))
	{
	  print_line (time_sorted_syms[index], SItab[log_scale].scale);
	}
    }
  free (time_sorted_syms);

  if (print_descriptions && !bsd_style_output)
    {
      flat_blurb (stdout);
    }
}