aboutsummaryrefslogtreecommitdiff
path: root/gold/target-reloc.h
blob: ebaa8276cf05e5d5737472fde449e8c34ad8be3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// target-reloc.h -- target specific relocation support  -*- C++ -*-

#ifndef GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H

#include "elfcpp.h"
#include "object.h"
#include "symtab.h"

namespace gold
{

// Pick the ELF relocation accessor class and the size based on
// SH_TYPE, which is either SHT_REL or SHT_RELA.

template<int sh_type, int size, bool big_endian>
struct Reloc_types;

template<int size, bool big_endian>
struct Reloc_types<elfcpp::SHT_REL, size, big_endian>
{
  typedef typename elfcpp::Rel<size, big_endian> Reloc;
  static const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
};

template<int size, bool big_endian>
struct Reloc_types<elfcpp::SHT_RELA, size, big_endian>
{
  typedef typename elfcpp::Rela<size, big_endian> Reloc;
  static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
};

// This function implements the generic part of reloc scanning.  This
// is an inline function which takes a class whose operator()
// implements the machine specific part of scanning.  We do it this
// way to avoidmaking a function call for each relocation, and to
// avoid repeating the generic code for each target.

template<int size, bool big_endian, typename Target_type, int sh_type,
	 typename Scan>
inline void
scan_relocs(
    const General_options& options,
    Symbol_table* symtab,
    Layout* layout,
    Target_type* target,
    Sized_object<size, big_endian>* object,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t local_count,
    const unsigned char* plocal_syms,
    Symbol** global_syms)
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan scan;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

      if (r_sym < local_count)
	{
	  assert(plocal_syms != NULL);
	  typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
						      + r_sym * sym_size);
	  const unsigned int shndx = lsym.get_st_shndx();
	  if (shndx < elfcpp::SHN_LORESERVE
	      && shndx != elfcpp::SHN_UNDEF
	      && !object->is_section_included(lsym.get_st_shndx()))
	    {
	      // RELOC is a relocation against a local symbol in a
	      // section we are discarding.  We can ignore this
	      // relocation.  It will eventually become a reloc
	      // against the value zero.
	      //
	      // FIXME: We should issue a warning if this is an
	      // allocated section; is this the best place to do it?
	      // 
	      // FIXME: The old GNU linker would in some cases look
	      // for the linkonce section which caused this section to
	      // be discarded, and, if the other section was the same
	      // size, change the reloc to refer to the other section.
	      // That seems risky and weird to me, and I don't know of
	      // any case where it is actually required.

	      continue;
	    }

	  scan.local(options, symtab, layout, target, object, reloc, r_type,
		     lsym);
	}
      else
	{
	  Symbol* gsym = global_syms[r_sym - local_count];
	  assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = symtab->resolve_forwards(gsym);

	  scan.global(options, symtab, layout, target, object, reloc, r_type,
		      gsym);
	}
    }
}

// This function implements the generic part of relocation processing.
// This is an inline function which take a class whose operator()
// implements the machine specific part of relocation.  We do it this
// way to avoid making a function call for each relocation, and to
// avoid repeating the generic relocation handling code for each
// target.

// SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
// the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
// RELOCATE implements operator() to do a relocation.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  VIEW is the section data, VIEW_ADDRESS is its memory
// address, and VIEW_SIZE is the size.

template<int size, bool big_endian, typename Target_type, int sh_type,
	 typename Relocate>
inline void
relocate_section(
    const Relocate_info<size, big_endian>* relinfo,
    Target_type* target,
    const unsigned char* prelocs,
    size_t reloc_count,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    off_t view_size)
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  Relocate relocate;

  unsigned int local_count = relinfo->local_symbol_count;
  typename elfcpp::Elf_types<size>::Elf_Addr *local_values = relinfo->values;
  Symbol** global_syms = relinfo->symbols;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      off_t offset = reloc.get_r_offset();

      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

      Sized_symbol<size>* sym;
      typename elfcpp::Elf_types<size>::Elf_Addr value;

      if (r_sym < local_count)
	{
	  sym = NULL;
	  value = local_values[r_sym];
	}
      else
	{
	  Symbol* gsym = global_syms[r_sym - local_count];
	  assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = relinfo->symtab->resolve_forwards(gsym);

	  sym = static_cast<Sized_symbol<size>*>(gsym);
	  value = sym->value();
	}

      if (!relocate.relocate(relinfo, target, i, reloc, r_type, sym, value,
			     view + offset, view_address + offset, view_size))
	continue;

      if (offset < 0 || offset >= view_size)
	{
	  fprintf(stderr, _("%s: %s: reloc has bad offset %zu\n"),
		  program_name, relinfo->location(i, offset).c_str(),
		  static_cast<size_t>(offset));
	  gold_exit(false);
	}

      if (sym != NULL
	  && sym->is_undefined()
	  && sym->binding() != elfcpp::STB_WEAK)
	{
	  fprintf(stderr, _("%s: %s: undefined reference to '%s'\n"),
		  program_name, relinfo->location(i, offset).c_str(),
		  sym->name());
	  // gold_exit(false);
	}
    }
}

} // End namespace gold.

#endif // !defined(GOLD_TARGET_RELOC_H)