1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
|
/* hist.c - Histogram related operations.
Copyright 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "libiberty.h"
#include "gprof.h"
#include "search_list.h"
#include "source.h"
#include "symtab.h"
#include "corefile.h"
#include "gmon_io.h"
#include "gmon_out.h"
#include "hist.h"
#include "sym_ids.h"
#include "utils.h"
#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))
static void scale_and_align_entries (void);
static void print_header (int);
static void print_line (Sym *, double);
static int cmp_time (const PTR, const PTR);
/* Declarations of automatically generated functions to output blurbs. */
extern void flat_blurb (FILE * fp);
bfd_vma s_lowpc; /* Lowest address in .text. */
bfd_vma s_highpc = 0; /* Highest address in .text. */
bfd_vma lowpc, highpc; /* Same, but expressed in UNITs. */
unsigned int hist_num_bins = 0; /* Number of histogram samples. */
int *hist_sample = 0; /* Histogram samples (shorts in the file!). */
double hist_scale;
char hist_dimension[16] = "seconds";
char hist_dimension_abbrev = 's';
static double accum_time; /* Accumulated time so far for print_line(). */
static double total_time; /* Total time for all routines. */
/* Table of SI prefixes for powers of 10 (used to automatically
scale some of the values in the flat profile). */
const struct
{
char prefix;
double scale;
}
SItab[] =
{
{ 'T', 1e-12 }, /* tera */
{ 'G', 1e-09 }, /* giga */
{ 'M', 1e-06 }, /* mega */
{ 'K', 1e-03 }, /* kilo */
{ ' ', 1e-00 },
{ 'm', 1e+03 }, /* milli */
{ 'u', 1e+06 }, /* micro */
{ 'n', 1e+09 }, /* nano */
{ 'p', 1e+12 }, /* pico */
{ 'f', 1e+15 }, /* femto */
{ 'a', 1e+18 } /* ato */
};
/* Read the histogram from file IFP. FILENAME is the name of IFP and
is provided for formatting error messages only. */
void
hist_read_rec (FILE * ifp, const char *filename)
{
bfd_vma n_lowpc, n_highpc;
unsigned int i, ncnt, profrate;
UNIT count;
if (gmon_io_read_vma (ifp, &n_lowpc)
|| gmon_io_read_vma (ifp, &n_highpc)
|| gmon_io_read_32 (ifp, &ncnt)
|| gmon_io_read_32 (ifp, &profrate)
|| gmon_io_read (ifp, hist_dimension, 15)
|| gmon_io_read (ifp, &hist_dimension_abbrev, 1))
{
fprintf (stderr, _("%s: %s: unexpected end of file\n"),
whoami, filename);
done (1);
}
if (!s_highpc)
{
/* This is the first histogram record. */
s_lowpc = n_lowpc;
s_highpc = n_highpc;
lowpc = (bfd_vma) n_lowpc / sizeof (UNIT);
highpc = (bfd_vma) n_highpc / sizeof (UNIT);
hist_num_bins = ncnt;
hz = profrate;
}
DBG (SAMPLEDEBUG,
printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %u\n",
(unsigned long) n_lowpc, (unsigned long) n_highpc, ncnt);
printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %u\n",
(unsigned long) s_lowpc, (unsigned long) s_highpc,
hist_num_bins);
printf ("[hist_read_rec] lowpc 0x%lx highpc 0x%lx\n",
(unsigned long) lowpc, (unsigned long) highpc));
if (n_lowpc != s_lowpc || n_highpc != s_highpc
|| ncnt != hist_num_bins || hz != (int) profrate)
{
fprintf (stderr, _("%s: `%s' is incompatible with first gmon file\n"),
whoami, filename);
done (1);
}
if (!hist_sample)
{
hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0]));
memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0]));
}
for (i = 0; i < hist_num_bins; ++i)
{
if (fread (&count[0], sizeof (count), 1, ifp) != 1)
{
fprintf (stderr,
_("%s: %s: unexpected EOF after reading %u of %u samples\n"),
whoami, filename, i, hist_num_bins);
done (1);
}
hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
DBG (SAMPLEDEBUG,
printf ("[hist_read_rec] 0x%lx: %u\n",
(unsigned long) (n_lowpc + i * (n_highpc - n_lowpc) / ncnt),
hist_sample[i]));
}
}
/* Write execution histogram to file OFP. FILENAME is the name
of OFP and is provided for formatting error-messages only. */
void
hist_write_hist (FILE * ofp, const char *filename)
{
UNIT count;
unsigned int i;
/* Write header. */
if (gmon_io_write_8 (ofp, GMON_TAG_TIME_HIST)
|| gmon_io_write_vma (ofp, s_lowpc)
|| gmon_io_write_vma (ofp, s_highpc)
|| gmon_io_write_32 (ofp, hist_num_bins)
|| gmon_io_write_32 (ofp, hz)
|| gmon_io_write (ofp, hist_dimension, 15)
|| gmon_io_write (ofp, &hist_dimension_abbrev, 1))
{
perror (filename);
done (1);
}
for (i = 0; i < hist_num_bins; ++i)
{
bfd_put_16 (core_bfd, (bfd_vma) hist_sample[i], (bfd_byte *) &count[0]);
if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
{
perror (filename);
done (1);
}
}
}
/* Calculate scaled entry point addresses (to save time in
hist_assign_samples), and, on architectures that have procedure
entry masks at the start of a function, possibly push the scaled
entry points over the procedure entry mask, if it turns out that
the entry point is in one bin and the code for a routine is in the
next bin. */
static void
scale_and_align_entries ()
{
Sym *sym;
bfd_vma bin_of_entry;
bfd_vma bin_of_code;
for (sym = symtab.base; sym < symtab.limit; sym++)
{
sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale;
bin_of_code = ((sym->hist.scaled_addr + UNITS_TO_CODE - lowpc)
/ hist_scale);
if (bin_of_entry < bin_of_code)
{
DBG (SAMPLEDEBUG,
printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
(unsigned long) sym->hist.scaled_addr,
(unsigned long) (sym->hist.scaled_addr
+ UNITS_TO_CODE)));
sym->hist.scaled_addr += UNITS_TO_CODE;
}
}
}
/* Assign samples to the symbol to which they belong.
Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
which may overlap one more symbol address ranges. If a symbol
overlaps with the bin's address range by O percent, then O percent
of the bin's count is credited to that symbol.
There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
with respect to the symbol's address range [SYM_LOW_PC,
SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes
the distance (in UNITs) between the arrows, the fraction of the
sample that is to be credited to the symbol which starts at
SYM_LOW_PC.
sym_low_pc sym_high_pc
| |
v v
+-----------------------------------------------+
| |
| ->| |<- ->| |<- ->| |<- |
| | | | | |
+---------+ +---------+ +---------+
^ ^ ^ ^ ^ ^
| | | | | |
bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc
For the VAX we assert that samples will never fall in the first two
bytes of any routine, since that is the entry mask, thus we call
scale_and_align_entries() to adjust the entry points if the entry
mask falls in one bin but the code for the routine doesn't start
until the next bin. In conjunction with the alignment of routine
addresses, this should allow us to have only one sample for every
four bytes of text space and never have any overlap (the two end
cases, above). */
void
hist_assign_samples ()
{
bfd_vma bin_low_pc, bin_high_pc;
bfd_vma sym_low_pc, sym_high_pc;
bfd_vma overlap, addr;
unsigned int bin_count;
unsigned int i, j;
double time, credit;
/* Read samples and assign to symbols. */
hist_scale = highpc - lowpc;
hist_scale /= hist_num_bins;
scale_and_align_entries ();
/* Iterate over all sample bins. */
for (i = 0, j = 1; i < hist_num_bins; ++i)
{
bin_count = hist_sample[i];
if (! bin_count)
continue;
bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
time = bin_count;
DBG (SAMPLEDEBUG,
printf (
"[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%u\n",
(unsigned long) (sizeof (UNIT) * bin_low_pc),
(unsigned long) (sizeof (UNIT) * bin_high_pc),
bin_count));
total_time += time;
/* Credit all symbols that are covered by bin I. */
for (j = j - 1; j < symtab.len; ++j)
{
sym_low_pc = symtab.base[j].hist.scaled_addr;
sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
/* If high end of bin is below entry address,
go for next bin. */
if (bin_high_pc < sym_low_pc)
break;
/* If low end of bin is above high end of symbol,
go for next symbol. */
if (bin_low_pc >= sym_high_pc)
continue;
overlap =
MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
if (overlap > 0)
{
DBG (SAMPLEDEBUG,
printf (
"[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
(unsigned long) symtab.base[j].addr,
(unsigned long) (sizeof (UNIT) * sym_high_pc),
symtab.base[j].name, overlap * time / hist_scale,
(long) overlap));
addr = symtab.base[j].addr;
credit = overlap * time / hist_scale;
/* Credit symbol if it appears in INCL_FLAT or that
table is empty and it does not appear it in
EXCL_FLAT. */
if (sym_lookup (&syms[INCL_FLAT], addr)
|| (syms[INCL_FLAT].len == 0
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
{
symtab.base[j].hist.time += credit;
}
else
{
total_time -= credit;
}
}
}
}
DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
total_time));
}
/* Print header for flag histogram profile. */
static void
print_header (int prefix)
{
char unit[64];
sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);
if (bsd_style_output)
{
printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
(long) hist_scale * sizeof (UNIT));
if (total_time > 0.0)
{
printf (_(" for %.2f%% of %.2f %s\n\n"),
100.0 / total_time, total_time / hz, hist_dimension);
}
}
else
{
printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
}
if (total_time <= 0.0)
{
printf (_(" no time accumulated\n\n"));
/* This doesn't hurt since all the numerators will be zero. */
total_time = 1.0;
}
printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
"% ", _("cumulative"), _("self "), "", _("self "), _("total "),
"");
printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
_("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
_("name"));
}
static void
print_line (Sym *sym, double scale)
{
if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
return;
accum_time += sym->hist.time;
if (bsd_style_output)
printf ("%5.1f %10.2f %8.2f",
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
accum_time / hz, sym->hist.time / hz);
else
printf ("%6.2f %9.2f %8.2f",
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
accum_time / hz, sym->hist.time / hz);
if (sym->ncalls != 0)
printf (" %8lu %8.2f %8.2f ",
sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
else
printf (" %8.8s %8.8s %8.8s ", "", "", "");
if (bsd_style_output)
print_name (sym);
else
print_name_only (sym);
printf ("\n");
}
/* Compare LP and RP. The primary comparison key is execution time,
the secondary is number of invocation, and the tertiary is the
lexicographic order of the function names. */
static int
cmp_time (const PTR lp, const PTR rp)
{
const Sym *left = *(const Sym **) lp;
const Sym *right = *(const Sym **) rp;
double time_diff;
time_diff = right->hist.time - left->hist.time;
if (time_diff > 0.0)
return 1;
if (time_diff < 0.0)
return -1;
if (right->ncalls > left->ncalls)
return 1;
if (right->ncalls < left->ncalls)
return -1;
return strcmp (left->name, right->name);
}
/* Print the flat histogram profile. */
void
hist_print ()
{
Sym **time_sorted_syms, *top_dog, *sym;
unsigned int index;
unsigned log_scale;
double top_time, time;
bfd_vma addr;
if (first_output)
first_output = FALSE;
else
printf ("\f\n");
accum_time = 0.0;
if (bsd_style_output)
{
if (print_descriptions)
{
printf (_("\n\n\nflat profile:\n"));
flat_blurb (stdout);
}
}
else
{
printf (_("Flat profile:\n"));
}
/* Sort the symbol table by time (call-count and name as secondary
and tertiary keys). */
time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
for (index = 0; index < symtab.len; ++index)
time_sorted_syms[index] = &symtab.base[index];
qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);
if (bsd_style_output)
{
log_scale = 5; /* Milli-seconds is BSD-default. */
}
else
{
/* Search for symbol with highest per-call
execution time and scale accordingly. */
log_scale = 0;
top_dog = 0;
top_time = 0.0;
for (index = 0; index < symtab.len; ++index)
{
sym = time_sorted_syms[index];
if (sym->ncalls != 0)
{
time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
if (time > top_time)
{
top_dog = sym;
top_time = time;
}
}
}
if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
{
top_time /= hz;
for (log_scale = 0; log_scale < ARRAY_SIZE (SItab); log_scale ++)
{
double scaled_value = SItab[log_scale].scale * top_time;
if (scaled_value >= 1.0 && scaled_value < 1000.0)
break;
}
}
}
/* For now, the dimension is always seconds. In the future, we
may also want to support other (pseudo-)dimensions (such as
I-cache misses etc.). */
print_header (SItab[log_scale].prefix);
for (index = 0; index < symtab.len; ++index)
{
addr = time_sorted_syms[index]->addr;
/* Print symbol if its in INCL_FLAT table or that table
is empty and the symbol is not in EXCL_FLAT. */
if (sym_lookup (&syms[INCL_FLAT], addr)
|| (syms[INCL_FLAT].len == 0
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
print_line (time_sorted_syms[index], SItab[log_scale].scale);
}
free (time_sorted_syms);
if (print_descriptions && !bsd_style_output)
flat_blurb (stdout);
}
|