1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// symtab.h -- the gold symbol table -*- C++ -*-
// Symbol_table
// The symbol table.
#include <string>
#include <utility>
#include <cassert>
#include "elfcpp.h"
#include "stringpool.h"
#ifndef GOLD_SYMTAB_H
#define GOLD_SYMTAB_H
namespace gold
{
class Object;
template<int size, bool big_endian>
class Sized_object;
// The base class of an entry in the symbol table. The symbol table
// can have a lot of entries, so we don't want this class to big.
// Size dependent fields can be found in the template class
// Sized_symbol. Targets may support their own derived classes.
class Symbol
{
public:
// Return the symbol name.
const char*
name() const
{ return this->name_; }
// Return the symbol version. This will return NULL for an
// unversioned symbol.
const char*
version() const
{ return this->version_; }
// Return the object with which this symbol is associated.
Object*
object() const
{ return this->object_; }
// Return the symbol binding.
elfcpp::STB
binding() const
{ return this->binding_; }
// Return the symbol type.
elfcpp::STT
type() const
{ return this->type_; }
// Return the symbol visibility.
elfcpp::STV
visibility() const
{ return this->visibility_; }
// Return the non-visibility part of the st_other field.
unsigned char
other() const
{ return this->other_; }
// Return the section index.
unsigned int
shnum() const
{ return this->shnum_; }
// Return whether this symbol is a forwarder. This will never be
// true of a symbol found in the hash table, but may be true of
// symbol pointers attached to object files.
bool
is_forwarder() const
{ return this->is_forwarder_; }
// Mark this symbol as a forwarder.
void
set_forwarder()
{ this->is_forwarder_ = true; }
// Return whether this symbol was seen in a dynamic object.
bool
in_dyn() const
{ return this->in_dyn_; }
// Mark this symbol as seen in a dynamic object.
void
set_in_dyn()
{ this->in_dyn_ = true; }
protected:
// Instances of this class should always be created at a specific
// size.
Symbol()
{ }
// Initialize fields from an ELF symbol in OBJECT.
template<int size, bool big_endian>
void
init_base(const char *name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>&);
// Override existing symbol.
template<int size, bool big_endian>
void
override_base(const elfcpp::Sym<size, big_endian>&, Object* object);
private:
Symbol(const Symbol&);
Symbol& operator=(const Symbol&);
// Symbol name (expected to point into a Stringpool).
const char* name_;
// Symbol version (expected to point into a Stringpool). This may
// be NULL.
const char* version_;
// Object in which symbol is defined, or in which it was first seen.
Object* object_;
// Section number in object_ in which symbol is defined.
unsigned int shnum_;
// Symbol type.
elfcpp::STT type_ : 4;
// Symbol binding.
elfcpp::STB binding_ : 4;
// Symbol visibility.
elfcpp::STV visibility_ : 2;
// Rest of symbol st_other field.
unsigned int other_ : 6;
// True if this symbol always requires special target-specific
// handling.
bool is_special_ : 1;
// True if this is the default version of the symbol.
bool is_def_ : 1;
// True if this symbol really forwards to another symbol. This is
// used when we discover after the fact that two different entries
// in the hash table really refer to the same symbol. This will
// never be set for a symbol found in the hash table, but may be set
// for a symbol found in the list of symbols attached to an Object.
// It forwards to the symbol found in the forwarders_ map of
// Symbol_table.
bool is_forwarder_ : 1;
// True if we've seen this symbol in a dynamic object.
bool in_dyn_ : 1;
};
// The parts of a symbol which are size specific. Using a template
// derived class like this helps us use less space on a 32-bit system.
template<int size>
class Sized_symbol : public Symbol
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
Sized_symbol()
{ }
// Initialize fields from an ELF symbol in OBJECT.
template<bool big_endian>
void
init(const char *name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>&);
// Override existing symbol.
template<bool big_endian>
void
override(const elfcpp::Sym<size, big_endian>&, Object* object);
// Return the symbol's value.
Value_type
value() const
{ return this->value_; }
// Return the symbol's size (we can't call this 'size' because that
// is a template parameter).
Size_type
symsize() const
{ return this->size_; }
// Set the symbol value. This is called when we store the final
// values of the symbols into the symbol table.
void
set_value(Value_type value)
{ this->value_ = value; }
private:
Sized_symbol(const Sized_symbol&);
Sized_symbol& operator=(const Sized_symbol&);
// Symbol value.
Value_type value_;
// Symbol size.
Size_type size_;
};
// The main linker symbol table.
class Symbol_table
{
public:
Symbol_table();
~Symbol_table();
// Add COUNT external symbols from OBJECT to the symbol table. SYMS
// is the symbols, SYM_NAMES is their names, SYM_NAME_SIZE is the
// size of SYM_NAMES. This sets SYMPOINTERS to point to the symbols
// in the symbol table.
template<int size, bool big_endian>
void
add_from_object(Sized_object<size, big_endian>* object,
const elfcpp::Sym<size, big_endian>* syms,
size_t count, const char* sym_names, size_t sym_name_size,
Symbol** sympointers);
// Return the real symbol associated with the forwarder symbol FROM.
Symbol*
resolve_forwards(Symbol* from) const;
// Return the size of the symbols in the table.
int
get_size() const
{ return this->size_; }
// Return the sized version of a symbol in this table.
template<int size>
Sized_symbol<size>*
get_sized_symbol(Symbol*) const;
template<int size>
const Sized_symbol<size>*
get_sized_symbol(const Symbol*) const;
// Finalize the symbol table after we have set the final addresses
// of all the input sections. This sets the final symbol values and
// adds the names to *POOL. It records the file offset OFF, and
// returns the new file offset.
off_t
finalize(off_t, Stringpool*);
private:
Symbol_table(const Symbol_table&);
Symbol_table& operator=(const Symbol_table&);
// Set the size of the symbols in the table.
void
set_size(int size)
{ this->size_ = size; }
// Make FROM a forwarder symbol to TO.
void
make_forwarder(Symbol* from, Symbol* to);
// Add a symbol.
template<int size, bool big_endian>
Symbol*
add_from_object(Sized_object<size, big_endian>*, const char *name,
const char *version, bool def,
const elfcpp::Sym<size, big_endian>& sym);
// Resolve symbols.
template<int size, bool big_endian>
static void
resolve(Sized_symbol<size>* to,
const elfcpp::Sym<size, big_endian>& sym,
Object*);
#ifdef HAVE_MEMBER_TEMPLATE_SPECIFICATIONS
template<int size, bool big_endian>
static void
resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
#else
template<int size>
static void
resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
bool big_endian);
#endif
// Finalize symbols specialized for size.
template<int size>
off_t
sized_finalize(off_t, Stringpool*);
// The type of the symbol hash table.
typedef std::pair<const char*, const char*> Symbol_table_key;
struct Symbol_table_hash
{
size_t
operator()(const Symbol_table_key&) const;
};
struct Symbol_table_eq
{
bool
operator()(const Symbol_table_key&, const Symbol_table_key&) const;
};
typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
Symbol_table_eq> Symbol_table_type;
// The size of the symbols in the symbol table (32 or 64).
int size_;
// The file offset within the output symtab section where we should
// write the table.
off_t offset_;
// The symbol hash table.
Symbol_table_type table_;
// A pool of symbol names. This is used for all global symbols.
// Entries in the hash table point into this pool.
Stringpool namepool_;
// Forwarding symbols.
Unordered_map<Symbol*, Symbol*> forwarders_;
};
// We inline get_sized_symbol for efficiency.
template<int size>
Sized_symbol<size>*
Symbol_table::get_sized_symbol(Symbol* sym) const
{
assert(size == this->get_size());
return static_cast<Sized_symbol<size>*>(sym);
}
template<int size>
const Sized_symbol<size>*
Symbol_table::get_sized_symbol(const Symbol* sym) const
{
assert(size == this->get_size());
return static_cast<const Sized_symbol<size>*>(sym);
}
} // End namespace gold.
#endif // !defined(GOLD_SYMTAB_H)
|