1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
|
// x86_64.cc -- x86_64 target support for gold.
// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstring>
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "x86_64.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
namespace
{
using namespace gold;
class Output_data_plt_x86_64;
// The x86_64 target class.
// See the ABI at
// http://www.x86-64.org/documentation/abi.pdf
// TLS info comes from
// http://people.redhat.com/drepper/tls.pdf
// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
class Target_x86_64 : public Sized_target<64, false>
{
public:
// In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
// uses only Elf64_Rela relocation entries with explicit addends."
typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
Target_x86_64()
: Sized_target<64, false>(&x86_64_info),
got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
{ }
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*);
// Return the value to use for a dynamic which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Relocate a section.
void
relocate_section(const Relocate_info<64, false>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr view_address,
section_size_type view_size);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Relocate a section during a relocatable link.
void
relocate_for_relocatable(const Relocate_info<64, false>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
off_t offset_in_output_section,
const Relocatable_relocs*,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Return a string used to fill a code section with nops.
std::string
do_code_fill(section_size_type length) const;
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(Symbol* sym) const
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
// Return the size of the GOT section.
section_size_type
got_size()
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
inline void
local(const General_options& options, Symbol_table* symtab,
Layout* layout, Target_x86_64* target,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
const elfcpp::Sym<64, false>& lsym);
inline void
global(const General_options& options, Symbol_table* symtab,
Layout* layout, Target_x86_64* target,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
Symbol* gsym);
private:
static void
unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
Symbol*);
void
check_non_pic(Relobj*, unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
: skip_call_tls_get_addr_(false)
{ }
~Relocate()
{
if (this->skip_call_tls_get_addr_)
{
// FIXME: This needs to specify the location somehow.
gold_error(_("missing expected TLS relocation"));
}
}
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
const elfcpp::Rela<64, false>&,
unsigned int r_type, const Sized_symbol<64>*,
const Symbol_value<64>*,
unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
section_size_type);
private:
// Do a TLS relocation.
inline void
relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
size_t relnum, const elfcpp::Rela<64, false>&,
unsigned int r_type, const Sized_symbol<64>*,
const Symbol_value<64>*,
unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
section_size_type);
// Do a TLS General-Dynamic to Initial-Exec transition.
inline void
tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr,
section_size_type view_size);
// Do a TLS General-Dynamic to Local-Exec transition.
inline void
tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size);
// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
inline void
tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr,
section_size_type view_size);
// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
inline void
tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size);
// Do a TLS Local-Dynamic to Local-Exec transition.
inline void
tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size);
// Do a TLS Initial-Exec to Local-Exec transition.
static inline void
tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>&, unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size);
// This is set if we should skip the next reloc, which should be a
// PLT32 reloc against ___tls_get_addr.
bool skip_call_tls_get_addr_;
};
// A class which returns the size required for a relocation type,
// used while scanning relocs during a relocatable link.
class Relocatable_size_for_reloc
{
public:
unsigned int
get_size_for_reloc(unsigned int, Relobj*);
};
// Adjust TLS relocation type based on the options and whether this
// is a local symbol.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type);
// Get the GOT section, creating it if necessary.
Output_data_got<64, false>*
got_section(Symbol_table*, Layout*);
// Get the GOT PLT section.
Output_data_space*
got_plt_section() const
{
gold_assert(this->got_plt_ != NULL);
return this->got_plt_;
}
// Create the PLT section.
void
make_plt_section(Symbol_table* symtab, Layout* layout);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
void
reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj<64, false>* object);
// Get the PLT section.
Output_data_plt_x86_64*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rela_dyn_section(Layout*);
// Return true if the symbol may need a COPY relocation.
// References from an executable object to non-function symbols
// defined in a dynamic object may need a COPY relocation.
bool
may_need_copy_reloc(Symbol* gsym)
{
return (!parameters->options().shared()
&& gsym->is_from_dynobj()
&& gsym->type() != elfcpp::STT_FUNC);
}
// Copy a relocation against a global symbol.
void
copy_reloc(const General_options*, Symbol_table*, Layout*,
Sized_relobj<64, false>*, unsigned int,
Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info x86_64_info;
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
};
// The GOT section.
Output_data_got<64, false>* got_;
// The PLT section.
Output_data_plt_x86_64* plt_;
// The GOT PLT section.
Output_data_space* got_plt_;
// The dynamic reloc section.
Reloc_section* rela_dyn_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<64, false>* copy_relocs_;
// Space for variables copied with a COPY reloc.
Output_data_space* dynbss_;
// Offset of the GOT entry for the TLS module index.
unsigned int got_mod_index_offset_;
};
const Target::Target_info Target_x86_64::x86_64_info =
{
64, // size
false, // is_big_endian
elfcpp::EM_X86_64, // machine_code
false, // has_make_symbol
false, // has_resolve
true, // has_code_fill
true, // is_default_stack_executable
'\0', // wrap_char
"/lib/ld64.so.1", // program interpreter
0x400000, // default_text_segment_address
0x1000, // abi_pagesize (overridable by -z max-page-size)
0x1000 // common_pagesize (overridable by -z common-page-size)
};
// Get the GOT section, creating it if necessary.
Output_data_got<64, false>*
Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
this->got_ = new Output_data_got<64, false>();
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->got_);
// The old GNU linker creates a .got.plt section. We just
// create another set of data in the .got section. Note that we
// always create a PLT if we create a GOT, although the PLT
// might be empty.
this->got_plt_ = new Output_data_space(8);
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->got_plt_);
// The first three entries are reserved.
this->got_plt_->set_current_data_size(3 * 8);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
this->got_plt_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
Target_x86_64::Reloc_section*
Target_x86_64::rela_dyn_section(Layout* layout)
{
if (this->rela_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rela_dyn_ = new Reloc_section();
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_dyn_);
}
return this->rela_dyn_;
}
// A class to handle the PLT data.
class Output_data_plt_x86_64 : public Output_section_data
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
Output_data_space*);
// Add an entry to the PLT.
void
add_entry(Symbol* gsym);
// Add the reserved TLSDESC_PLT entry to the PLT.
void
reserve_tlsdesc_entry(unsigned int got_offset)
{ this->tlsdesc_got_offset_ = got_offset; }
// Return true if a TLSDESC_PLT entry has been reserved.
bool
has_tlsdesc_entry() const
{ return this->tlsdesc_got_offset_ != -1U; }
// Return the GOT offset for the reserved TLSDESC_PLT entry.
unsigned int
get_tlsdesc_got_offset() const
{ return this->tlsdesc_got_offset_; }
// Return the offset of the reserved TLSDESC_PLT entry.
unsigned int
get_tlsdesc_plt_offset() const
{ return (this->count_ + 1) * plt_entry_size; }
// Return the .rel.plt section data.
const Reloc_section*
rel_plt() const
{ return this->rel_; }
protected:
void
do_adjust_output_section(Output_section* os);
private:
// The size of an entry in the PLT.
static const int plt_entry_size = 16;
// The first entry in the PLT.
// From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
// procedure linkage table for both programs and shared objects."
static unsigned char first_plt_entry[plt_entry_size];
// Other entries in the PLT for an executable.
static unsigned char plt_entry[plt_entry_size];
// The reserved TLSDESC entry in the PLT for an executable.
static unsigned char tlsdesc_plt_entry[plt_entry_size];
// Set the final size.
void
set_final_data_size();
// Write out the PLT data.
void
do_write(Output_file*);
// The reloc section.
Reloc_section* rel_;
// The .got section.
Output_data_got<64, false>* got_;
// The .got.plt section.
Output_data_space* got_plt_;
// The number of PLT entries.
unsigned int count_;
// Offset of the reserved TLSDESC_GOT entry when needed.
unsigned int tlsdesc_got_offset_;
};
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start. We also create our own .got
// section just for PLT entries.
Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
Output_data_got<64, false>* got,
Output_data_space* got_plt)
: Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
tlsdesc_got_offset_(-1U)
{
this->rel_ = new Reloc_section();
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rel_);
}
void
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
{
// UnixWare sets the entsize of .plt to 4, and so does the old GNU
// linker, and so do we.
os->set_entsize(4);
}
// Add an entry to the PLT.
void
Output_data_plt_x86_64::add_entry(Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
// Note that when setting the PLT offset we skip the initial
// reserved PLT entry.
gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
++this->count_;
section_offset_type got_offset = this->got_plt_->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry (this will be changed by the dynamic linker, normally
// lazily when the function is called).
this->got_plt_->set_current_data_size(got_offset + 8);
// Every PLT entry needs a reloc.
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
got_offset, 0);
// Note that we don't need to save the symbol. The contents of the
// PLT are independent of which symbols are used. The symbols only
// appear in the relocations.
}
// Set the final size.
void
Output_data_plt_x86_64::set_final_data_size()
{
unsigned int count = this->count_;
if (this->has_tlsdesc_entry())
++count;
this->set_data_size((count + 1) * plt_entry_size);
}
// The first entry in the PLT for an executable.
unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
{
// From AMD64 ABI Draft 0.98, page 76
0xff, 0x35, // pushq contents of memory address
0, 0, 0, 0, // replaced with address of .got + 8
0xff, 0x25, // jmp indirect
0, 0, 0, 0, // replaced with address of .got + 16
0x90, 0x90, 0x90, 0x90 // noop (x4)
};
// Subsequent entries in the PLT for an executable.
unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
{
// From AMD64 ABI Draft 0.98, page 76
0xff, 0x25, // jmpq indirect
0, 0, 0, 0, // replaced with address of symbol in .got
0x68, // pushq immediate
0, 0, 0, 0, // replaced with offset into relocation table
0xe9, // jmpq relative
0, 0, 0, 0 // replaced with offset to start of .plt
};
// The reserved TLSDESC entry in the PLT for an executable.
unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
{
// From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
// and AMD64/EM64T", Version 0.9.4 (2005-10-10).
0xff, 0x35, // pushq x(%rip)
0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
0xff, 0x25, // jmpq *y(%rip)
0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
0x0f, 0x1f, // nop
0x40, 0
};
// Write out the PLT. This uses the hand-coded instructions above,
// and adjusts them as needed. This is specified by the AMD64 ABI.
void
Output_data_plt_x86_64::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
const off_t got_file_offset = this->got_plt_->offset();
const section_size_type got_size =
convert_to_section_size_type(this->got_plt_->data_size());
unsigned char* const got_view = of->get_output_view(got_file_offset,
got_size);
unsigned char* pov = oview;
// The base address of the .plt section.
elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
// The base address of the .got section.
elfcpp::Elf_types<32>::Elf_Addr got_base = this->got_->address();
// The base address of the PLT portion of the .got section,
// which is where the GOT pointer will point, and where the
// three reserved GOT entries are located.
elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
memcpy(pov, first_plt_entry, plt_entry_size);
// We do a jmp relative to the PC at the end of this instruction.
elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
- (plt_address + 6));
elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
- (plt_address + 12));
pov += plt_entry_size;
unsigned char* got_pov = got_view;
memset(got_pov, 0, 24);
got_pov += 24;
unsigned int plt_offset = plt_entry_size;
unsigned int got_offset = 24;
const unsigned int count = this->count_;
for (unsigned int plt_index = 0;
plt_index < count;
++plt_index,
pov += plt_entry_size,
got_pov += 8,
plt_offset += plt_entry_size,
got_offset += 8)
{
// Set and adjust the PLT entry itself.
memcpy(pov, plt_entry, plt_entry_size);
elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
(got_address + got_offset
- (plt_address + plt_offset
+ 6)));
elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
elfcpp::Swap<32, false>::writeval(pov + 12,
- (plt_offset + plt_entry_size));
// Set the entry in the GOT.
elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
}
if (this->has_tlsdesc_entry())
{
// Set and adjust the reserved TLSDESC PLT entry.
unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
(got_address + 8
- (plt_address + plt_offset
+ 6)));
elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
(got_base
+ tlsdesc_got_offset
- (plt_address + plt_offset
+ 12)));
pov += plt_entry_size;
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
of->write_output_view(offset, oview_size, oview);
of->write_output_view(got_file_offset, got_size, got_view);
}
// Create the PLT section.
void
Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
{
if (this->plt_ == NULL)
{
// Create the GOT sections first.
this->got_section(symtab, layout);
this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
this->got_plt_);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->plt_);
}
}
// Create a PLT entry for a global symbol.
void
Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(gsym);
}
// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
void
Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
Layout* layout)
{
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
if (!this->plt_->has_tlsdesc_entry())
{
// Allocate the TLSDESC_GOT entry.
Output_data_got<64, false>* got = this->got_section(symtab, layout);
unsigned int got_offset = got->add_constant(0);
// Allocate the TLSDESC_PLT entry.
this->plt_->reserve_tlsdesc_entry(got_offset);
}
}
// Create a GOT entry for the TLS module index.
unsigned int
Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj<64, false>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
Output_data_got<64, false>* got = this->got_section(symtab, layout);
unsigned int got_offset = got->add_constant(0);
rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
got_offset, 0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Handle a relocation against a non-function symbol defined in a
// dynamic object. The traditional way to handle this is to generate
// a COPY relocation to copy the variable at runtime from the shared
// object into the executable's data segment. However, this is
// undesirable in general, as if the size of the object changes in the
// dynamic object, the executable will no longer work correctly. If
// this relocation is in a writable section, then we can create a
// dynamic reloc and the dynamic linker will resolve it to the correct
// address at runtime. However, we do not want do that if the
// relocation is in a read-only section, as it would prevent the
// readonly segment from being shared. And if we have to eventually
// generate a COPY reloc, then any dynamic relocations will be
// useless. So this means that if this is a writable section, we need
// to save the relocation until we see whether we have to create a
// COPY relocation for this symbol for any other relocation.
void
Target_x86_64::copy_reloc(const General_options* options,
Symbol_table* symtab,
Layout* layout,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
Output_section* output_section,
Symbol* gsym,
const elfcpp::Rela<64, false>& rela)
{
Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(gsym);
if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
data_shndx, ssym))
{
// So far we do not need a COPY reloc. Save this relocation.
// If it turns out that we never need a COPY reloc for this
// symbol, then we will emit the relocation.
if (this->copy_relocs_ == NULL)
this->copy_relocs_ = new Copy_relocs<64, false>();
this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
}
else
{
// Allocate space for this symbol in the .bss section.
elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
// There is no defined way to determine the required alignment
// of the symbol. We pick the alignment based on the size. We
// set an arbitrary maximum of 256.
unsigned int align;
for (align = 1; align < 512; align <<= 1)
if ((symsize & align) != 0)
break;
if (this->dynbss_ == NULL)
{
this->dynbss_ = new Output_data_space(align);
layout->add_output_section_data(".bss",
elfcpp::SHT_NOBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->dynbss_);
}
Output_data_space* dynbss = this->dynbss_;
if (align > dynbss->addralign())
dynbss->set_space_alignment(align);
section_size_type dynbss_size = dynbss->current_data_size();
dynbss_size = align_address(dynbss_size, align);
section_size_type offset = dynbss_size;
dynbss->set_current_data_size(dynbss_size + symsize);
symtab->define_with_copy_reloc(ssym, dynbss, offset);
// Add the COPY reloc.
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
}
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
tls::Tls_optimization
Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
{
// If we are generating a shared library, then we can't do anything
// in the linker.
if (parameters->options().shared())
return tls::TLSOPT_NONE;
switch (r_type)
{
case elfcpp::R_X86_64_TLSGD:
case elfcpp::R_X86_64_GOTPC32_TLSDESC:
case elfcpp::R_X86_64_TLSDESC_CALL:
// These are General-Dynamic which permits fully general TLS
// access. Since we know that we are generating an executable,
// we can convert this to Initial-Exec. If we also know that
// this is a local symbol, we can further switch to Local-Exec.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_TO_IE;
case elfcpp::R_X86_64_TLSLD:
// This is Local-Dynamic, which refers to a local symbol in the
// dynamic TLS block. Since we know that we generating an
// executable, we can switch to Local-Exec.
return tls::TLSOPT_TO_LE;
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
// Another Local-Dynamic reloc.
return tls::TLSOPT_TO_LE;
case elfcpp::R_X86_64_GOTTPOFF:
// These are Initial-Exec relocs which get the thread offset
// from the GOT. If we know that we are linking against the
// local symbol, we can switch to Local-Exec, which links the
// thread offset into the instruction.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_NONE;
case elfcpp::R_X86_64_TPOFF32:
// When we already have Local-Exec, there is nothing further we
// can do.
return tls::TLSOPT_NONE;
default:
gold_unreachable();
}
}
// Report an unsupported relocation against a local symbol.
void
Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error. The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only. But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.
void
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
{
switch (r_type)
{
// These are the relocation types supported by glibc for x86_64.
case elfcpp::R_X86_64_RELATIVE:
case elfcpp::R_X86_64_GLOB_DAT:
case elfcpp::R_X86_64_JUMP_SLOT:
case elfcpp::R_X86_64_DTPMOD64:
case elfcpp::R_X86_64_DTPOFF64:
case elfcpp::R_X86_64_TPOFF64:
case elfcpp::R_X86_64_64:
case elfcpp::R_X86_64_32:
case elfcpp::R_X86_64_PC32:
case elfcpp::R_X86_64_COPY:
return;
default:
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
object->error(_("requires unsupported dynamic reloc; "
"recompile with -fPIC"));
this->issued_non_pic_error_ = true;
return;
case elfcpp::R_X86_64_NONE:
gold_unreachable();
}
}
// Scan a relocation for a local symbol.
inline void
Target_x86_64::Scan::local(const General_options&,
Symbol_table* symtab,
Layout* layout,
Target_x86_64* target,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<64, false>& reloc,
unsigned int r_type,
const elfcpp::Sym<64, false>& lsym)
{
switch (r_type)
{
case elfcpp::R_X86_64_NONE:
case elfcpp::R_386_GNU_VTINHERIT:
case elfcpp::R_386_GNU_VTENTRY:
break;
case elfcpp::R_X86_64_64:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for this
// location. The relocation applied at link time will apply the
// link-time value, so we flag the location with an
// R_X86_64_RELATIVE relocation so the dynamic loader can
// relocate it easily.
if (parameters->options().output_is_position_independent())
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_local_relative(object, r_sym,
elfcpp::R_X86_64_RELATIVE,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
break;
case elfcpp::R_X86_64_32:
case elfcpp::R_X86_64_32S:
case elfcpp::R_X86_64_16:
case elfcpp::R_X86_64_8:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for this
// location. We can't use an R_X86_64_RELATIVE relocation
// because that is always a 64-bit relocation.
if (parameters->options().output_is_position_independent())
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (lsym.get_st_type() != elfcpp::STT_SECTION)
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
rela_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
else
{
gold_assert(lsym.get_st_value() == 0);
rela_dyn->add_local_section(object, lsym.get_st_shndx(),
r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
case elfcpp::R_X86_64_PC64:
case elfcpp::R_X86_64_PC32:
case elfcpp::R_X86_64_PC16:
case elfcpp::R_X86_64_PC8:
break;
case elfcpp::R_X86_64_PLT32:
// Since we know this is a local symbol, we can handle this as a
// PC32 reloc.
break;
case elfcpp::R_X86_64_GOTPC32:
case elfcpp::R_X86_64_GOTOFF64:
case elfcpp::R_X86_64_GOTPC64:
case elfcpp::R_X86_64_PLTOFF64:
// We need a GOT section.
target->got_section(symtab, layout);
// For PLTOFF64, we'd normally want a PLT section, but since we
// know this is a local symbol, no PLT is needed.
break;
case elfcpp::R_X86_64_GOT64:
case elfcpp::R_X86_64_GOT32:
case elfcpp::R_X86_64_GOTPCREL64:
case elfcpp::R_X86_64_GOTPCREL:
case elfcpp::R_X86_64_GOTPLT64:
{
// The symbol requires a GOT entry.
Output_data_got<64, false>* got = target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
{
// If we are generating a shared object, we need to add a
// dynamic relocation for this symbol's GOT entry.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
// R_X86_64_RELATIVE assumes a 64-bit relocation.
if (r_type != elfcpp::R_X86_64_GOT32)
rela_dyn->add_local_relative(
object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
else
{
this->check_non_pic(object, r_type);
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
rela_dyn->add_local(
object, r_sym, r_type, got,
object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
}
}
}
// For GOTPLT64, we'd normally want a PLT section, but since
// we know this is a local symbol, no PLT is needed.
}
break;
case elfcpp::R_X86_64_COPY:
case elfcpp::R_X86_64_GLOB_DAT:
case elfcpp::R_X86_64_JUMP_SLOT:
case elfcpp::R_X86_64_RELATIVE:
// These are outstanding tls relocs, which are unexpected when linking
case elfcpp::R_X86_64_TPOFF64:
case elfcpp::R_X86_64_DTPMOD64:
case elfcpp::R_X86_64_TLSDESC:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial tls relocs, which are expected when linking
case elfcpp::R_X86_64_TLSGD: // Global-dynamic
case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
case elfcpp::R_X86_64_TLSDESC_CALL:
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
case elfcpp::R_X86_64_TPOFF32: // Local-exec
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization optimized_type
= Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
switch (r_type)
{
case elfcpp::R_X86_64_TLSGD: // General-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
got->add_local_pair_with_rela(object, r_sym,
lsym.get_st_shndx(),
GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_DTPMOD64, 0);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_X86_64_GOTPC32_TLSDESC:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create reserved PLT and GOT entries for the resolver.
target->reserve_tlsdesc_entries(symtab, layout);
// Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
got->add_local_pair_with_rela(object, r_sym,
lsym.get_st_shndx(),
GOT_TYPE_TLS_DESC,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TLSDESC, 0);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_X86_64_TLSDESC_CALL:
break;
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
break;
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TPOFF64);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_X86_64_TPOFF32: // Local-exec
layout->set_has_static_tls();
if (output_is_shared)
unsupported_reloc_local(object, r_type);
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_X86_64_SIZE32:
case elfcpp::R_X86_64_SIZE64:
default:
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
void
Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Scan a relocation for a global symbol.
inline void
Target_x86_64::Scan::global(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Target_x86_64* target,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<64, false>& reloc,
unsigned int r_type,
Symbol* gsym)
{
switch (r_type)
{
case elfcpp::R_X86_64_NONE:
case elfcpp::R_386_GNU_VTINHERIT:
case elfcpp::R_386_GNU_VTENTRY:
break;
case elfcpp::R_X86_64_64:
case elfcpp::R_X86_64_32:
case elfcpp::R_X86_64_32S:
case elfcpp::R_X86_64_16:
case elfcpp::R_X86_64_8:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
{
if (target->may_need_copy_reloc(gsym))
{
target->copy_reloc(&options, symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if (r_type == elfcpp::R_X86_64_64
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
else
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_X86_64_PC64:
case elfcpp::R_X86_64_PC32:
case elfcpp::R_X86_64_PC16:
case elfcpp::R_X86_64_PC8:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
target->make_plt_entry(symtab, layout, gsym);
// Make a dynamic relocation if necessary.
int flags = Symbol::NON_PIC_REF;
if (gsym->type() == elfcpp::STT_FUNC)
flags |= Symbol::FUNCTION_CALL;
if (gsym->needs_dynamic_reloc(flags))
{
if (target->may_need_copy_reloc(gsym))
{
target->copy_reloc(&options, symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else
{
this->check_non_pic(object, r_type);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_X86_64_GOT64:
case elfcpp::R_X86_64_GOT32:
case elfcpp::R_X86_64_GOTPCREL64:
case elfcpp::R_X86_64_GOTPCREL:
case elfcpp::R_X86_64_GOTPLT64:
{
// The symbol requires a GOT entry.
Output_data_got<64, false>* got = target->got_section(symtab, layout);
if (gsym->final_value_is_known())
got->add_global(gsym, GOT_TYPE_STANDARD);
else
{
// If this symbol is not fully resolved, we need to add a
// dynamic relocation for it.
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible())
got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
elfcpp::R_X86_64_GLOB_DAT);
else
{
if (got->add_global(gsym, GOT_TYPE_STANDARD))
rela_dyn->add_global_relative(
gsym, elfcpp::R_X86_64_RELATIVE, got,
gsym->got_offset(GOT_TYPE_STANDARD), 0);
}
}
// For GOTPLT64, we also need a PLT entry (but only if the
// symbol is not fully resolved).
if (r_type == elfcpp::R_X86_64_GOTPLT64
&& !gsym->final_value_is_known())
target->make_plt_entry(symtab, layout, gsym);
}
break;
case elfcpp::R_X86_64_PLT32:
// If the symbol is fully resolved, this is just a PC32 reloc.
// Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_X86_64_GOTPC32:
case elfcpp::R_X86_64_GOTOFF64:
case elfcpp::R_X86_64_GOTPC64:
case elfcpp::R_X86_64_PLTOFF64:
// We need a GOT section.
target->got_section(symtab, layout);
// For PLTOFF64, we also need a PLT entry (but only if the
// symbol is not fully resolved).
if (r_type == elfcpp::R_X86_64_PLTOFF64
&& !gsym->final_value_is_known())
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_X86_64_COPY:
case elfcpp::R_X86_64_GLOB_DAT:
case elfcpp::R_X86_64_JUMP_SLOT:
case elfcpp::R_X86_64_RELATIVE:
// These are outstanding tls relocs, which are unexpected when linking
case elfcpp::R_X86_64_TPOFF64:
case elfcpp::R_X86_64_DTPMOD64:
case elfcpp::R_X86_64_TLSDESC:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial tls relocs, which are expected for global()
case elfcpp::R_X86_64_TLSGD: // Global-dynamic
case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
case elfcpp::R_X86_64_TLSDESC_CALL:
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
case elfcpp::R_X86_64_TPOFF32: // Local-exec
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization optimized_type
= Target_x86_64::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_X86_64_TLSGD: // General-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_DTPMOD64,
elfcpp::R_X86_64_DTPOFF64);
}
else if (optimized_type == tls::TLSOPT_TO_IE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TPOFF64);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_X86_64_GOTPC32_TLSDESC:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create reserved PLT and GOT entries for the resolver.
target->reserve_tlsdesc_entries(symtab, layout);
// Create a double GOT entry with an R_X86_64_TLSDESC reloc.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TLSDESC, 0);
}
else if (optimized_type == tls::TLSOPT_TO_IE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TPOFF64);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_X86_64_TLSDESC_CALL:
break;
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
break;
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<64, false>* got
= target->got_section(symtab, layout);
got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
elfcpp::R_X86_64_TPOFF64);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_X86_64_TPOFF32: // Local-exec
layout->set_has_static_tls();
if (parameters->options().shared())
unsupported_reloc_local(object, r_type);
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_X86_64_SIZE32:
case elfcpp::R_X86_64_SIZE64:
default:
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type,
gsym->demangled_name().c_str());
break;
}
}
// Scan relocations for a section.
void
Target_x86_64::scan_relocs(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
if (sh_type == elfcpp::SHT_REL)
{
gold_error(_("%s: unsupported REL reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
Target_x86_64::Scan>(
options,
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Finalize the sections.
void
Target_x86_64::do_finalize_sections(Layout* layout)
{
// Fill in some more dynamic tags.
Output_data_dynamic* const odyn = layout->dynamic_data();
if (odyn != NULL)
{
if (this->got_plt_ != NULL)
odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
if (this->plt_ != NULL)
{
const Output_data* od = this->plt_->rel_plt();
odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
odyn->add_section_address(elfcpp::DT_JMPREL, od);
odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
if (this->plt_->has_tlsdesc_entry())
{
unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
this->got_->finalize_data_size();
odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
this->plt_, plt_offset);
odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
this->got_, got_offset);
}
}
if (this->rela_dyn_ != NULL)
{
const Output_data* od = this->rela_dyn_;
odyn->add_section_address(elfcpp::DT_RELA, od);
odyn->add_section_size(elfcpp::DT_RELASZ, od);
odyn->add_constant(elfcpp::DT_RELAENT,
elfcpp::Elf_sizes<64>::rela_size);
}
if (!parameters->options().shared())
{
// The value of the DT_DEBUG tag is filled in by the dynamic
// linker at run time, and used by the debugger.
odyn->add_constant(elfcpp::DT_DEBUG, 0);
}
}
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_ == NULL)
return;
if (this->copy_relocs_->any_to_emit())
{
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
this->copy_relocs_->emit(rela_dyn);
}
delete this->copy_relocs_;
this->copy_relocs_ = NULL;
}
// Perform a relocation.
inline bool
Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
Target_x86_64* target,
size_t relnum,
const elfcpp::Rela<64, false>& rela,
unsigned int r_type,
const Sized_symbol<64>* gsym,
const Symbol_value<64>* psymval,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr address,
section_size_type view_size)
{
if (this->skip_call_tls_get_addr_)
{
if (r_type != elfcpp::R_X86_64_PLT32
|| gsym == NULL
|| strcmp(gsym->name(), "__tls_get_addr") != 0)
{
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("missing expected TLS relocation"));
}
else
{
this->skip_call_tls_get_addr_ = false;
return false;
}
}
// Pick the value to use for symbols defined in shared objects.
Symbol_value<64> symval;
if (gsym != NULL
&& (gsym->is_from_dynobj()
|| (parameters->options().shared()
&& (gsym->is_undefined() || gsym->is_preemptible())))
&& gsym->has_plt_offset())
{
symval.set_output_value(target->plt_section()->address()
+ gsym->plt_offset());
psymval = &symval;
}
const Sized_relobj<64, false>* object = relinfo->object;
const elfcpp::Elf_Xword addend = rela.get_r_addend();
// Get the GOT offset if needed.
// The GOT pointer points to the end of the GOT section.
// We need to subtract the size of the GOT section to get
// the actual offset to use in the relocation.
bool have_got_offset = false;
unsigned int got_offset = 0;
switch (r_type)
{
case elfcpp::R_X86_64_GOT32:
case elfcpp::R_X86_64_GOT64:
case elfcpp::R_X86_64_GOTPLT64:
case elfcpp::R_X86_64_GOTPCREL:
case elfcpp::R_X86_64_GOTPCREL64:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
- target->got_size());
}
have_got_offset = true;
break;
default:
break;
}
switch (r_type)
{
case elfcpp::R_X86_64_NONE:
case elfcpp::R_386_GNU_VTINHERIT:
case elfcpp::R_386_GNU_VTENTRY:
break;
case elfcpp::R_X86_64_64:
Relocate_functions<64, false>::rela64(view, object, psymval, addend);
break;
case elfcpp::R_X86_64_PC64:
Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
address);
break;
case elfcpp::R_X86_64_32:
// FIXME: we need to verify that value + addend fits into 32 bits:
// uint64_t x = value + addend;
// x == static_cast<uint64_t>(static_cast<uint32_t>(x))
// Likewise for other <=32-bit relocations (but see R_X86_64_32S).
Relocate_functions<64, false>::rela32(view, object, psymval, addend);
break;
case elfcpp::R_X86_64_32S:
// FIXME: we need to verify that value + addend fits into 32 bits:
// int64_t x = value + addend; // note this quantity is signed!
// x == static_cast<int64_t>(static_cast<int32_t>(x))
Relocate_functions<64, false>::rela32(view, object, psymval, addend);
break;
case elfcpp::R_X86_64_PC32:
Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
address);
break;
case elfcpp::R_X86_64_16:
Relocate_functions<64, false>::rela16(view, object, psymval, addend);
break;
case elfcpp::R_X86_64_PC16:
Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
address);
break;
case elfcpp::R_X86_64_8:
Relocate_functions<64, false>::rela8(view, object, psymval, addend);
break;
case elfcpp::R_X86_64_PC8:
Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
address);
break;
case elfcpp::R_X86_64_PLT32:
gold_assert(gsym == NULL
|| gsym->has_plt_offset()
|| gsym->final_value_is_known()
|| (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()));
// Note: while this code looks the same as for R_X86_64_PC32, it
// behaves differently because psymval was set to point to
// the PLT entry, rather than the symbol, in Scan::global().
Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
address);
break;
case elfcpp::R_X86_64_PLTOFF64:
{
gold_assert(gsym);
gold_assert(gsym->has_plt_offset()
|| gsym->final_value_is_known());
elfcpp::Elf_types<64>::Elf_Addr got_address;
got_address = target->got_section(NULL, NULL)->address();
Relocate_functions<64, false>::rela64(view, object, psymval,
addend - got_address);
}
case elfcpp::R_X86_64_GOT32:
gold_assert(have_got_offset);
Relocate_functions<64, false>::rela32(view, got_offset, addend);
break;
case elfcpp::R_X86_64_GOTPC32:
{
gold_assert(gsym);
elfcpp::Elf_types<64>::Elf_Addr value;
value = target->got_plt_section()->address();
Relocate_functions<64, false>::pcrela32(view, value, addend, address);
}
break;
case elfcpp::R_X86_64_GOT64:
// The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
// Since we always add a PLT entry, this is equivalent.
case elfcpp::R_X86_64_GOTPLT64:
gold_assert(have_got_offset);
Relocate_functions<64, false>::rela64(view, got_offset, addend);
break;
case elfcpp::R_X86_64_GOTPC64:
{
gold_assert(gsym);
elfcpp::Elf_types<64>::Elf_Addr value;
value = target->got_plt_section()->address();
Relocate_functions<64, false>::pcrela64(view, value, addend, address);
}
break;
case elfcpp::R_X86_64_GOTOFF64:
{
elfcpp::Elf_types<64>::Elf_Addr value;
value = (psymval->value(object, 0)
- target->got_plt_section()->address());
Relocate_functions<64, false>::rela64(view, value, addend);
}
break;
case elfcpp::R_X86_64_GOTPCREL:
{
gold_assert(have_got_offset);
elfcpp::Elf_types<64>::Elf_Addr value;
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela32(view, value, addend, address);
}
break;
case elfcpp::R_X86_64_GOTPCREL64:
{
gold_assert(have_got_offset);
elfcpp::Elf_types<64>::Elf_Addr value;
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela64(view, value, addend, address);
}
break;
case elfcpp::R_X86_64_COPY:
case elfcpp::R_X86_64_GLOB_DAT:
case elfcpp::R_X86_64_JUMP_SLOT:
case elfcpp::R_X86_64_RELATIVE:
// These are outstanding tls relocs, which are unexpected when linking
case elfcpp::R_X86_64_TPOFF64:
case elfcpp::R_X86_64_DTPMOD64:
case elfcpp::R_X86_64_TLSDESC:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unexpected reloc %u in object file"),
r_type);
break;
// These are initial tls relocs, which are expected when linking
case elfcpp::R_X86_64_TLSGD: // Global-dynamic
case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
case elfcpp::R_X86_64_TLSDESC_CALL:
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
case elfcpp::R_X86_64_TPOFF32: // Local-exec
this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
view, address, view_size);
break;
case elfcpp::R_X86_64_SIZE32:
case elfcpp::R_X86_64_SIZE64:
default:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
}
return true;
}
// Perform a TLS relocation.
inline void
Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
Target_x86_64* target,
size_t relnum,
const elfcpp::Rela<64, false>& rela,
unsigned int r_type,
const Sized_symbol<64>* gsym,
const Symbol_value<64>* psymval,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr address,
section_size_type view_size)
{
Output_segment* tls_segment = relinfo->layout->tls_segment();
const Sized_relobj<64, false>* object = relinfo->object;
const elfcpp::Elf_Xword addend = rela.get_r_addend();
elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
const bool is_final = (gsym == NULL
? !parameters->options().output_is_position_independent()
: gsym->final_value_is_known());
const tls::Tls_optimization optimized_type
= Target_x86_64::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_X86_64_TLSGD: // Global-dynamic
if (optimized_type == tls::TLSOPT_TO_LE)
{
gold_assert(tls_segment != NULL);
this->tls_gd_to_le(relinfo, relnum, tls_segment,
rela, r_type, value, view,
view_size);
break;
}
else
{
unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
? GOT_TYPE_TLS_OFFSET
: GOT_TYPE_TLS_PAIR);
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - target->got_size();
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = (object->local_got_offset(r_sym, got_type)
- target->got_size());
}
if (optimized_type == tls::TLSOPT_TO_IE)
{
gold_assert(tls_segment != NULL);
value = target->got_plt_section()->address() + got_offset;
this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
value, view, address, view_size);
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the pair of GOT
// entries.
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela32(view, value, addend,
address);
break;
}
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"), r_type);
break;
case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
case elfcpp::R_X86_64_TLSDESC_CALL:
if (optimized_type == tls::TLSOPT_TO_LE)
{
gold_assert(tls_segment != NULL);
this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
rela, r_type, value, view,
view_size);
break;
}
else
{
unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
? GOT_TYPE_TLS_OFFSET
: GOT_TYPE_TLS_DESC);
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - target->got_size();
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = (object->local_got_offset(r_sym, got_type)
- target->got_size());
}
if (optimized_type == tls::TLSOPT_TO_IE)
{
gold_assert(tls_segment != NULL);
value = target->got_plt_section()->address() + got_offset;
this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
rela, r_type, value, view, address,
view_size);
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
{
// Relocate the field with the offset of the pair of GOT
// entries.
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela32(view, value, addend,
address);
}
break;
}
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"), r_type);
break;
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
if (optimized_type == tls::TLSOPT_TO_LE)
{
gold_assert(tls_segment != NULL);
this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
value, view, view_size);
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the module index.
unsigned int got_offset;
got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
- target->got_size());
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela32(view, value, addend,
address);
break;
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"), r_type);
break;
case elfcpp::R_X86_64_DTPOFF32:
gold_assert(tls_segment != NULL);
if (optimized_type == tls::TLSOPT_TO_LE)
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela32(view, value, 0);
break;
case elfcpp::R_X86_64_DTPOFF64:
gold_assert(tls_segment != NULL);
if (optimized_type == tls::TLSOPT_TO_LE)
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela64(view, value, 0);
break;
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
if (optimized_type == tls::TLSOPT_TO_LE)
{
gold_assert(tls_segment != NULL);
Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
rela, r_type, value, view,
view_size);
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the tp-relative offset of the symbol.
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
- target->got_size());
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET));
got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
- target->got_size());
}
value = target->got_plt_section()->address() + got_offset;
Relocate_functions<64, false>::pcrela32(view, value, addend, address);
break;
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc type %u"),
r_type);
break;
case elfcpp::R_X86_64_TPOFF32: // Local-exec
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela32(view, value, 0);
break;
}
}
// Do a relocation in which we convert a TLS General-Dynamic to an
// Initial-Exec.
inline void
Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment*,
const elfcpp::Rela<64, false>& rela,
unsigned int,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr address,
section_size_type view_size)
{
// .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
// .word 0x6666; rex64; call __tls_get_addr
// ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
(memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
(memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
const elfcpp::Elf_Xword addend = rela.get_r_addend();
Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
// The next reloc should be a PLT32 reloc against __tls_get_addr.
// We can skip it.
this->skip_call_tls_get_addr_ = true;
}
// Do a relocation in which we convert a TLS General-Dynamic to a
// Local-Exec.
inline void
Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>& rela,
unsigned int,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size)
{
// .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
// .word 0x6666; rex64; call __tls_get_addr
// ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
(memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
(memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela32(view + 8, value, 0);
// The next reloc should be a PLT32 reloc against __tls_get_addr.
// We can skip it.
this->skip_call_tls_get_addr_ = true;
}
// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
inline void
Target_x86_64::Relocate::tls_desc_gd_to_ie(
const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment*,
const elfcpp::Rela<64, false>& rela,
unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr address,
section_size_type view_size)
{
if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
{
// leaq foo@tlsdesc(%rip), %rax
// ==> movq foo@gottpoff(%rip), %rax
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
view[-2] = 0x8b;
const elfcpp::Elf_Xword addend = rela.get_r_addend();
Relocate_functions<64, false>::pcrela32(view, value, addend, address);
}
else
{
// call *foo@tlscall(%rax)
// ==> nop; nop
gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
view[0] == 0xff && view[1] == 0x10);
view[0] = 0x66;
view[1] = 0x90;
}
}
// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
inline void
Target_x86_64::Relocate::tls_desc_gd_to_le(
const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>& rela,
unsigned int r_type,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size)
{
if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
{
// leaq foo@tlsdesc(%rip), %rax
// ==> movq foo@tpoff, %rax
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
view[-2] = 0xc7;
view[-1] = 0xc0;
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela32(view, value, 0);
}
else
{
// call *foo@tlscall(%rax)
// ==> nop; nop
gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
view[0] == 0xff && view[1] == 0x10);
view[0] = 0x66;
view[1] = 0x90;
}
}
inline void
Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment*,
const elfcpp::Rela<64, false>& rela,
unsigned int,
elfcpp::Elf_types<64>::Elf_Addr,
unsigned char* view,
section_size_type view_size)
{
// leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
// ... leq foo@dtpoff(%rax),%reg
// ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
tls::check_tls(relinfo, relnum, rela.get_r_offset(),
view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
// The next reloc should be a PLT32 reloc against __tls_get_addr.
// We can skip it.
this->skip_call_tls_get_addr_ = true;
}
// Do a relocation in which we convert a TLS Initial-Exec to a
// Local-Exec.
inline void
Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
size_t relnum,
Output_segment* tls_segment,
const elfcpp::Rela<64, false>& rela,
unsigned int,
elfcpp::Elf_types<64>::Elf_Addr value,
unsigned char* view,
section_size_type view_size)
{
// We need to examine the opcodes to figure out which instruction we
// are looking at.
// movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
// addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
unsigned char op1 = view[-3];
unsigned char op2 = view[-2];
unsigned char op3 = view[-1];
unsigned char reg = op3 >> 3;
if (op2 == 0x8b)
{
// movq
if (op1 == 0x4c)
view[-3] = 0x49;
view[-2] = 0xc7;
view[-1] = 0xc0 | reg;
}
else if (reg == 4)
{
// Special handling for %rsp.
if (op1 == 0x4c)
view[-3] = 0x49;
view[-2] = 0x81;
view[-1] = 0xc0 | reg;
}
else
{
// addq
if (op1 == 0x4c)
view[-3] = 0x4d;
view[-2] = 0x8d;
view[-1] = 0x80 | reg | (reg << 3);
}
value -= tls_segment->memsz();
Relocate_functions<64, false>::rela32(view, value, 0);
}
// Relocate section data.
void
Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr address,
section_size_type view_size)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
Target_x86_64::Relocate>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size);
}
// Return the size of a relocation while scanning during a relocatable
// link.
unsigned int
Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
unsigned int r_type,
Relobj* object)
{
switch (r_type)
{
case elfcpp::R_X86_64_NONE:
case elfcpp::R_386_GNU_VTINHERIT:
case elfcpp::R_386_GNU_VTENTRY:
case elfcpp::R_X86_64_TLSGD: // Global-dynamic
case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
case elfcpp::R_X86_64_TLSDESC_CALL:
case elfcpp::R_X86_64_TLSLD: // Local-dynamic
case elfcpp::R_X86_64_DTPOFF32:
case elfcpp::R_X86_64_DTPOFF64:
case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
case elfcpp::R_X86_64_TPOFF32: // Local-exec
return 0;
case elfcpp::R_X86_64_64:
case elfcpp::R_X86_64_PC64:
case elfcpp::R_X86_64_GOTOFF64:
case elfcpp::R_X86_64_GOTPC64:
case elfcpp::R_X86_64_PLTOFF64:
case elfcpp::R_X86_64_GOT64:
case elfcpp::R_X86_64_GOTPCREL64:
case elfcpp::R_X86_64_GOTPCREL:
case elfcpp::R_X86_64_GOTPLT64:
return 8;
case elfcpp::R_X86_64_32:
case elfcpp::R_X86_64_32S:
case elfcpp::R_X86_64_PC32:
case elfcpp::R_X86_64_PLT32:
case elfcpp::R_X86_64_GOTPC32:
case elfcpp::R_X86_64_GOT32:
return 4;
case elfcpp::R_X86_64_16:
case elfcpp::R_X86_64_PC16:
return 2;
case elfcpp::R_X86_64_8:
case elfcpp::R_X86_64_PC8:
return 1;
case elfcpp::R_X86_64_COPY:
case elfcpp::R_X86_64_GLOB_DAT:
case elfcpp::R_X86_64_JUMP_SLOT:
case elfcpp::R_X86_64_RELATIVE:
// These are outstanding tls relocs, which are unexpected when linking
case elfcpp::R_X86_64_TPOFF64:
case elfcpp::R_X86_64_DTPMOD64:
case elfcpp::R_X86_64_TLSDESC:
object->error(_("unexpected reloc %u in object file"), r_type);
return 0;
case elfcpp::R_X86_64_SIZE32:
case elfcpp::R_X86_64_SIZE64:
default:
object->error(_("unsupported reloc %u against local symbol"), r_type);
return 0;
}
}
// Scan the relocs during a relocatable link.
void
Target_x86_64::scan_relocatable_relocs(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Sized_relobj<64, false>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
Relocatable_size_for_reloc> Scan_relocatable_relocs;
gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
Scan_relocatable_relocs>(
options,
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Relocate a section during a relocatable link.
void
Target_x86_64::relocate_for_relocatable(
const Relocate_info<64, false>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
off_t offset_in_output_section,
const Relocatable_relocs* rr,
unsigned char* view,
elfcpp::Elf_types<64>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
rr,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Return the value to use for a dynamic which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
uint64_t
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_section()->address() + gsym->plt_offset();
}
// Return a string used to fill a code section with nops to take up
// the specified length.
std::string
Target_x86_64::do_code_fill(section_size_type length) const
{
if (length >= 16)
{
// Build a jmpq instruction to skip over the bytes.
unsigned char jmp[5];
jmp[0] = 0xe9;
elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
+ std::string(length - 5, '\0'));
}
// Nop sequences of various lengths.
const char nop1[1] = { 0x90 }; // nop
const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
0x00 }; // leal 0(%esi,1),%esi
const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
0x00, 0x00 };
const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
0x00, 0x00, 0x00 };
const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
0x00 };
const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
0x00, 0x00 };
const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
0x00, 0x00, 0x00 };
const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
0x00, 0x00, 0x00, 0x00 };
const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
0x27, 0x00, 0x00, 0x00,
0x00 };
const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
0xbc, 0x27, 0x00, 0x00,
0x00, 0x00 };
const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
0x90, 0x90, 0x90, 0x90,
0x90, 0x90, 0x90 };
const char* nops[16] = {
NULL,
nop1, nop2, nop3, nop4, nop5, nop6, nop7,
nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
};
return std::string(nops[length], length);
}
// The selector for x86_64 object files.
class Target_selector_x86_64 : public Target_selector
{
public:
Target_selector_x86_64()
: Target_selector(elfcpp::EM_X86_64, 64, false, "elf64-x86-64")
{ }
Target*
do_instantiate_target()
{ return new Target_x86_64(); }
};
Target_selector_x86_64 target_selector_x86_64;
} // End anonymous namespace.
|