aboutsummaryrefslogtreecommitdiff
path: root/gold/symtab.h
blob: a4f11068dc75620d680dc5be3ddffb91c3c8a6f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
// symtab.h -- the gold symbol table   -*- C++ -*-

// Copyright 2006, 2007 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

// Symbol_table
//   The symbol table.

#include <string>
#include <utility>
#include <vector>

#include "elfcpp.h"
#include "parameters.h"
#include "stringpool.h"
#include "object.h"

#ifndef GOLD_SYMTAB_H
#define GOLD_SYMTAB_H

namespace gold
{

class Object;
class Relobj;
template<int size, bool big_endian>
class Sized_relobj;
class Dynobj;
template<int size, bool big_endian>
class Sized_dynobj;
class Versions;
class Input_objects;
class Output_data;
class Output_section;
class Output_segment;
class Output_file;
class Target;

// The base class of an entry in the symbol table.  The symbol table
// can have a lot of entries, so we don't want this class to big.
// Size dependent fields can be found in the template class
// Sized_symbol.  Targets may support their own derived classes.

class Symbol
{
 public:
  // Because we want the class to be small, we don't use any virtual
  // functions.  But because symbols can be defined in different
  // places, we need to classify them.  This enum is the different
  // sources of symbols we support.
  enum Source
  {
    // Symbol defined in a relocatable or dynamic input file--this is
    // the most common case.
    FROM_OBJECT,
    // Symbol defined in an Output_data, a special section created by
    // the target.
    IN_OUTPUT_DATA,
    // Symbol defined in an Output_segment, with no associated
    // section.
    IN_OUTPUT_SEGMENT,
    // Symbol value is constant.
    CONSTANT
  };

  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
  // the offset means.
  enum Segment_offset_base
  {
    // From the start of the segment.
    SEGMENT_START,
    // From the end of the segment.
    SEGMENT_END,
    // From the filesz of the segment--i.e., after the loaded bytes
    // but before the bytes which are allocated but zeroed.
    SEGMENT_BSS
  };

  // Return the symbol name.
  const char*
  name() const
  { return this->name_; }

  // Return the (ANSI) demangled version of the name, if
  // parameters.demangle() is true.  Otherwise, return the name.  This
  // is intended to be used only for logging errors, so it's not
  // super-efficient.
  std::string
  demangled_name() const;

  // Return the symbol version.  This will return NULL for an
  // unversioned symbol.
  const char*
  version() const
  { return this->version_; }

  // Return the symbol source.
  Source
  source() const
  { return this->source_; }

  // Return the object with which this symbol is associated.
  Object*
  object() const
  {
    gold_assert(this->source_ == FROM_OBJECT);
    return this->u_.from_object.object;
  }

  // Return the index of the section in the input relocatable or
  // dynamic object file.
  unsigned int
  shndx() const
  {
    gold_assert(this->source_ == FROM_OBJECT);
    return this->u_.from_object.shndx;
  }

  // Return the output data section with which this symbol is
  // associated, if the symbol was specially defined with respect to
  // an output data section.
  Output_data*
  output_data() const
  {
    gold_assert(this->source_ == IN_OUTPUT_DATA);
    return this->u_.in_output_data.output_data;
  }

  // If this symbol was defined with respect to an output data
  // section, return whether the value is an offset from end.
  bool
  offset_is_from_end() const
  {
    gold_assert(this->source_ == IN_OUTPUT_DATA);
    return this->u_.in_output_data.offset_is_from_end;
  }

  // Return the output segment with which this symbol is associated,
  // if the symbol was specially defined with respect to an output
  // segment.
  Output_segment*
  output_segment() const
  {
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
    return this->u_.in_output_segment.output_segment;
  }

  // If this symbol was defined with respect to an output segment,
  // return the offset base.
  Segment_offset_base
  offset_base() const
  {
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
    return this->u_.in_output_segment.offset_base;
  }

  // Return the symbol binding.
  elfcpp::STB
  binding() const
  { return this->binding_; }

  // Return the symbol type.
  elfcpp::STT
  type() const
  { return this->type_; }

  // Return the symbol visibility.
  elfcpp::STV
  visibility() const
  { return this->visibility_; }

  // Return the non-visibility part of the st_other field.
  unsigned char
  nonvis() const
  { return this->nonvis_; }

  // Return whether this symbol is a forwarder.  This will never be
  // true of a symbol found in the hash table, but may be true of
  // symbol pointers attached to object files.
  bool
  is_forwarder() const
  { return this->is_forwarder_; }

  // Mark this symbol as a forwarder.
  void
  set_forwarder()
  { this->is_forwarder_ = true; }

  // Return whether this symbol has an alias in the weak aliases table
  // in Symbol_table.
  bool
  has_alias() const
  { return this->has_alias_; }

  // Mark this symbol as having an alias.
  void
  set_has_alias()
  { this->has_alias_ = true; }

  // Return whether this symbol needs an entry in the dynamic symbol
  // table.
  bool
  needs_dynsym_entry() const
  {
    return (this->needs_dynsym_entry_
            || (this->in_reg() && this->in_dyn()));
  }

  // Mark this symbol as needing an entry in the dynamic symbol table.
  void
  set_needs_dynsym_entry()
  { this->needs_dynsym_entry_ = true; }

  // Return whether this symbol should be added to the dynamic symbol
  // table.
  bool
  should_add_dynsym_entry() const;

  // Return whether this symbol has been seen in a regular object.
  bool
  in_reg() const
  { return this->in_reg_; }

  // Mark this symbol as having been seen in a regular object.
  void
  set_in_reg()
  { this->in_reg_ = true; }

  // Return whether this symbol has been seen in a dynamic object.
  bool
  in_dyn() const
  { return this->in_dyn_; }

  // Mark this symbol as having been seen in a dynamic object.
  void
  set_in_dyn()
  { this->in_dyn_ = true; }

  // Return the index of this symbol in the output file symbol table.
  // A value of -1U means that this symbol is not going into the
  // output file.  This starts out as zero, and is set to a non-zero
  // value by Symbol_table::finalize.  It is an error to ask for the
  // symbol table index before it has been set.
  unsigned int
  symtab_index() const
  {
    gold_assert(this->symtab_index_ != 0);
    return this->symtab_index_;
  }

  // Set the index of the symbol in the output file symbol table.
  void
  set_symtab_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->symtab_index_ = index;
  }

  // Return whether this symbol already has an index in the output
  // file symbol table.
  bool
  has_symtab_index() const
  { return this->symtab_index_ != 0; }

  // Return the index of this symbol in the dynamic symbol table.  A
  // value of -1U means that this symbol is not going into the dynamic
  // symbol table.  This starts out as zero, and is set to a non-zero
  // during Layout::finalize.  It is an error to ask for the dynamic
  // symbol table index before it has been set.
  unsigned int
  dynsym_index() const
  {
    gold_assert(this->dynsym_index_ != 0);
    return this->dynsym_index_;
  }

  // Set the index of the symbol in the dynamic symbol table.
  void
  set_dynsym_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->dynsym_index_ = index;
  }

  // Return whether this symbol already has an index in the dynamic
  // symbol table.
  bool
  has_dynsym_index() const
  { return this->dynsym_index_ != 0; }

  // Return whether this symbol has an entry in the GOT section.
  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
  bool
  has_got_offset() const
  { return this->has_got_offset_; }

  // Return the offset into the GOT section of this symbol.
  unsigned int
  got_offset() const
  {
    gold_assert(this->has_got_offset());
    return this->got_offset_;
  }

  // Set the GOT offset of this symbol.
  void
  set_got_offset(unsigned int got_offset)
  {
    this->has_got_offset_ = true;
    this->got_offset_ = got_offset;
  }

  // Return whether this TLS symbol has an entry in the GOT section for
  // its module index or, if NEED_PAIR is true, has a pair of entries
  // for its module index and dtv-relative offset.
  bool
  has_tls_got_offset(bool need_pair) const
  {
    return (this->has_tls_mod_got_offset_
            && (!need_pair || this->has_tls_pair_got_offset_));
  }

  // Return the offset into the GOT section for this symbol's TLS module
  // index or, if NEED_PAIR is true, for the pair of entries for the
  // module index and dtv-relative offset.
  unsigned int
  tls_got_offset(bool need_pair) const
  {
    gold_assert(this->has_tls_got_offset(need_pair));
    return this->tls_mod_got_offset_;
  }

  // Set the GOT offset of this symbol.
  void
  set_tls_got_offset(unsigned int got_offset, bool have_pair)
  {
    this->has_tls_mod_got_offset_ = true;
    this->has_tls_pair_got_offset_ = have_pair;
    this->tls_mod_got_offset_ = got_offset;
  }

  // Return whether this symbol has an entry in the PLT section.
  bool
  has_plt_offset() const
  { return this->has_plt_offset_; }

  // Return the offset into the PLT section of this symbol.
  unsigned int
  plt_offset() const
  {
    gold_assert(this->has_plt_offset());
    return this->plt_offset_;
  }

  // Set the PLT offset of this symbol.
  void
  set_plt_offset(unsigned int plt_offset)
  {
    this->has_plt_offset_ = true;
    this->plt_offset_ = plt_offset;
  }

  // Return whether this dynamic symbol needs a special value in the
  // dynamic symbol table.
  bool
  needs_dynsym_value() const
  { return this->needs_dynsym_value_; }

  // Set that this dynamic symbol needs a special value in the dynamic
  // symbol table.
  void
  set_needs_dynsym_value()
  {
    gold_assert(this->object()->is_dynamic());
    this->needs_dynsym_value_ = true;
  }

  // Return true if the final value of this symbol is known at link
  // time.
  bool
  final_value_is_known() const;

  // Return whether this is a defined symbol (not undefined or
  // common).
  bool
  is_defined() const
  {
    return (this->source_ != FROM_OBJECT
	    || (this->shndx() != elfcpp::SHN_UNDEF
		&& this->shndx() != elfcpp::SHN_COMMON));
  }

  // Return true if this symbol is from a dynamic object.
  bool
  is_from_dynobj() const
  {
    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
  }

  // Return whether this is an undefined symbol.
  bool
  is_undefined() const
  {
    return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
  }

  // Return whether this is a common symbol.
  bool
  is_common() const
  {
    return (this->source_ == FROM_OBJECT
	    && (this->shndx() == elfcpp::SHN_COMMON
		|| this->type_ == elfcpp::STT_COMMON));
  }

  // Return whether this symbol can be seen outside this object.
  bool
  is_externally_visible() const
  {
    return (this->visibility_ == elfcpp::STV_DEFAULT
            || this->visibility_ == elfcpp::STV_PROTECTED);
  }

  // Return true if this symbol can be preempted by a definition in
  // another link unit.
  bool
  is_preemptible() const
  {
    // It doesn't make sense to ask whether a symbol defined in
    // another object is preemptible.
    gold_assert(!this->is_from_dynobj());

    return (this->visibility_ != elfcpp::STV_INTERNAL
            && this->visibility_ != elfcpp::STV_HIDDEN
            && this->visibility_ != elfcpp::STV_PROTECTED
            && parameters->output_is_shared()
	    && !parameters->symbolic());
  }

  // Return true if this symbol is a function that needs a PLT entry.
  // If the symbol is defined in a dynamic object or if it is subject
  // to pre-emption, we need to make a PLT entry.
  bool
  needs_plt_entry() const
  {
    return (this->type() == elfcpp::STT_FUNC
            && (this->is_from_dynobj() || this->is_preemptible()));
  }

  // Given a direct absolute or pc-relative static relocation against
  // the global symbol, this function returns whether a dynamic relocation
  // is needed.

  bool
  needs_dynamic_reloc(bool is_absolute_ref, bool is_function_call) const
  {
    // An absolute reference within a position-independent output file
    // will need a dynamic relocaion.
    if (is_absolute_ref && parameters->output_is_position_independent())
      return true;

    // A function call that can branch to a local PLT entry does not need
    // a dynamic relocation.
    if (is_function_call && this->has_plt_offset())
      return false;

    // A reference to any PLT entry in a non-position-independent executable
    // does not need a dynamic relocation.
    if (!parameters->output_is_position_independent()
        && this->has_plt_offset())
      return false;

    // A reference to a symbol defined in a dynamic object or to a
    // symbol that is preemptible will need a dynamic relocation.
    if (this->is_from_dynobj() || this->is_preemptible())
      return true;

    // For all other cases, return FALSE.
    return false;
  }

  // Given a direct absolute static relocation against
  // the global symbol, where a dynamic relocation is needed, this
  // function returns whether a relative dynamic relocation can be used.
  // The caller must determine separately whether the static relocation
  // is compatible with a relative relocation.

  bool
  can_use_relative_reloc(bool is_function_call) const
  {
    // A function call that can branch to a local PLT entry can
    // use a RELATIVE relocation.
    if (is_function_call && this->has_plt_offset())
      return true;

    // A reference to a symbol defined in a dynamic object or to a
    // symbol that is preemptible can not use a RELATIVE relocaiton.
    if (this->is_from_dynobj() || this->is_preemptible())
      return false;

    // For all other cases, return TRUE.
    return true;
  }

  // Return whether there should be a warning for references to this
  // symbol.
  bool
  has_warning() const
  { return this->has_warning_; }

  // Mark this symbol as having a warning.
  void
  set_has_warning()
  { this->has_warning_ = true; }

  // Return whether this symbol is defined by a COPY reloc from a
  // dynamic object.
  bool
  is_copied_from_dynobj() const
  { return this->is_copied_from_dynobj_; }

  // Mark this symbol as defined by a COPY reloc.
  void
  set_is_copied_from_dynobj()
  { this->is_copied_from_dynobj_ = true; }

 protected:
  // Instances of this class should always be created at a specific
  // size.
  Symbol()
  { memset(this, 0, sizeof *this); }

  // Initialize the general fields.
  void
  init_fields(const char* name, const char* version,
	      elfcpp::STT type, elfcpp::STB binding,
	      elfcpp::STV visibility, unsigned char nonvis);

  // Initialize fields from an ELF symbol in OBJECT.
  template<int size, bool big_endian>
  void
  init_base(const char *name, const char* version, Object* object,
	    const elfcpp::Sym<size, big_endian>&);

  // Initialize fields for an Output_data.
  void
  init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
	    elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);

  // Initialize fields for an Output_segment.
  void
  init_base(const char* name, Output_segment* os, elfcpp::STT type,
	    elfcpp::STB binding, elfcpp::STV visibility,
	    unsigned char nonvis, Segment_offset_base offset_base);

  // Initialize fields for a constant.
  void
  init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
	    elfcpp::STV visibility, unsigned char nonvis);

  // Override existing symbol.
  template<int size, bool big_endian>
  void
  override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
		const char* version);

  // Override existing symbol with a special symbol.
  void
  override_base_with_special(const Symbol* from);

  // Allocate a common symbol by giving it a location in the output
  // file.
  void
  allocate_base_common(Output_data*);

 private:
  Symbol(const Symbol&);
  Symbol& operator=(const Symbol&);

  // Symbol name (expected to point into a Stringpool).
  const char* name_;
  // Symbol version (expected to point into a Stringpool).  This may
  // be NULL.
  const char* version_;

  union
  {
    // This struct is used if SOURCE_ == FROM_OBJECT.
    struct
    {
      // Object in which symbol is defined, or in which it was first
      // seen.
      Object* object;
      // Section number in object_ in which symbol is defined.
      unsigned int shndx;
    } from_object;

    // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
    struct
    {
      // Output_data in which symbol is defined.  Before
      // Layout::finalize the symbol's value is an offset within the
      // Output_data.
      Output_data* output_data;
      // True if the offset is from the end, false if the offset is
      // from the beginning.
      bool offset_is_from_end;
    } in_output_data;

    // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
    struct
    {
      // Output_segment in which the symbol is defined.  Before
      // Layout::finalize the symbol's value is an offset.
      Output_segment* output_segment;
      // The base to use for the offset before Layout::finalize.
      Segment_offset_base offset_base;
    } in_output_segment;
  } u_;

  // The index of this symbol in the output file.  If the symbol is
  // not going into the output file, this value is -1U.  This field
  // starts as always holding zero.  It is set to a non-zero value by
  // Symbol_table::finalize.
  unsigned int symtab_index_;

  // The index of this symbol in the dynamic symbol table.  If the
  // symbol is not going into the dynamic symbol table, this value is
  // -1U.  This field starts as always holding zero.  It is set to a
  // non-zero value during Layout::finalize.
  unsigned int dynsym_index_;

  // If this symbol has an entry in the GOT section (has_got_offset_
  // is true), this is the offset from the start of the GOT section.
  // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
  // serves as the GOT offset for the GOT entry that holds its
  // TP-relative offset.
  unsigned int got_offset_;

  // If this is a TLS symbol and has an entry in the GOT section
  // for a module index or a pair of entries (module index,
  // dtv-relative offset), these are the offsets from the start
  // of the GOT section.
  unsigned int tls_mod_got_offset_;
  unsigned int tls_pair_got_offset_;

  // If this symbol has an entry in the PLT section (has_plt_offset_
  // is true), then this is the offset from the start of the PLT
  // section.
  unsigned int plt_offset_;

  // Symbol type.
  elfcpp::STT type_ : 4;
  // Symbol binding.
  elfcpp::STB binding_ : 4;
  // Symbol visibility.
  elfcpp::STV visibility_ : 2;
  // Rest of symbol st_other field.
  unsigned int nonvis_ : 6;
  // The type of symbol.
  Source source_ : 3;
  // True if this symbol always requires special target-specific
  // handling.
  bool is_target_special_ : 1;
  // True if this is the default version of the symbol.
  bool is_def_ : 1;
  // True if this symbol really forwards to another symbol.  This is
  // used when we discover after the fact that two different entries
  // in the hash table really refer to the same symbol.  This will
  // never be set for a symbol found in the hash table, but may be set
  // for a symbol found in the list of symbols attached to an Object.
  // It forwards to the symbol found in the forwarders_ map of
  // Symbol_table.
  bool is_forwarder_ : 1;
  // True if the symbol has an alias in the weak_aliases table in
  // Symbol_table.
  bool has_alias_ : 1;
  // True if this symbol needs to be in the dynamic symbol table.
  bool needs_dynsym_entry_ : 1;
  // True if we've seen this symbol in a regular object.
  bool in_reg_ : 1;
  // True if we've seen this symbol in a dynamic object.
  bool in_dyn_ : 1;
  // True if the symbol has an entry in the GOT section.
  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
  bool has_got_offset_ : 1;
  // True if the symbol has an entry in the GOT section for its
  // module index.
  bool has_tls_mod_got_offset_ : 1;
  // True if the symbol has a pair of entries in the GOT section for its
  // module index and dtv-relative offset.
  bool has_tls_pair_got_offset_ : 1;
  // True if the symbol has an entry in the PLT section.
  bool has_plt_offset_ : 1;
  // True if this is a dynamic symbol which needs a special value in
  // the dynamic symbol table.
  bool needs_dynsym_value_ : 1;
  // True if there is a warning for this symbol.
  bool has_warning_ : 1;
  // True if we are using a COPY reloc for this symbol, so that the
  // real definition lives in a dynamic object.
  bool is_copied_from_dynobj_ : 1;
};

// The parts of a symbol which are size specific.  Using a template
// derived class like this helps us use less space on a 32-bit system.

template<int size>
class Sized_symbol : public Symbol
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;

  Sized_symbol()
  { }

  // Initialize fields from an ELF symbol in OBJECT.
  template<bool big_endian>
  void
  init(const char *name, const char* version, Object* object,
       const elfcpp::Sym<size, big_endian>&);

  // Initialize fields for an Output_data.
  void
  init(const char* name, Output_data*, Value_type value, Size_type symsize,
       elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
       bool offset_is_from_end);

  // Initialize fields for an Output_segment.
  void
  init(const char* name, Output_segment*, Value_type value, Size_type symsize,
       elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
       Segment_offset_base offset_base);

  // Initialize fields for a constant.
  void
  init(const char* name, Value_type value, Size_type symsize,
       elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);

  // Override existing symbol.
  template<bool big_endian>
  void
  override(const elfcpp::Sym<size, big_endian>&, Object* object,
	   const char* version);

  // Override existing symbol with a special symbol.
  void
  override_with_special(const Sized_symbol<size>*);

  // Return the symbol's value.
  Value_type
  value() const
  { return this->value_; }

  // Return the symbol's size (we can't call this 'size' because that
  // is a template parameter).
  Size_type
  symsize() const
  { return this->symsize_; }

  // Set the symbol size.  This is used when resolving common symbols.
  void
  set_symsize(Size_type symsize)
  { this->symsize_ = symsize; }

  // Set the symbol value.  This is called when we store the final
  // values of the symbols into the symbol table.
  void
  set_value(Value_type value)
  { this->value_ = value; }

  // Allocate a common symbol by giving it a location in the output
  // file.
  void
  allocate_common(Output_data*, Value_type value);

 private:
  Sized_symbol(const Sized_symbol&);
  Sized_symbol& operator=(const Sized_symbol&);

  // Symbol value.  Before Layout::finalize this is the offset in the
  // input section.  This is set to the final value during
  // Layout::finalize.
  Value_type value_;
  // Symbol size.
  Size_type symsize_;
};

// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on an output section.  This is used
// for symbols defined by the linker, like "_init_array_start".

struct Define_symbol_in_section
{
  // The symbol name.
  const char* name;
  // The name of the output section with which this symbol should be
  // associated.  If there is no output section with that name, the
  // symbol will be defined as zero.
  const char* output_section;
  // The offset of the symbol within the output section.  This is an
  // offset from the start of the output section, unless start_at_end
  // is true, in which case this is an offset from the end of the
  // output section.
  uint64_t value;
  // The size of the symbol.
  uint64_t size;
  // The symbol type.
  elfcpp::STT type;
  // The symbol binding.
  elfcpp::STB binding;
  // The symbol visibility.
  elfcpp::STV visibility;
  // The rest of the st_other field.
  unsigned char nonvis;
  // If true, the value field is an offset from the end of the output
  // section.
  bool offset_is_from_end;
  // If true, this symbol is defined only if we see a reference to it.
  bool only_if_ref;
};

// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on a segment.  This is used for
// symbols defined by the linker, like "_end".  We describe the
// segment with which the symbol should be associated by its
// characteristics.  If no segment meets these characteristics, the
// symbol will be defined as zero.  If there is more than one segment
// which meets these characteristics, we will use the first one.

struct Define_symbol_in_segment
{
  // The symbol name.
  const char* name;
  // The segment type where the symbol should be defined, typically
  // PT_LOAD.
  elfcpp::PT segment_type;
  // Bitmask of segment flags which must be set.
  elfcpp::PF segment_flags_set;
  // Bitmask of segment flags which must be clear.
  elfcpp::PF segment_flags_clear;
  // The offset of the symbol within the segment.  The offset is
  // calculated from the position set by offset_base.
  uint64_t value;
  // The size of the symbol.
  uint64_t size;
  // The symbol type.
  elfcpp::STT type;
  // The symbol binding.
  elfcpp::STB binding;
  // The symbol visibility.
  elfcpp::STV visibility;
  // The rest of the st_other field.
  unsigned char nonvis;
  // The base from which we compute the offset.
  Symbol::Segment_offset_base offset_base;
  // If true, this symbol is defined only if we see a reference to it.
  bool only_if_ref;
};

// This class manages warnings.  Warnings are a GNU extension.  When
// we see a section named .gnu.warning.SYM in an object file, and if
// we wind using the definition of SYM from that object file, then we
// will issue a warning for any relocation against SYM from a
// different object file.  The text of the warning is the contents of
// the section.  This is not precisely the definition used by the old
// GNU linker; the old GNU linker treated an occurrence of
// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
// would trigger a warning on any reference.  However, it was
// inconsistent in that a warning in a dynamic object only triggered
// if there was no definition in a regular object.  This linker is
// different in that we only issue a warning if we use the symbol
// definition from the same object file as the warning section.

class Warnings
{
 public:
  Warnings()
    : warnings_()
  { }

  // Add a warning for symbol NAME in section SHNDX in object OBJ.
  void
  add_warning(Symbol_table* symtab, const char* name, Object* obj,
	      unsigned int shndx);

  // For each symbol for which we should give a warning, make a note
  // on the symbol.
  void
  note_warnings(Symbol_table* symtab);

  // Issue a warning for a reference to SYM at RELINFO's location.
  template<int size, bool big_endian>
  void
  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
		size_t relnum, off_t reloffset) const;

 private:
  Warnings(const Warnings&);
  Warnings& operator=(const Warnings&);

  // What we need to know to get the warning text.
  struct Warning_location
  {
    // The object the warning is in.
    Object* object;
    // The index of the warning section.
    unsigned int shndx;
    // The warning text if we have already loaded it.
    std::string text;

    Warning_location()
      : object(NULL), shndx(0), text()
    { }

    void
    set(Object* o, unsigned int s)
    {
      this->object = o;
      this->shndx = s;
    }

    void
    set_text(const char* t, off_t l)
    { this->text.assign(t, l); }
  };

  // A mapping from warning symbol names (canonicalized in
  // Symbol_table's namepool_ field) to warning information.
  typedef Unordered_map<const char*, Warning_location> Warning_table;

  Warning_table warnings_;
};

// The main linker symbol table.

class Symbol_table
{
 public:
  Symbol_table();

  ~Symbol_table();

  // Add COUNT external symbols from the relocatable object RELOBJ to
  // the symbol table.  SYMS is the symbols, SYM_NAMES is their names,
  // SYM_NAME_SIZE is the size of SYM_NAMES.  This sets SYMPOINTERS to
  // point to the symbols in the symbol table.
  template<int size, bool big_endian>
  void
  add_from_relobj(Sized_relobj<size, big_endian>* relobj,
		  const unsigned char* syms, size_t count,
		  const char* sym_names, size_t sym_name_size,
		  typename Sized_relobj<size, big_endian>::Symbols*);

  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
  // symbol version data.
  template<int size, bool big_endian>
  void
  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
		  const unsigned char* syms, size_t count,
		  const char* sym_names, size_t sym_name_size,
		  const unsigned char* versym, size_t versym_size,
		  const std::vector<const char*>*);

  // Define a special symbol based on an Output_data.  It is a
  // multiple definition error if this symbol is already defined.
  Symbol*
  define_in_output_data(const Target*, const char* name, const char* version,
			Output_data*, uint64_t value, uint64_t symsize,
			elfcpp::STT type, elfcpp::STB binding,
			elfcpp::STV visibility, unsigned char nonvis,
			bool offset_is_from_end, bool only_if_ref);

  // Define a special symbol based on an Output_segment.  It is a
  // multiple definition error if this symbol is already defined.
  Symbol*
  define_in_output_segment(const Target*, const char* name,
			   const char* version, Output_segment*,
			   uint64_t value, uint64_t symsize,
			   elfcpp::STT type, elfcpp::STB binding,
			   elfcpp::STV visibility, unsigned char nonvis,
			   Symbol::Segment_offset_base, bool only_if_ref);

  // Define a special symbol with a constant value.  It is a multiple
  // definition error if this symbol is already defined.
  Symbol*
  define_as_constant(const Target*, const char* name, const char* version,
		     uint64_t value, uint64_t symsize, elfcpp::STT type,
		     elfcpp::STB binding, elfcpp::STV visibility,
		     unsigned char nonvis, bool only_if_ref);

  // Define a set of symbols in output sections.
  void
  define_symbols(const Layout*, const Target*, int count,
		 const Define_symbol_in_section*);

  // Define a set of symbols in output segments.
  void
  define_symbols(const Layout*, const Target*, int count,
		 const Define_symbol_in_segment*);

  // Define SYM using a COPY reloc.  POSD is the Output_data where the
  // symbol should be defined--typically a .dyn.bss section.  VALUE is
  // the offset within POSD.
  template<int size>
  void
  define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
			 Output_data* posd, uint64_t value);

  // Look up a symbol.
  Symbol*
  lookup(const char*, const char* version = NULL) const;

  // Return the real symbol associated with the forwarder symbol FROM.
  Symbol*
  resolve_forwards(const Symbol* from) const;

  // Return the sized version of a symbol in this table.
  template<int size>
  Sized_symbol<size>*
  get_sized_symbol(Symbol* ACCEPT_SIZE) const;

  template<int size>
  const Sized_symbol<size>*
  get_sized_symbol(const Symbol* ACCEPT_SIZE) const;

  // Return the count of undefined symbols seen.
  int
  saw_undefined() const
  { return this->saw_undefined_; }

  // Allocate the common symbols
  void
  allocate_commons(const General_options&, Layout*);

  // Add a warning for symbol NAME in section SHNDX in object OBJ.
  void
  add_warning(const char* name, Object* obj, unsigned int shndx)
  { this->warnings_.add_warning(this, name, obj, shndx); }

  // Canonicalize a symbol name for use in the hash table.
  const char*
  canonicalize_name(const char* name)
  { return this->namepool_.add(name, true, NULL); }

  // Possibly issue a warning for a reference to SYM at LOCATION which
  // is in OBJ.
  template<int size, bool big_endian>
  void
  issue_warning(const Symbol* sym,
		const Relocate_info<size, big_endian>* relinfo,
		size_t relnum, off_t reloffset) const
  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }

  // Check candidate_odr_violations_ to find symbols with the same name
  // but apparently different definitions (different source-file/line-no).
  void
  detect_odr_violations(const char* output_file_name) const;

  // SYM is defined using a COPY reloc.  Return the dynamic object
  // where the original definition was found.
  Dynobj*
  get_copy_source(const Symbol* sym) const;

  // Set the dynamic symbol indexes.  INDEX is the index of the first
  // global dynamic symbol.  Pointers to the symbols are stored into
  // the vector.  The names are stored into the Stringpool.  This
  // returns an updated dynamic symbol index.
  unsigned int
  set_dynsym_indexes(const Target*, unsigned int index,
		     std::vector<Symbol*>*, Stringpool*, Versions*);

  // Finalize the symbol table after we have set the final addresses
  // of all the input sections.  This sets the final symbol indexes,
  // values and adds the names to *POOL.  INDEX is the index of the
  // first global symbol.  OFF is the file offset of the global symbol
  // table, DYNOFF is the offset of the globals in the dynamic symbol
  // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
  // symbol, and DYNCOUNT is the number of global dynamic symbols.
  // This records the parameters, and returns the new file offset.
  off_t
  finalize(unsigned int index, off_t off, off_t dynoff,
	   size_t dyn_global_index, size_t dyncount, Stringpool* pool);

  // Write out the global symbols.
  void
  write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
		Output_file*) const;

  // Write out a section symbol.  Return the updated offset.
  void
  write_section_symbol(const Output_section*, Output_file*, off_t) const;

  // Dump statistical information to stderr.
  void
  print_stats() const;

 private:
  Symbol_table(const Symbol_table&);
  Symbol_table& operator=(const Symbol_table&);

  // Make FROM a forwarder symbol to TO.
  void
  make_forwarder(Symbol* from, Symbol* to);

  // Add a symbol.
  template<int size, bool big_endian>
  Sized_symbol<size>*
  add_from_object(Object*, const char *name, Stringpool::Key name_key,
		  const char *version, Stringpool::Key version_key,
		  bool def, const elfcpp::Sym<size, big_endian>& sym,
                  const elfcpp::Sym<size, big_endian>& orig_sym);

  // Resolve symbols.
  template<int size, bool big_endian>
  void
  resolve(Sized_symbol<size>* to,
	  const elfcpp::Sym<size, big_endian>& sym,
	  const elfcpp::Sym<size, big_endian>& orig_sym,
	  Object*, const char* version);

  template<int size, bool big_endian>
  void
  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
          const char* version ACCEPT_SIZE_ENDIAN);

  // Whether we should override a symbol, based on flags in
  // resolve.cc.
  static bool
  should_override(const Symbol*, unsigned int, Object*, bool*);

  // Override a symbol.
  template<int size, bool big_endian>
  void
  override(Sized_symbol<size>* tosym,
	   const elfcpp::Sym<size, big_endian>& fromsym,
	   Object* object, const char* version);

  // Whether we should override a symbol with a special symbol which
  // is automatically defined by the linker.
  static bool
  should_override_with_special(const Symbol*);

  // Override a symbol with a special symbol.
  template<int size>
  void
  override_with_special(Sized_symbol<size>* tosym,
			const Sized_symbol<size>* fromsym);

  // Record all weak alias sets for a dynamic object.
  template<int size>
  void
  record_weak_aliases(std::vector<Sized_symbol<size>*>*);

  // Define a special symbol.
  template<int size, bool big_endian>
  Sized_symbol<size>*
  define_special_symbol(const Target* target, const char** pname,
			const char** pversion, bool only_if_ref,
			Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);

  // Define a symbol in an Output_data, sized version.
  template<int size>
  Sized_symbol<size>*
  do_define_in_output_data(const Target*, const char* name,
			   const char* version, Output_data*,
			   typename elfcpp::Elf_types<size>::Elf_Addr value,
			   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
			   elfcpp::STT type, elfcpp::STB binding,
			   elfcpp::STV visibility, unsigned char nonvis,
			   bool offset_is_from_end, bool only_if_ref);

  // Define a symbol in an Output_segment, sized version.
  template<int size>
  Sized_symbol<size>*
  do_define_in_output_segment(
    const Target*, const char* name, const char* version, Output_segment* os,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
    elfcpp::STT type, elfcpp::STB binding,
    elfcpp::STV visibility, unsigned char nonvis,
    Symbol::Segment_offset_base offset_base, bool only_if_ref);

  // Define a symbol as a constant, sized version.
  template<int size>
  Sized_symbol<size>*
  do_define_as_constant(
    const Target*, const char* name, const char* version,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
    elfcpp::STT type, elfcpp::STB binding,
    elfcpp::STV visibility, unsigned char nonvis,
    bool only_if_ref);

  // Allocate the common symbols, sized version.
  template<int size>
  void
  do_allocate_commons(const General_options&, Layout*);

  // Implement detect_odr_violations.
  template<int size, bool big_endian>
  void
  sized_detect_odr_violations() const;

  // Finalize symbols specialized for size.
  template<int size>
  off_t
  sized_finalize(unsigned int, off_t, Stringpool*);

  // Write globals specialized for size and endianness.
  template<int size, bool big_endian>
  void
  sized_write_globals(const Input_objects*, const Stringpool*,
		      const Stringpool*, Output_file*) const;

  // Write out a symbol to P.
  template<int size, bool big_endian>
  void
  sized_write_symbol(Sized_symbol<size>*,
		     typename elfcpp::Elf_types<size>::Elf_Addr value,
		     unsigned int shndx,
		     const Stringpool*, unsigned char* p
                     ACCEPT_SIZE_ENDIAN) const;

  // Possibly warn about an undefined symbol from a dynamic object.
  void
  warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;

  // Write out a section symbol, specialized for size and endianness.
  template<int size, bool big_endian>
  void
  sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;

  // The type of the symbol hash table.

  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;

  struct Symbol_table_hash
  {
    size_t
    operator()(const Symbol_table_key&) const;
  };

  struct Symbol_table_eq
  {
    bool
    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
  };

  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
			Symbol_table_eq> Symbol_table_type;

  // The type of the list of common symbols.
  typedef std::vector<Symbol*> Commons_type;

  // A map from symbols with COPY relocs to the dynamic objects where
  // they are defined.
  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;

  // A map from symbol name (as a pointer into the namepool) to all
  // the locations the symbols is (weakly) defined (and certain other
  // conditions are met).  This map will be used later to detect
  // possible One Definition Rule (ODR) violations.
  struct Symbol_location
  {
    Object* object;         // Object where the symbol is defined.
    unsigned int shndx;     // Section-in-object where the symbol is defined.
    off_t offset;           // Offset-in-section where the symbol is defined.
    bool operator==(const Symbol_location& that) const
    {
      return (this->object == that.object
              && this->shndx == that.shndx
              && this->offset == that.offset);
    }
  };

  struct Symbol_location_hash
  {
    size_t operator()(const Symbol_location& loc) const
    { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
  };

  typedef Unordered_map<const char*,
                        Unordered_set<Symbol_location, Symbol_location_hash> >
  Odr_map;

  // We increment this every time we see a new undefined symbol, for
  // use in archive groups.
  int saw_undefined_;
  // The index of the first global symbol in the output file.
  unsigned int first_global_index_;
  // The file offset within the output symtab section where we should
  // write the table.
  off_t offset_;
  // The number of global symbols we want to write out.
  size_t output_count_;
  // The file offset of the global dynamic symbols, or 0 if none.
  off_t dynamic_offset_;
  // The index of the first global dynamic symbol.
  unsigned int first_dynamic_global_index_;
  // The number of global dynamic symbols, or 0 if none.
  off_t dynamic_count_;
  // The symbol hash table.
  Symbol_table_type table_;
  // A pool of symbol names.  This is used for all global symbols.
  // Entries in the hash table point into this pool.
  Stringpool namepool_;
  // Forwarding symbols.
  Unordered_map<const Symbol*, Symbol*> forwarders_;
  // Weak aliases.  A symbol in this list points to the next alias.
  // The aliases point to each other in a circular list.
  Unordered_map<Symbol*, Symbol*> weak_aliases_;
  // We don't expect there to be very many common symbols, so we keep
  // a list of them.  When we find a common symbol we add it to this
  // list.  It is possible that by the time we process the list the
  // symbol is no longer a common symbol.  It may also have become a
  // forwarder.
  Commons_type commons_;
  // Manage symbol warnings.
  Warnings warnings_;
  // Manage potential One Definition Rule (ODR) violations.
  Odr_map candidate_odr_violations_;

  // When we emit a COPY reloc for a symbol, we define it in an
  // Output_data.  When it's time to emit version information for it,
  // we need to know the dynamic object in which we found the original
  // definition.  This maps symbols with COPY relocs to the dynamic
  // object where they were defined.
  Copied_symbol_dynobjs copied_symbol_dynobjs_;
};

// We inline get_sized_symbol for efficiency.

template<int size>
Sized_symbol<size>*
Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
{
  gold_assert(size == parameters->get_size());
  return static_cast<Sized_symbol<size>*>(sym);
}

template<int size>
const Sized_symbol<size>*
Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
{
  gold_assert(size == parameters->get_size());
  return static_cast<const Sized_symbol<size>*>(sym);
}

} // End namespace gold.

#endif // !defined(GOLD_SYMTAB_H)