1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
// symtab.cc -- the gold symbol table
#include "gold.h"
#include <cassert>
#include <stdint.h>
#include <string>
#include <utility>
#include "object.h"
#include "symtab.h"
namespace gold
{
// Class Symbol.
// Initialize the fields in the base class Symbol.
template<int size, bool big_endian>
void
Symbol::init_base(const char* name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>& sym)
{
this->name_ = name;
this->version_ = version;
this->object_ = object;
this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX.
this->type_ = sym.get_st_type();
this->binding_ = sym.get_st_bind();
this->visibility_ = sym.get_st_visibility();
this->other_ = sym.get_st_nonvis();
this->is_special_ = false;
this->is_def_ = false;
this->is_forwarder_ = false;
this->in_dyn_ = object->is_dynamic();
}
// Initialize the fields in Sized_symbol.
template<int size>
template<bool big_endian>
void
Sized_symbol<size>::init(const char* name, const char* version, Object* object,
const elfcpp::Sym<size, big_endian>& sym)
{
this->init_base(name, version, object, sym);
this->value_ = sym.get_st_value();
this->size_ = sym.get_st_size();
}
// Class Symbol_table.
Symbol_table::Symbol_table()
: size_(0), table_(), namepool_(), output_pool_(), forwarders_()
{
}
Symbol_table::~Symbol_table()
{
}
// The hash function. The key is always canonicalized, so we use a
// simple combination of the pointers.
size_t
Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
{
return (reinterpret_cast<size_t>(key.first)
^ reinterpret_cast<size_t>(key.second));
}
// The symbol table key equality function. This is only called with
// canonicalized name and version strings, so we can use pointer
// comparison.
bool
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
const Symbol_table_key& k2) const
{
return k1.first == k2.first && k1.second == k2.second;
}
// Make TO a symbol which forwards to FROM.
void
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
{
assert(!from->is_forwarder() && !to->is_forwarder());
this->forwarders_[from] = to;
from->set_forwarder();
}
Symbol*
Symbol_table::resolve_forwards(Symbol* from) const
{
assert(from->is_forwarder());
Unordered_map<Symbol*, Symbol*>::const_iterator p =
this->forwarders_.find(from);
assert(p != this->forwarders_.end());
return p->second;
}
// Resolve a Symbol with another Symbol. This is only used in the
// unusual case where there are references to both an unversioned
// symbol and a symbol with a version, and we then discover that that
// version is the default version. Because this is unusual, we do
// this the slow way, by converting back to an ELF symbol.
template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
{
unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
elfcpp::Sym_write<size, big_endian> esym(buf);
// We don't bother to set the st_name field.
esym.put_st_value(from->value());
esym.put_st_size(from->symsize());
esym.put_st_info(from->binding(), from->type());
esym.put_st_other(from->visibility(), from->other());
esym.put_st_shndx(from->shnum());
Symbol_table::resolve(to, esym.sym(), from->object());
}
// Add one symbol from OBJECT to the symbol table. NAME is symbol
// name and VERSION is the version; both are canonicalized. DEF is
// whether this is the default version.
// If DEF is true, then this is the definition of a default version of
// a symbol. That means that any lookup of NAME/NULL and any lookup
// of NAME/VERSION should always return the same symbol. This is
// obvious for references, but in particular we want to do this for
// definitions: overriding NAME/NULL should also override
// NAME/VERSION. If we don't do that, it would be very hard to
// override functions in a shared library which uses versioning.
// We implement this by simply making both entries in the hash table
// point to the same Symbol structure. That is easy enough if this is
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
// that we have seen both already, in which case they will both have
// independent entries in the symbol table. We can't simply change
// the symbol table entry, because we have pointers to the entries
// attached to the object files. So we mark the entry attached to the
// object file as a forwarder, and record it in the forwarders_ map.
// Note that entries in the hash table will never be marked as
// forwarders.
template<int size, bool big_endian>
Symbol*
Symbol_table::add_from_object(Sized_object<size, big_endian>* object,
const char *name,
const char *version, bool def,
const elfcpp::Sym<size, big_endian>& sym)
{
Symbol* const snull = NULL;
std::pair<typename Symbol_table_type::iterator, bool> ins =
this->table_.insert(std::make_pair(std::make_pair(name, version), snull));
std::pair<typename Symbol_table_type::iterator, bool> insdef =
std::make_pair(this->table_.end(), false);
if (def)
{
const char* const vnull = NULL;
insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull),
snull));
}
// ins.first: an iterator, which is a pointer to a pair.
// ins.first->first: the key (a pair of name and version).
// ins.first->second: the value (Symbol*).
// ins.second: true if new entry was inserted, false if not.
Sized_symbol<size>* ret;
if (!ins.second)
{
// We already have an entry for NAME/VERSION.
ret = this->get_sized_symbol<size>(ins.first->second);
assert(ret != NULL);
Symbol_table::resolve(ret, sym, object);
if (def)
{
if (insdef.second)
{
// This is the first time we have seen NAME/NULL. Make
// NAME/NULL point to NAME/VERSION.
insdef.first->second = ret;
}
else
{
// This is the unfortunate case where we already have
// entries for both NAME/VERSION and NAME/NULL.
const Sized_symbol<size>* sym2 =
this->get_sized_symbol<size>(insdef.first->second);
Symbol_table::resolve<size, big_endian>(ret, sym2);
this->make_forwarder(insdef.first->second, ret);
insdef.first->second = ret;
}
}
}
else
{
// This is the first time we have seen NAME/VERSION.
assert(ins.first->second == NULL);
if (def && !insdef.second)
{
// We already have an entry for NAME/NULL. Make
// NAME/VERSION point to it.
ret = this->get_sized_symbol<size>(insdef.first->second);
Symbol_table::resolve(ret, sym, object);
ins.first->second = ret;
}
else
{
Sized_target<size, big_endian>* target = object->sized_target();
if (!target->has_make_symbol())
ret = new Sized_symbol<size>();
else
{
ret = target->make_symbol();
if (ret == NULL)
{
// This means that we don't want a symbol table
// entry after all.
if (!def)
this->table_.erase(ins.first);
else
{
this->table_.erase(insdef.first);
// Inserting insdef invalidated ins.
this->table_.erase(std::make_pair(name, version));
}
return NULL;
}
}
ret->init(name, version, object, sym);
ins.first->second = ret;
if (def)
{
// This is the first time we have seen NAME/NULL. Point
// it at the new entry for NAME/VERSION.
assert(insdef.second);
insdef.first->second = ret;
}
}
}
return ret;
}
// Add all the symbols in an object to the hash table.
template<int size, bool big_endian>
void
Symbol_table::add_from_object(
Sized_object<size, big_endian>* object,
const elfcpp::Sym<size, big_endian>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size,
Symbol** sympointers)
{
// We take the size from the first object we see.
if (this->get_size() == 0)
this->set_size(size);
if (size != this->get_size() || size != object->target()->get_size())
{
fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
program_name, object->name().c_str());
gold_exit(false);
}
const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
for (size_t i = 0; i < count; ++i)
{
elfcpp::Sym<size, big_endian> sym(p);
unsigned int st_name = sym.get_st_name();
if (st_name >= sym_name_size)
{
fprintf(stderr,
_("%s: %s: bad global symbol name offset %u at %lu\n"),
program_name, object->name().c_str(), st_name,
static_cast<unsigned long>(i));
gold_exit(false);
}
const char* name = sym_names + st_name;
// In an object file, an '@' in the name separates the symbol
// name from the version name. If there are two '@' characters,
// this is the default version.
const char* ver = strchr(name, '@');
Symbol* res;
if (ver == NULL)
{
name = this->namepool_.add(name);
res = this->add_from_object(object, name, NULL, false, sym);
}
else
{
name = this->namepool_.add(name, ver - name);
bool def = false;
++ver;
if (*ver == '@')
{
def = true;
++ver;
}
ver = this->namepool_.add(ver);
res = this->add_from_object(object, name, ver, def, sym);
}
*sympointers++ = res;
p += elfcpp::Elf_sizes<size>::sym_size;
}
}
// Record the names of the local symbols for an object.
template<int size, bool big_endian>
void
Symbol_table::add_local_symbol_names(Sized_object<size, big_endian>* object,
const elfcpp::Sym<size, big_endian>* syms,
size_t count, const char* sym_names,
size_t sym_name_size)
{
const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
for (size_t i = 0; i < count; ++i)
{
elfcpp::Sym<size, big_endian> sym(p);
unsigned int st_name = sym.get_st_name();
if (st_name >= sym_name_size)
{
fprintf(stderr,
_("%s: %s: bad local symbol name offset %u at %lu\n"),
program_name, object->name().c_str(), st_name,
static_cast<unsigned long>(i));
gold_exit(false);
}
this->output_pool_.add(sym_names + st_name);
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.
template
void
Symbol_table::add_from_object<32, true>(
Sized_object<32, true>* object,
const elfcpp::Sym<32, true>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size,
Symbol** sympointers);
template
void
Symbol_table::add_from_object<32, false>(
Sized_object<32, false>* object,
const elfcpp::Sym<32, false>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size,
Symbol** sympointers);
template
void
Symbol_table::add_from_object<64, true>(
Sized_object<64, true>* object,
const elfcpp::Sym<64, true>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size,
Symbol** sympointers);
template
void
Symbol_table::add_from_object<64, false>(
Sized_object<64, false>* object,
const elfcpp::Sym<64, false>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size,
Symbol** sympointers);
template
void
Symbol_table::add_local_symbol_names<32, true>(
Sized_object<32, true>* object,
const elfcpp::Sym<32, true>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size);
template
void
Symbol_table::add_local_symbol_names<32, false>(
Sized_object<32, false>* object,
const elfcpp::Sym<32, false>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size);
template
void
Symbol_table::add_local_symbol_names<64, true>(
Sized_object<64, true>* object,
const elfcpp::Sym<64, true>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size);
template
void
Symbol_table::add_local_symbol_names<64, false>(
Sized_object<64, false>* object,
const elfcpp::Sym<64, false>* syms,
size_t count,
const char* sym_names,
size_t sym_name_size);
} // End namespace gold.
|