1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
// symtab.h -- the gold symbol table -*- C++ -*-
// Symbol_table
// The symbol table.
#include <string>
#include <utility>
#include <vector>
#include <cassert>
#include "elfcpp.h"
#include "stringpool.h"
#include "object.h"
#ifndef GOLD_SYMTAB_H
#define GOLD_SYMTAB_H
namespace gold
{
class Object;
class Relobj;
template<int size, bool big_endian>
class Sized_relobj;
class Dynobj;
template<int size, bool big_endian>
class Sized_dynobj;
class Output_data;
class Output_segment;
class Output_file;
class Target;
// The base class of an entry in the symbol table. The symbol table
// can have a lot of entries, so we don't want this class to big.
// Size dependent fields can be found in the template class
// Sized_symbol. Targets may support their own derived classes.
class Symbol
{
public:
// Because we want the class to be small, we don't use any virtual
// functions. But because symbols can be defined in different
// places, we need to classify them. This enum is the different
// sources of symbols we support.
enum Source
{
// Symbol defined in a relocatable or dynamic input file--this is
// the most common case.
FROM_OBJECT,
// Symbol defined in an Output_data, a special section created by
// the target.
IN_OUTPUT_DATA,
// Symbol defined in an Output_segment, with no associated
// section.
IN_OUTPUT_SEGMENT,
// Symbol value is constant.
CONSTANT
};
// When the source is IN_OUTPUT_SEGMENT, we need to describe what
// the offset means.
enum Segment_offset_base
{
// From the start of the segment.
SEGMENT_START,
// From the end of the segment.
SEGMENT_END,
// From the filesz of the segment--i.e., after the loaded bytes
// but before the bytes which are allocated but zeroed.
SEGMENT_BSS
};
// Return the symbol name.
const char*
name() const
{ return this->name_; }
// Return the symbol version. This will return NULL for an
// unversioned symbol.
const char*
version() const
{ return this->version_; }
// Return the symbol source.
Source
source() const
{ return this->source_; }
// Return the object with which this symbol is associated.
Object*
object() const
{
assert(this->source_ == FROM_OBJECT);
return this->u_.from_object.object;
}
// Return the index of the section in the input relocatable or
// dynamic object file.
unsigned int
shnum() const
{
assert(this->source_ == FROM_OBJECT);
return this->u_.from_object.shnum;
}
// Return the output data section with which this symbol is
// associated, if the symbol was specially defined with respect to
// an output data section.
Output_data*
output_data() const
{
assert(this->source_ == IN_OUTPUT_DATA);
return this->u_.in_output_data.output_data;
}
// If this symbol was defined with respect to an output data
// section, return whether the value is an offset from end.
bool
offset_is_from_end() const
{
assert(this->source_ == IN_OUTPUT_DATA);
return this->u_.in_output_data.offset_is_from_end;
}
// Return the output segment with which this symbol is associated,
// if the symbol was specially defined with respect to an output
// segment.
Output_segment*
output_segment() const
{
assert(this->source_ == IN_OUTPUT_SEGMENT);
return this->u_.in_output_segment.output_segment;
}
// If this symbol was defined with respect to an output segment,
// return the offset base.
Segment_offset_base
offset_base() const
{
assert(this->source_ == IN_OUTPUT_SEGMENT);
return this->u_.in_output_segment.offset_base;
}
// Return the symbol binding.
elfcpp::STB
binding() const
{ return this->binding_; }
// Return the symbol type.
elfcpp::STT
type() const
{ return this->type_; }
// Return the symbol visibility.
elfcpp::STV
visibility() const
{ return this->visibility_; }
// Return the non-visibility part of the st_other field.
unsigned char
nonvis() const
{ return this->nonvis_; }
// Return whether this symbol is a forwarder. This will never be
// true of a symbol found in the hash table, but may be true of
// symbol pointers attached to object files.
bool
is_forwarder() const
{ return this->is_forwarder_; }
// Mark this symbol as a forwarder.
void
set_forwarder()
{ this->is_forwarder_ = true; }
// Return whether this symbol needs an entry in the dynamic symbol
// table.
bool
needs_dynsym_entry() const
{ return this->needs_dynsym_entry_; }
// Mark this symbol as needing an entry in the dynamic symbol table.
void
set_needs_dynsym_entry()
{ this->needs_dynsym_entry_ = true; }
// Return whether this symbol was ever seen in a dynamic object.
bool
in_dyn() const
{ return this->in_dyn_; }
// Mark this symbol as having been seen in a dynamic object.
void
set_in_dyn()
{ this->in_dyn_ = true; }
// Return the index of this symbol in the output file symbol table.
// A value of -1U means that this symbol is not going into the
// output file. This starts out as zero, and is set to a non-zero
// value by Symbol_table::finalize. It is an error to ask for the
// symbol table index before it has been set.
unsigned int
symtab_index() const
{
assert(this->symtab_index_ != 0);
return this->symtab_index_;
}
// Set the index of the symbol in the output file symbol table.
void
set_symtab_index(unsigned int index)
{
assert(index != 0);
this->symtab_index_ = index;
}
// Return the index of this symbol in the dynamic symbol table. A
// value of -1U means that this symbol is not going into the dynamic
// symbol table. This starts out as zero, and is set to a non-zero
// during Layout::finalize. It is an error to ask for the dynamic
// symbol table index before it has been set.
unsigned int
dynsym_index() const
{
assert(this->dynsym_index_ != 0);
return this->dynsym_index_;
}
// Set the index of the symbol in the dynamic symbol table.
void
set_dynsym_index(unsigned int index)
{
assert(index != 0);
this->dynsym_index_ = index;
}
// Return whether this symbol has an entry in the GOT section.
bool
has_got_offset() const
{ return this->has_got_offset_; }
// Return the offset into the GOT section of this symbol.
unsigned int
got_offset() const
{
assert(this->has_got_offset());
return this->got_offset_;
}
// Set the GOT offset of this symbol.
void
set_got_offset(unsigned int got_offset)
{
this->has_got_offset_ = true;
this->got_offset_ = got_offset;
}
// Return whether this symbol is resolved locally. This is always
// true when linking statically. It is true for a symbol defined in
// this object when using -Bsymbolic. It is true for a symbol
// marked local in a version file. FIXME: This needs to be
// completed.
bool
is_resolved_locally() const
{ return !this->in_dyn_; }
// Return whether this is a defined symbol (not undefined or
// common).
bool
is_defined() const
{
return (this->source_ != FROM_OBJECT
|| (this->u_.from_object.shnum != elfcpp::SHN_UNDEF
&& this->u_.from_object.shnum != elfcpp::SHN_COMMON));
}
// Return whether this is an undefined symbol.
bool
is_undefined() const
{
return this->source_ == FROM_OBJECT && this->shnum() == elfcpp::SHN_UNDEF;
}
// Return whether this is a common symbol.
bool
is_common() const
{
return (this->source_ == FROM_OBJECT
&& (this->u_.from_object.shnum == elfcpp::SHN_COMMON
|| this->type_ == elfcpp::STT_COMMON));
}
// Return whether there should be a warning for references to this
// symbol.
bool
has_warning() const
{ return this->has_warning_; }
// Mark this symbol as having a warning.
void
set_has_warning()
{ this->has_warning_ = true; }
protected:
// Instances of this class should always be created at a specific
// size.
Symbol()
{ memset(this, 0, sizeof *this); }
// Initialize the general fields.
void
init_fields(const char* name, const char* version,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis);
// Initialize fields from an ELF symbol in OBJECT.
template<int size, bool big_endian>
void
init_base(const char *name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>&);
// Initialize fields for an Output_data.
void
init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
// Initialize fields for an Output_segment.
void
init_base(const char* name, Output_segment* os, elfcpp::STT type,
elfcpp::STB binding, elfcpp::STV visibility,
unsigned char nonvis, Segment_offset_base offset_base);
// Initialize fields for a constant.
void
init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis);
// Override existing symbol.
template<int size, bool big_endian>
void
override_base(const elfcpp::Sym<size, big_endian>&, Object* object);
private:
Symbol(const Symbol&);
Symbol& operator=(const Symbol&);
// Symbol name (expected to point into a Stringpool).
const char* name_;
// Symbol version (expected to point into a Stringpool). This may
// be NULL.
const char* version_;
union
{
// This struct is used if SOURCE_ == FROM_OBJECT.
struct
{
// Object in which symbol is defined, or in which it was first
// seen.
Object* object;
// Section number in object_ in which symbol is defined.
unsigned int shnum;
} from_object;
// This struct is used if SOURCE_ == IN_OUTPUT_DATA.
struct
{
// Output_data in which symbol is defined. Before
// Layout::finalize the symbol's value is an offset within the
// Output_data.
Output_data* output_data;
// True if the offset is from the end, false if the offset is
// from the beginning.
bool offset_is_from_end;
} in_output_data;
// This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
struct
{
// Output_segment in which the symbol is defined. Before
// Layout::finalize the symbol's value is an offset.
Output_segment* output_segment;
// The base to use for the offset before Layout::finalize.
Segment_offset_base offset_base;
} in_output_segment;
} u_;
// The index of this symbol in the output file. If the symbol is
// not going into the output file, this value is -1U. This field
// starts as always holding zero. It is set to a non-zero value by
// Symbol_table::finalize.
unsigned int symtab_index_;
// The index of this symbol in the dynamic symbol table. If the
// symbol is not going into the dynamic symbol table, this value is
// -1U. This field starts as always holding zero. It is set to a
// non-zero value during Layout::finalize.
unsigned int dynsym_index_;
// If this symbol has an entry in the GOT section (has_got_offset_
// is true), this is the offset from the start of the GOT section.
unsigned int got_offset_;
// Symbol type.
elfcpp::STT type_ : 4;
// Symbol binding.
elfcpp::STB binding_ : 4;
// Symbol visibility.
elfcpp::STV visibility_ : 2;
// Rest of symbol st_other field.
unsigned int nonvis_ : 6;
// The type of symbol.
Source source_ : 3;
// True if this symbol always requires special target-specific
// handling.
bool is_target_special_ : 1;
// True if this is the default version of the symbol.
bool is_def_ : 1;
// True if this symbol really forwards to another symbol. This is
// used when we discover after the fact that two different entries
// in the hash table really refer to the same symbol. This will
// never be set for a symbol found in the hash table, but may be set
// for a symbol found in the list of symbols attached to an Object.
// It forwards to the symbol found in the forwarders_ map of
// Symbol_table.
bool is_forwarder_ : 1;
// True if this symbol needs to be in the dynamic symbol table.
bool needs_dynsym_entry_ : 1;
// True if we've seen this symbol in a dynamic object.
bool in_dyn_ : 1;
// True if the symbol has an entry in the GOT section.
bool has_got_offset_ : 1;
// True if there is a warning for this symbol.
bool has_warning_ : 1;
};
// The parts of a symbol which are size specific. Using a template
// derived class like this helps us use less space on a 32-bit system.
template<int size>
class Sized_symbol : public Symbol
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
Sized_symbol()
{ }
// Initialize fields from an ELF symbol in OBJECT.
template<bool big_endian>
void
init(const char *name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>&);
// Initialize fields for an Output_data.
void
init(const char* name, Output_data*, Value_type value, Size_type symsize,
elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
bool offset_is_from_end);
// Initialize fields for an Output_segment.
void
init(const char* name, Output_segment*, Value_type value, Size_type symsize,
elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
Segment_offset_base offset_base);
// Initialize fields for a constant.
void
init(const char* name, Value_type value, Size_type symsize,
elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
// Override existing symbol.
template<bool big_endian>
void
override(const elfcpp::Sym<size, big_endian>&, Object* object);
// Return the symbol's value.
Value_type
value() const
{ return this->value_; }
// Return the symbol's size (we can't call this 'size' because that
// is a template parameter).
Size_type
symsize() const
{ return this->symsize_; }
// Set the symbol size. This is used when resolving common symbols.
void
set_symsize(Size_type symsize)
{ this->symsize_ = symsize; }
// Set the symbol value. This is called when we store the final
// values of the symbols into the symbol table.
void
set_value(Value_type value)
{ this->value_ = value; }
private:
Sized_symbol(const Sized_symbol&);
Sized_symbol& operator=(const Sized_symbol&);
// Symbol value. Before Layout::finalize this is the offset in the
// input section. This is set to the final value during
// Layout::finalize.
Value_type value_;
// Symbol size.
Size_type symsize_;
};
// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on an output section. This is used
// for symbols defined by the linker, like "_init_array_start".
struct Define_symbol_in_section
{
// The symbol name.
const char* name;
// The name of the output section with which this symbol should be
// associated. If there is no output section with that name, the
// symbol will be defined as zero.
const char* output_section;
// The offset of the symbol within the output section. This is an
// offset from the start of the output section, unless start_at_end
// is true, in which case this is an offset from the end of the
// output section.
uint64_t value;
// The size of the symbol.
uint64_t size;
// The symbol type.
elfcpp::STT type;
// The symbol binding.
elfcpp::STB binding;
// The symbol visibility.
elfcpp::STV visibility;
// The rest of the st_other field.
unsigned char nonvis;
// If true, the value field is an offset from the end of the output
// section.
bool offset_is_from_end;
// If true, this symbol is defined only if we see a reference to it.
bool only_if_ref;
};
// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on a segment. This is used for
// symbols defined by the linker, like "_end". We describe the
// segment with which the symbol should be associated by its
// characteristics. If no segment meets these characteristics, the
// symbol will be defined as zero. If there is more than one segment
// which meets these characteristics, we will use the first one.
struct Define_symbol_in_segment
{
// The symbol name.
const char* name;
// The segment type where the symbol should be defined, typically
// PT_LOAD.
elfcpp::PT segment_type;
// Bitmask of segment flags which must be set.
elfcpp::PF segment_flags_set;
// Bitmask of segment flags which must be clear.
elfcpp::PF segment_flags_clear;
// The offset of the symbol within the segment. The offset is
// calculated from the position set by offset_base.
uint64_t value;
// The size of the symbol.
uint64_t size;
// The symbol type.
elfcpp::STT type;
// The symbol binding.
elfcpp::STB binding;
// The symbol visibility.
elfcpp::STV visibility;
// The rest of the st_other field.
unsigned char nonvis;
// The base from which we compute the offset.
Symbol::Segment_offset_base offset_base;
// If true, this symbol is defined only if we see a reference to it.
bool only_if_ref;
};
// This class manages warnings. Warnings are a GNU extension. When
// we see a section named .gnu.warning.SYM in an object file, and if
// we wind using the definition of SYM from that object file, then we
// will issue a warning for any relocation against SYM from a
// different object file. The text of the warning is the contents of
// the section. This is not precisely the definition used by the old
// GNU linker; the old GNU linker treated an occurrence of
// .gnu.warning.SYM as defining a warning symbol. A warning symbol
// would trigger a warning on any reference. However, it was
// inconsistent in that a warning in a dynamic object only triggered
// if there was no definition in a regular object. This linker is
// different in that we only issue a warning if we use the symbol
// definition from the same object file as the warning section.
class Warnings
{
public:
Warnings()
: warnings_()
{ }
// Add a warning for symbol NAME in section SHNDX in object OBJ.
void
add_warning(Symbol_table* symtab, const char* name, Object* obj,
unsigned int shndx);
// For each symbol for which we should give a warning, make a note
// on the symbol.
void
note_warnings(Symbol_table* symtab);
// Issue a warning for a reference to SYM at LOCATION.
void
issue_warning(const Symbol* sym, const std::string& location) const;
private:
Warnings(const Warnings&);
Warnings& operator=(const Warnings&);
// What we need to know to get the warning text.
struct Warning_location
{
// The object the warning is in.
Object* object;
// The index of the warning section.
unsigned int shndx;
// The warning text if we have already loaded it.
std::string text;
Warning_location()
: object(NULL), shndx(0), text()
{ }
void
set(Object* o, unsigned int s)
{
this->object = o;
this->shndx = s;
}
void
set_text(const char* t, off_t l)
{ this->text.assign(t, l); }
};
// A mapping from warning symbol names (canonicalized in
// Symbol_table's namepool_ field) to
typedef Unordered_map<const char*, Warning_location> Warning_table;
Warning_table warnings_;
};
// The main linker symbol table.
class Symbol_table
{
public:
Symbol_table();
~Symbol_table();
// Add COUNT external symbols from the relocatable object RELOBJ to
// the symbol table. SYMS is the symbols, SYM_NAMES is their names,
// SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
// point to the symbols in the symbol table.
template<int size, bool big_endian>
void
add_from_relobj(Sized_relobj<size, big_endian>* relobj,
const unsigned char* syms, size_t count,
const char* sym_names, size_t sym_name_size,
Symbol** sympointers);
// Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
// symbol table. SYMS is the symbols. SYM_NAMES is their names.
// SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
// symbol version data.
template<int size, bool big_endian>
void
add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
const unsigned char* syms, size_t count,
const char* sym_names, size_t sym_name_size,
const unsigned char* versym, size_t versym_size,
const std::vector<const char*>*);
// Define a special symbol.
template<int size, bool big_endian>
Sized_symbol<size>*
define_special_symbol(Target* target, const char* name, bool only_if_ref
ACCEPT_SIZE_ENDIAN);
// Define a special symbol based on an Output_data. It is a
// multiple definition error if this symbol is already defined.
void
define_in_output_data(Target*, const char* name, Output_data*,
uint64_t value, uint64_t symsize,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
bool offset_is_from_end, bool only_if_ref);
// Define a special symbol based on an Output_segment. It is a
// multiple definition error if this symbol is already defined.
void
define_in_output_segment(Target*, const char* name, Output_segment*,
uint64_t value, uint64_t symsize,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
Symbol::Segment_offset_base, bool only_if_ref);
// Define a special symbol with a constant value. It is a multiple
// definition error if this symbol is already defined.
void
define_as_constant(Target*, const char* name, uint64_t value,
uint64_t symsize, elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
bool only_if_ref);
// Define a set of symbols in output sections.
void
define_symbols(const Layout*, Target*, int count,
const Define_symbol_in_section*);
// Define a set of symbols in output segments.
void
define_symbols(const Layout*, Target*, int count,
const Define_symbol_in_segment*);
// Look up a symbol.
Symbol*
lookup(const char*, const char* version = NULL) const;
// Return the real symbol associated with the forwarder symbol FROM.
Symbol*
resolve_forwards(const Symbol* from) const;
// Return the size of the symbols in the table.
int
get_size() const
{ return this->size_; }
// Return the sized version of a symbol in this table.
template<int size>
Sized_symbol<size>*
get_sized_symbol(Symbol* ACCEPT_SIZE) const;
template<int size>
const Sized_symbol<size>*
get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
// Return the count of undefined symbols seen.
int
saw_undefined() const
{ return this->saw_undefined_; }
// Allocate the common symbols
void
allocate_commons(const General_options&, Layout*);
// Add a warning for symbol NAME in section SHNDX in object OBJ.
void
add_warning(const char* name, Object* obj, unsigned int shndx)
{ this->warnings_.add_warning(this, name, obj, shndx); }
// Canonicalize a symbol name for use in the hash table.
const char*
canonicalize_name(const char* name)
{ return this->namepool_.add(name, NULL); }
// Possibly issue a warning for a reference to SYM at LOCATION which
// is in OBJ.
void
issue_warning(const Symbol* sym, const std::string& location) const
{ this->warnings_.issue_warning(sym, location); }
// Finalize the symbol table after we have set the final addresses
// of all the input sections. This sets the final symbol indexes,
// values and adds the names to *POOL. INDEX is the index of the
// first global symbol. This records the file offset OFF, and
// returns the new file offset.
off_t
finalize(unsigned int index, off_t off, Stringpool* pool);
// Write out the global symbols.
void
write_globals(const Target*, const Stringpool*, Output_file*) const;
private:
Symbol_table(const Symbol_table&);
Symbol_table& operator=(const Symbol_table&);
// Set the size of the symbols in the table.
void
set_size(int size)
{ this->size_ = size; }
// Make FROM a forwarder symbol to TO.
void
make_forwarder(Symbol* from, Symbol* to);
// Add a symbol.
template<int size, bool big_endian>
Symbol*
add_from_object(Object*, const char *name, Stringpool::Key name_key,
const char *version, Stringpool::Key version_key,
bool def, const elfcpp::Sym<size, big_endian>& sym);
// Resolve symbols.
template<int size, bool big_endian>
static void
resolve(Sized_symbol<size>* to,
const elfcpp::Sym<size, big_endian>& sym,
Object*);
template<int size, bool big_endian>
static void
resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
ACCEPT_SIZE_ENDIAN);
// Define a symbol in an Output_data, sized version.
template<int size>
void
do_define_in_output_data(Target*, const char* name, Output_data*,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_WXword ssize,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
bool offset_is_from_end, bool only_if_ref);
// Define a symbol in an Output_segment, sized version.
template<int size>
void
do_define_in_output_segment(
Target*, const char* name, Output_segment* os,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_WXword ssize,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
Symbol::Segment_offset_base offset_base, bool only_if_ref);
// Define a symbol as a constant, sized version.
template<int size>
void
do_define_as_constant(
Target*, const char* name,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_WXword ssize,
elfcpp::STT type, elfcpp::STB binding,
elfcpp::STV visibility, unsigned char nonvis,
bool only_if_ref);
// Allocate the common symbols, sized version.
template<int size>
void
do_allocate_commons(const General_options&, Layout*);
// Finalize symbols specialized for size.
template<int size>
off_t
sized_finalize(unsigned int, off_t, Stringpool*);
// Write globals specialized for size and endianness.
template<int size, bool big_endian>
void
sized_write_globals(const Target*, const Stringpool*, Output_file*) const;
// The type of the symbol hash table.
typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
struct Symbol_table_hash
{
size_t
operator()(const Symbol_table_key&) const;
};
struct Symbol_table_eq
{
bool
operator()(const Symbol_table_key&, const Symbol_table_key&) const;
};
typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
Symbol_table_eq> Symbol_table_type;
// The type of the list of common symbols.
typedef std::vector<Symbol*> Commons_type;
// The size of the symbols in the symbol table (32 or 64).
int size_;
// We increment this every time we see a new undefined symbol, for
// use in archive groups.
int saw_undefined_;
// The index of the first global symbol in the output file.
unsigned int first_global_index_;
// The file offset within the output symtab section where we should
// write the table.
off_t offset_;
// The number of global symbols we want to write out.
size_t output_count_;
// The symbol hash table.
Symbol_table_type table_;
// A pool of symbol names. This is used for all global symbols.
// Entries in the hash table point into this pool.
Stringpool namepool_;
// Forwarding symbols.
Unordered_map<const Symbol*, Symbol*> forwarders_;
// We don't expect there to be very many common symbols, so we keep
// a list of them. When we find a common symbol we add it to this
// list. It is possible that by the time we process the list the
// symbol is no longer a common symbol. It may also have become a
// forwarder.
Commons_type commons_;
// Manage symbol warnings.
Warnings warnings_;
};
// We inline get_sized_symbol for efficiency.
template<int size>
Sized_symbol<size>*
Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
{
assert(size == this->get_size());
return static_cast<Sized_symbol<size>*>(sym);
}
template<int size>
const Sized_symbol<size>*
Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
{
assert(size == this->get_size());
return static_cast<const Sized_symbol<size>*>(sym);
}
} // End namespace gold.
#endif // !defined(GOLD_SYMTAB_H)
|