aboutsummaryrefslogtreecommitdiff
path: root/gold/output.h
blob: 9d6577e376e548dfbf3b98a5761a4eda33d8aecb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
// output.h -- manage the output file for gold   -*- C++ -*-

// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_OUTPUT_H
#define GOLD_OUTPUT_H

#include <list>
#include <vector>

#include "elfcpp.h"
#include "layout.h"
#include "reloc-types.h"

namespace gold
{

class General_options;
class Object;
class Symbol;
class Output_file;
class Output_section;
class Relocatable_relocs;
class Target;
template<int size, bool big_endian>
class Sized_target;
template<int size, bool big_endian>
class Sized_relobj;

// An abtract class for data which has to go into the output file.

class Output_data
{
 public:
  explicit Output_data()
    : address_(0), data_size_(0), offset_(-1),
      is_address_valid_(false), is_data_size_valid_(false),
      is_offset_valid_(false),
      dynamic_reloc_count_(0)
  { }

  virtual
  ~Output_data();

  // Return the address.  For allocated sections, this is only valid
  // after Layout::finalize is finished.
  uint64_t
  address() const
  {
    gold_assert(this->is_address_valid_);
    return this->address_;
  }

  // Return the size of the data.  For allocated sections, this must
  // be valid after Layout::finalize calls set_address, but need not
  // be valid before then.
  off_t
  data_size() const
  {
    gold_assert(this->is_data_size_valid_);
    return this->data_size_;
  }

  // Return the file offset.  This is only valid after
  // Layout::finalize is finished.  For some non-allocated sections,
  // it may not be valid until near the end of the link.
  off_t
  offset() const
  {
    gold_assert(this->is_offset_valid_);
    return this->offset_;
  }

  // Reset the address and file offset.  This essentially disables the
  // sanity testing about duplicate and unknown settings.
  void
  reset_address_and_file_offset()
  {
    this->is_address_valid_ = false;
    this->is_offset_valid_ = false;
    this->is_data_size_valid_ = false;
    this->do_reset_address_and_file_offset();
  }

  // Return the required alignment.
  uint64_t
  addralign() const
  { return this->do_addralign(); }

  // Return whether this has a load address.
  bool
  has_load_address() const
  { return this->do_has_load_address(); }

  // Return the load address.
  uint64_t
  load_address() const
  { return this->do_load_address(); }

  // Return whether this is an Output_section.
  bool
  is_section() const
  { return this->do_is_section(); }

  // Return whether this is an Output_section of the specified type.
  bool
  is_section_type(elfcpp::Elf_Word stt) const
  { return this->do_is_section_type(stt); }

  // Return whether this is an Output_section with the specified flag
  // set.
  bool
  is_section_flag_set(elfcpp::Elf_Xword shf) const
  { return this->do_is_section_flag_set(shf); }

  // Return the output section that this goes in, if there is one.
  Output_section*
  output_section()
  { return this->do_output_section(); }

  // Return the output section index, if there is an output section.
  unsigned int
  out_shndx() const
  { return this->do_out_shndx(); }

  // Set the output section index, if this is an output section.
  void
  set_out_shndx(unsigned int shndx)
  { this->do_set_out_shndx(shndx); }

  // Set the address and file offset of this data, and finalize the
  // size of the data.  This is called during Layout::finalize for
  // allocated sections.
  void
  set_address_and_file_offset(uint64_t addr, off_t off)
  {
    this->set_address(addr);
    this->set_file_offset(off);
    this->finalize_data_size();
  }

  // Set the address.
  void
  set_address(uint64_t addr)
  {
    gold_assert(!this->is_address_valid_);
    this->address_ = addr;
    this->is_address_valid_ = true;
  }

  // Set the file offset.
  void
  set_file_offset(off_t off)
  {
    gold_assert(!this->is_offset_valid_);
    this->offset_ = off;
    this->is_offset_valid_ = true;
  }

  // Finalize the data size.
  void
  finalize_data_size()
  {
    if (!this->is_data_size_valid_)
      {
	// Tell the child class to set the data size.
	this->set_final_data_size();
	gold_assert(this->is_data_size_valid_);
      }
  }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  void
  set_tls_offset(uint64_t tls_base)
  { this->do_set_tls_offset(tls_base); }

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  uint64_t
  tls_offset() const
  { return this->do_tls_offset(); }

  // Write the data to the output file.  This is called after
  // Layout::finalize is complete.
  void
  write(Output_file* file)
  { this->do_write(file); }

  // This is called by Layout::finalize to note that the sizes of
  // allocated sections must now be fixed.
  static void
  layout_complete()
  { Output_data::allocated_sizes_are_fixed = true; }

  // Used to check that layout has been done.
  static bool
  is_layout_complete()
  { return Output_data::allocated_sizes_are_fixed; }

  // Count the number of dynamic relocations applied to this section.
  void
  add_dynamic_reloc()
  { ++this->dynamic_reloc_count_; }

  // Return the number of dynamic relocations applied to this section.
  unsigned int
  dynamic_reloc_count() const
  { return this->dynamic_reloc_count_; }

  // Whether the address is valid.
  bool
  is_address_valid() const
  { return this->is_address_valid_; }

  // Whether the file offset is valid.
  bool
  is_offset_valid() const
  { return this->is_offset_valid_; }

  // Whether the data size is valid.
  bool
  is_data_size_valid() const
  { return this->is_data_size_valid_; }

 protected:
  // Functions that child classes may or in some cases must implement.

  // Write the data to the output file.
  virtual void
  do_write(Output_file*) = 0;

  // Return the required alignment.
  virtual uint64_t
  do_addralign() const = 0;

  // Return whether this has a load address.
  virtual bool
  do_has_load_address() const
  { return false; }

  // Return the load address.
  virtual uint64_t
  do_load_address() const
  { gold_unreachable(); }

  // Return whether this is an Output_section.
  virtual bool
  do_is_section() const
  { return false; }

  // Return whether this is an Output_section of the specified type.
  // This only needs to be implement by Output_section.
  virtual bool
  do_is_section_type(elfcpp::Elf_Word) const
  { return false; }

  // Return whether this is an Output_section with the specific flag
  // set.  This only needs to be implemented by Output_section.
  virtual bool
  do_is_section_flag_set(elfcpp::Elf_Xword) const
  { return false; }

  // Return the output section, if there is one.
  virtual Output_section*
  do_output_section()
  { return NULL; }

  // Return the output section index, if there is an output section.
  virtual unsigned int
  do_out_shndx() const
  { gold_unreachable(); }

  // Set the output section index, if this is an output section.
  virtual void
  do_set_out_shndx(unsigned int)
  { gold_unreachable(); }

  // This is a hook for derived classes to set the data size.  This is
  // called by finalize_data_size, normally called during
  // Layout::finalize, when the section address is set.
  virtual void
  set_final_data_size()
  { gold_unreachable(); }

  // A hook for resetting the address and file offset.
  virtual void
  do_reset_address_and_file_offset()
  { }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  virtual void
  do_set_tls_offset(uint64_t)
  { gold_unreachable(); }

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  virtual uint64_t
  do_tls_offset() const
  { gold_unreachable(); }

  // Functions that child classes may call.

  // Set the size of the data.
  void
  set_data_size(off_t data_size)
  {
    gold_assert(!this->is_data_size_valid_);
    this->data_size_ = data_size;
    this->is_data_size_valid_ = true;
  }

  // Get the current data size--this is for the convenience of
  // sections which build up their size over time.
  off_t
  current_data_size_for_child() const
  { return this->data_size_; }

  // Set the current data size--this is for the convenience of
  // sections which build up their size over time.
  void
  set_current_data_size_for_child(off_t data_size)
  {
    gold_assert(!this->is_data_size_valid_);
    this->data_size_ = data_size;
  }

  // Return default alignment for the target size.
  static uint64_t
  default_alignment();

  // Return default alignment for a specified size--32 or 64.
  static uint64_t
  default_alignment_for_size(int size);

 private:
  Output_data(const Output_data&);
  Output_data& operator=(const Output_data&);

  // This is used for verification, to make sure that we don't try to
  // change any sizes of allocated sections after we set the section
  // addresses.
  static bool allocated_sizes_are_fixed;

  // Memory address in output file.
  uint64_t address_;
  // Size of data in output file.
  off_t data_size_;
  // File offset of contents in output file.
  off_t offset_;
  // Whether address_ is valid.
  bool is_address_valid_;
  // Whether data_size_ is valid.
  bool is_data_size_valid_;
  // Whether offset_ is valid.
  bool is_offset_valid_;
  // Count of dynamic relocations applied to this section.
  unsigned int dynamic_reloc_count_;
};

// Output the section headers.

class Output_section_headers : public Output_data
{
 public:
  Output_section_headers(const Layout*,
			 const Layout::Segment_list*,
			 const Layout::Section_list*,
			 const Layout::Section_list*,
			 const Stringpool*,
			 const Output_section*);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  const Layout* layout_;
  const Layout::Segment_list* segment_list_;
  const Layout::Section_list* section_list_;
  const Layout::Section_list* unattached_section_list_;
  const Stringpool* secnamepool_;
  const Output_section* shstrtab_section_;
};

// Output the segment headers.

class Output_segment_headers : public Output_data
{
 public:
  Output_segment_headers(const Layout::Segment_list& segment_list);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  const Layout::Segment_list& segment_list_;
};

// Output the ELF file header.

class Output_file_header : public Output_data
{
 public:
  Output_file_header(const Target*,
		     const Symbol_table*,
		     const Output_segment_headers*,
		     const char* entry);

  // Add information about the section headers.  We lay out the ELF
  // file header before we create the section headers.
  void set_section_info(const Output_section_headers*,
			const Output_section* shstrtab);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  // Return the value to use for the entry address.
  template<int size>
  typename elfcpp::Elf_types<size>::Elf_Addr
  entry();

  const Target* target_;
  const Symbol_table* symtab_;
  const Output_segment_headers* segment_header_;
  const Output_section_headers* section_header_;
  const Output_section* shstrtab_;
  const char* entry_;
};

// Output sections are mainly comprised of input sections.  However,
// there are cases where we have data to write out which is not in an
// input section.  Output_section_data is used in such cases.  This is
// an abstract base class.

class Output_section_data : public Output_data
{
 public:
  Output_section_data(off_t data_size, uint64_t addralign)
    : Output_data(), output_section_(NULL), addralign_(addralign)
  { this->set_data_size(data_size); }

  Output_section_data(uint64_t addralign)
    : Output_data(), output_section_(NULL), addralign_(addralign)
  { }

  // Return the output section.
  const Output_section*
  output_section() const
  { return this->output_section_; }

  // Record the output section.
  void
  set_output_section(Output_section* os);

  // Add an input section, for SHF_MERGE sections.  This returns true
  // if the section was handled.
  bool
  add_input_section(Relobj* object, unsigned int shndx)
  { return this->do_add_input_section(object, shndx); }

  // Given an input OBJECT, an input section index SHNDX within that
  // object, and an OFFSET relative to the start of that input
  // section, return whether or not the corresponding offset within
  // the output section is known.  If this function returns true, it
  // sets *POUTPUT to the output offset.  The value -1 indicates that
  // this input offset is being discarded.
  bool
  output_offset(const Relobj* object, unsigned int shndx,
		section_offset_type offset,
		section_offset_type *poutput) const
  { return this->do_output_offset(object, shndx, offset, poutput); }

  // Return whether this is the merge section for the input section
  // SHNDX in OBJECT.  This should return true when output_offset
  // would return true for some values of OFFSET.
  bool
  is_merge_section_for(const Relobj* object, unsigned int shndx) const
  { return this->do_is_merge_section_for(object, shndx); }

  // Write the contents to a buffer.  This is used for sections which
  // require postprocessing, such as compression.
  void
  write_to_buffer(unsigned char* buffer)
  { this->do_write_to_buffer(buffer); }

  // Print merge stats to stderr.  This should only be called for
  // SHF_MERGE sections.
  void
  print_merge_stats(const char* section_name)
  { this->do_print_merge_stats(section_name); }

 protected:
  // The child class must implement do_write.

  // The child class may implement specific adjustments to the output
  // section.
  virtual void
  do_adjust_output_section(Output_section*)
  { }

  // May be implemented by child class.  Return true if the section
  // was handled.
  virtual bool
  do_add_input_section(Relobj*, unsigned int)
  { gold_unreachable(); }

  // The child class may implement output_offset.
  virtual bool
  do_output_offset(const Relobj*, unsigned int, section_offset_type,
		   section_offset_type*) const
  { return false; }

  // The child class may implement is_merge_section_for.
  virtual bool
  do_is_merge_section_for(const Relobj*, unsigned int) const
  { return false; }

  // The child class may implement write_to_buffer.  Most child
  // classes can not appear in a compressed section, and they do not
  // implement this.
  virtual void
  do_write_to_buffer(unsigned char*)
  { gold_unreachable(); }

  // Print merge statistics.
  virtual void
  do_print_merge_stats(const char*)
  { gold_unreachable(); }

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return this->addralign_; }

  // Return the output section.
  Output_section*
  do_output_section()
  { return this->output_section_; }

  // Return the section index of the output section.
  unsigned int
  do_out_shndx() const;

  // Set the alignment.
  void
  set_addralign(uint64_t addralign);

 private:
  // The output section for this section.
  Output_section* output_section_;
  // The required alignment.
  uint64_t addralign_;
};

// Some Output_section_data classes build up their data step by step,
// rather than all at once.  This class provides an interface for
// them.

class Output_section_data_build : public Output_section_data
{
 public:
  Output_section_data_build(uint64_t addralign)
    : Output_section_data(addralign)
  { }

  // Get the current data size.
  off_t
  current_data_size() const
  { return this->current_data_size_for_child(); }

  // Set the current data size.
  void
  set_current_data_size(off_t data_size)
  { this->set_current_data_size_for_child(data_size); }

 protected:
  // Set the final data size.
  virtual void
  set_final_data_size()
  { this->set_data_size(this->current_data_size_for_child()); }
};

// A simple case of Output_data in which we have constant data to
// output.

class Output_data_const : public Output_section_data
{
 public:
  Output_data_const(const std::string& data, uint64_t addralign)
    : Output_section_data(data.size(), addralign), data_(data)
  { }

  Output_data_const(const char* p, off_t len, uint64_t addralign)
    : Output_section_data(len, addralign), data_(p, len)
  { }

  Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
    : Output_section_data(len, addralign),
      data_(reinterpret_cast<const char*>(p), len)
  { }

 protected:
  // Write the data to the output file.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { memcpy(buffer, this->data_.data(), this->data_.size()); }

 private:
  std::string data_;
};

// Another version of Output_data with constant data, in which the
// buffer is allocated by the caller.

class Output_data_const_buffer : public Output_section_data
{
 public:
  Output_data_const_buffer(const unsigned char* p, off_t len,
			   uint64_t addralign)
    : Output_section_data(len, addralign), p_(p)
  { }

 protected:
  // Write the data the output file.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { memcpy(buffer, this->p_, this->data_size()); }

 private:
  const unsigned char* p_;
};

// A place holder for a fixed amount of data written out via some
// other mechanism.

class Output_data_fixed_space : public Output_section_data
{
 public:
  Output_data_fixed_space(off_t data_size, uint64_t addralign)
    : Output_section_data(data_size, addralign)
  { }

 protected:
  // Write out the data--the actual data must be written out
  // elsewhere.
  void
  do_write(Output_file*)
  { }
};

// A place holder for variable sized data written out via some other
// mechanism.

class Output_data_space : public Output_section_data_build
{
 public:
  explicit Output_data_space(uint64_t addralign)
    : Output_section_data_build(addralign)
  { }

  // Set the alignment.
  void
  set_space_alignment(uint64_t align)
  { this->set_addralign(align); }

 protected:
  // Write out the data--the actual data must be written out
  // elsewhere.
  void
  do_write(Output_file*)
  { }
};

// A string table which goes into an output section.

class Output_data_strtab : public Output_section_data
{
 public:
  Output_data_strtab(Stringpool* strtab)
    : Output_section_data(1), strtab_(strtab)
  { }

 protected:
  // This is called to set the address and file offset.  Here we make
  // sure that the Stringpool is finalized.
  void
  set_final_data_size();

  // Write out the data.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { this->strtab_->write_to_buffer(buffer, this->data_size()); }

 private:
  Stringpool* strtab_;
};

// This POD class is used to represent a single reloc in the output
// file.  This could be a private class within Output_data_reloc, but
// the templatization is complex enough that I broke it out into a
// separate class.  The class is templatized on either elfcpp::SHT_REL
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
// relocation or an ordinary relocation.

// A relocation can be against a global symbol, a local symbol, a
// local section symbol, an output section, or the undefined symbol at
// index 0.  We represent the latter by using a NULL global symbol.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_reloc;

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

  // An uninitialized entry.  We need this because we want to put
  // instances of this class into an STL container.
  Output_reloc()
    : local_sym_index_(INVALID_CODE)
  { }

  // We have a bunch of different constructors.  They come in pairs
  // depending on how the address of the relocation is specified.  It
  // can either be an offset in an Output_data or an offset in an
  // input section.

  // A reloc against a global symbol.

  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
	       Address address, bool is_relative);

  Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
	       unsigned int shndx, Address address, bool is_relative);

  // A reloc against a local symbol or local section symbol.

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       Output_data* od, Address address, bool is_relative,
               bool is_section_symbol);

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       unsigned int shndx, Address address, bool is_relative,
               bool is_section_symbol);

  // A reloc against the STT_SECTION symbol of an output section.

  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
	       Address address);

  Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
	       unsigned int shndx, Address address);

  // Return TRUE if this is a RELATIVE relocation.
  bool
  is_relative() const
  { return this->is_relative_; }

  // Return whether this is against a local section symbol.
  bool
  is_local_section_symbol() const
  {
    return (this->local_sym_index_ != GSYM_CODE
            && this->local_sym_index_ != SECTION_CODE
            && this->local_sym_index_ != INVALID_CODE
            && this->is_section_symbol_);
  }

  // For a local section symbol, return the offset of the input
  // section within the output section.  ADDEND is the addend being
  // applied to the input section.
  section_offset_type
  local_section_offset(Addend addend) const;

  // Get the value of the symbol referred to by a Rel relocation when
  // we are adding the given ADDEND.
  Address
  symbol_value(Addend addend) const;

  // Write the reloc entry to an output view.
  void
  write(unsigned char* pov) const;

  // Write the offset and info fields to Write_rel.
  template<typename Write_rel>
  void write_rel(Write_rel*) const;

 private:
  // Record that we need a dynamic symbol index.
  void
  set_needs_dynsym_index();

  // Return the symbol index.
  unsigned int
  get_symbol_index() const;

  // Codes for local_sym_index_.
  enum
  {
    // Global symbol.
    GSYM_CODE = -1U,
    // Output section.
    SECTION_CODE = -2U,
    // Invalid uninitialized entry.
    INVALID_CODE = -3U
  };

  union
  {
    // For a local symbol or local section symbol
    // (this->local_sym_index_ >= 0), the object.  We will never
    // generate a relocation against a local symbol in a dynamic
    // object; that doesn't make sense.  And our callers will always
    // be templatized, so we use Sized_relobj here.
    Sized_relobj<size, big_endian>* relobj;
    // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
    // symbol.  If this is NULL, it indicates a relocation against the
    // undefined 0 symbol.
    Symbol* gsym;
    // For a relocation against an output section
    // (this->local_sym_index_ == SECTION_CODE), the output section.
    Output_section* os;
  } u1_;
  union
  {
    // If this->shndx_ is not INVALID CODE, the object which holds the
    // input section being used to specify the reloc address.
    Relobj* relobj;
    // If this->shndx_ is INVALID_CODE, the output data being used to
    // specify the reloc address.  This may be NULL if the reloc
    // address is absolute.
    Output_data* od;
  } u2_;
  // The address offset within the input section or the Output_data.
  Address address_;
  // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
  // relocation against an output section, or INVALID_CODE for an
  // uninitialized value.  Otherwise, for a local symbol
  // (this->is_section_symbol_ is false), the local symbol index.  For
  // a local section symbol (this->is_section_symbol_ is true), the
  // section index in the input file.
  unsigned int local_sym_index_;
  // The reloc type--a processor specific code.
  unsigned int type_ : 30;
  // True if the relocation is a RELATIVE relocation.
  bool is_relative_ : 1;
  // True if the relocation is against a section symbol.
  bool is_section_symbol_ : 1;
  // If the reloc address is an input section in an object, the
  // section index.  This is INVALID_CODE if the reloc address is
  // specified in some other way.
  unsigned int shndx_;
};

// The SHT_RELA version of Output_reloc<>.  This is just derived from
// the SHT_REL version of Output_reloc, but it adds an addend.

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

  // An uninitialized entry.
  Output_reloc()
    : rel_()
  { }

  // A reloc against a global symbol.

  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
	       Address address, Addend addend, bool is_relative)
    : rel_(gsym, type, od, address, is_relative), addend_(addend)
  { }

  Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
	       unsigned int shndx, Address address, Addend addend,
	       bool is_relative)
    : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
  { }

  // A reloc against a local symbol.

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       Output_data* od, Address address,
	       Addend addend, bool is_relative, bool is_section_symbol)
    : rel_(relobj, local_sym_index, type, od, address, is_relative,
           is_section_symbol),
      addend_(addend)
  { }

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       unsigned int shndx, Address address,
	       Addend addend, bool is_relative, bool is_section_symbol)
    : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
           is_section_symbol),
      addend_(addend)
  { }

  // A reloc against the STT_SECTION symbol of an output section.

  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
	       Address address, Addend addend)
    : rel_(os, type, od, address), addend_(addend)
  { }

  Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
	       unsigned int shndx, Address address, Addend addend)
    : rel_(os, type, relobj, shndx, address), addend_(addend)
  { }

  // Write the reloc entry to an output view.
  void
  write(unsigned char* pov) const;

 private:
  // The basic reloc.
  Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
  // The addend.
  Addend addend_;
};

// Output_data_reloc is used to manage a section containing relocs.
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
// indicates whether this is a dynamic relocation or a normal
// relocation.  Output_data_reloc_base is a base class.
// Output_data_reloc is the real class, which we specialize based on
// the reloc type.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc_base : public Output_section_data_build
{
 public:
  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;
  static const int reloc_size =
    Reloc_types<sh_type, size, big_endian>::reloc_size;

  // Construct the section.
  Output_data_reloc_base()
    : Output_section_data_build(Output_data::default_alignment_for_size(size))
  { }

 protected:
  // Write out the data.
  void
  do_write(Output_file*);

  // Set the entry size and the link.
  void
  do_adjust_output_section(Output_section *os);

  // Add a relocation entry.
  void
  add(Output_data *od, const Output_reloc_type& reloc)
  {
    this->relocs_.push_back(reloc);
    this->set_current_data_size(this->relocs_.size() * reloc_size);
    od->add_dynamic_reloc();
  }

 private:
  typedef std::vector<Output_reloc_type> Relocs;

  Relocs relocs_;
};

// The class which callers actually create.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc;

// The SHT_REL version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
  : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
{
 private:
  typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
				 big_endian> Base;

 public:
  typedef typename Base::Output_reloc_type Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;

  Output_data_reloc()
    : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>()
  { }

  // Add a reloc against a global symbol.

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
  { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
	     unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                    false)); }

  // These are to simplify the Copy_relocs class.

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
	     Address addend)
  {
    gold_assert(addend == 0);
    this->add_global(gsym, type, od, address);
  }

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
	     unsigned int shndx, Address address, Address addend)
  {
    gold_assert(addend == 0);
    this->add_global(gsym, type, od, relobj, shndx, address);
  }

  // Add a RELATIVE reloc against a global symbol.  The final relocation
  // will not reference the symbol.

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                      Address address)
  { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                      Relobj* relobj, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                    true));
  }

  // Add a reloc against a local symbol.

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
                                    address, false, false));
  }

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, false, false));
  }

  // Add a RELATIVE reloc against a local symbol.

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
	             unsigned int local_sym_index, unsigned int type,
	             Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
                                    address, true, false));
  }

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
	             unsigned int local_sym_index, unsigned int type,
	             Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, true, false));
  }

  // Add a reloc against a local section symbol.  This will be
  // converted into a reloc against the STT_SECTION symbol of the
  // output section.

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
                    unsigned int input_shndx, unsigned int type,
                    Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
                                    address, false, true));
  }

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
                    unsigned int input_shndx, unsigned int type,
                    Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
                                    address, false, true));
  }

  // A reloc against the STT_SECTION symbol of an output section.
  // OS is the Output_section that the relocation refers to; OD is
  // the Output_data object being relocated.

  void
  add_output_section(Output_section* os, unsigned int type,
		     Output_data* od, Address address)
  { this->add(od, Output_reloc_type(os, type, od, address)); }

  void
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
		     Relobj* relobj, unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
};

// The SHT_RELA version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
  : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
 private:
  typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
				 big_endian> Base;

 public:
  typedef typename Base::Output_reloc_type Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;
  typedef typename Output_reloc_type::Addend Addend;

  Output_data_reloc()
    : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>()
  { }

  // Add a reloc against a global symbol.

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
	     Address address, Addend addend)
  { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
                                    false)); }

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
	     unsigned int shndx, Address address,
	     Addend addend)
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                    addend, false)); }

  // Add a RELATIVE reloc against a global symbol.  The final output
  // relocation will not reference the symbol, but we must keep the symbol
  // information long enough to set the addend of the relocation correctly
  // when it is written.

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
	              Address address, Addend addend)
  { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                      Relobj* relobj, unsigned int shndx, Address address,
	              Addend addend)
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                    addend, true)); }

  // Add a reloc against a local symbol.

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
				    addend, false, false));
  }

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, unsigned int shndx, Address address,
	    Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                    address, addend, false, false));
  }

  // Add a RELATIVE reloc against a local symbol.

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
	             unsigned int local_sym_index, unsigned int type,
	             Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
				    addend, true, false));
  }

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
	             unsigned int local_sym_index, unsigned int type,
	             Output_data* od, unsigned int shndx, Address address,
	             Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                    address, addend, true, false));
  }

  // Add a reloc against a local section symbol.  This will be
  // converted into a reloc against the STT_SECTION symbol of the
  // output section.

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
                    unsigned int input_shndx, unsigned int type,
                    Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
				    addend, false, true));
  }

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
	             unsigned int input_shndx, unsigned int type,
	             Output_data* od, unsigned int shndx, Address address,
	             Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
                                    address, addend, false, true));
  }

  // A reloc against the STT_SECTION symbol of an output section.

  void
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
		     Address address, Addend addend)
  { this->add(os, Output_reloc_type(os, type, od, address, addend)); }

  void
  add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
		     unsigned int shndx, Address address, Addend addend)
  { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
                                    addend)); }
};

// Output_relocatable_relocs represents a relocation section in a
// relocatable link.  The actual data is written out in the target
// hook relocate_for_relocatable.  This just saves space for it.

template<int sh_type, int size, bool big_endian>
class Output_relocatable_relocs : public Output_section_data
{
 public:
  Output_relocatable_relocs(Relocatable_relocs* rr)
    : Output_section_data(Output_data::default_alignment_for_size(size)),
      rr_(rr)
  { }

  void
  set_final_data_size();

  // Write out the data.  There is nothing to do here.
  void
  do_write(Output_file*)
  { }

 private:
  // The relocs associated with this input section.
  Relocatable_relocs* rr_;
};

// Handle a GROUP section.

template<int size, bool big_endian>
class Output_data_group : public Output_section_data
{
 public:
  // The constructor clears *INPUT_SHNDXES.
  Output_data_group(Sized_relobj<size, big_endian>* relobj,
		    section_size_type entry_count,
		    elfcpp::Elf_Word flags,
		    std::vector<unsigned int>* input_shndxes);

  void
  do_write(Output_file*);

 private:
  // The input object.
  Sized_relobj<size, big_endian>* relobj_;
  // The group flag word.
  elfcpp::Elf_Word flags_;
  // The section indexes of the input sections in this group.
  std::vector<unsigned int> input_shndxes_;
};

// Output_data_got is used to manage a GOT.  Each entry in the GOT is
// for one symbol--either a global symbol or a local symbol in an
// object.  The target specific code adds entries to the GOT as
// needed.

template<int size, bool big_endian>
class Output_data_got : public Output_section_data_build
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
  typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;

  Output_data_got()
    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
      entries_()
  { }

  // Add an entry for a global symbol to the GOT.  Return true if this
  // is a new GOT entry, false if the symbol was already in the GOT.
  bool
  add_global(Symbol* gsym, unsigned int got_type);

  // Add an entry for a global symbol to the GOT, and add a dynamic
  // relocation of type R_TYPE for the GOT entry.
  void
  add_global_with_rel(Symbol* gsym, unsigned int got_type,
                      Rel_dyn* rel_dyn, unsigned int r_type);

  void
  add_global_with_rela(Symbol* gsym, unsigned int got_type,
                       Rela_dyn* rela_dyn, unsigned int r_type);

  // Add a pair of entries for a global symbol to the GOT, and add
  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
  void
  add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
                           Rel_dyn* rel_dyn, unsigned int r_type_1,
                           unsigned int r_type_2);

  void
  add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
                            Rela_dyn* rela_dyn, unsigned int r_type_1,
                            unsigned int r_type_2);

  // Add an entry for a local symbol to the GOT.  This returns true if
  // this is a new GOT entry, false if the symbol already has a GOT
  // entry.
  bool
  add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
            unsigned int got_type);

  // Add an entry for a local symbol to the GOT, and add a dynamic
  // relocation of type R_TYPE for the GOT entry.
  void
  add_local_with_rel(Sized_relobj<size, big_endian>* object,
                     unsigned int sym_index, unsigned int got_type,
                     Rel_dyn* rel_dyn, unsigned int r_type);

  void
  add_local_with_rela(Sized_relobj<size, big_endian>* object,
                      unsigned int sym_index, unsigned int got_type,
                      Rela_dyn* rela_dyn, unsigned int r_type);

  // Add a pair of entries for a local symbol to the GOT, and add
  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
  void
  add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
                          unsigned int sym_index, unsigned int shndx,
                          unsigned int got_type, Rel_dyn* rel_dyn,
                          unsigned int r_type_1, unsigned int r_type_2);

  void
  add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
                          unsigned int sym_index, unsigned int shndx,
                          unsigned int got_type, Rela_dyn* rela_dyn,
                          unsigned int r_type_1, unsigned int r_type_2);

  // Add a constant to the GOT.  This returns the offset of the new
  // entry from the start of the GOT.
  unsigned int
  add_constant(Valtype constant)
  {
    this->entries_.push_back(Got_entry(constant));
    this->set_got_size();
    return this->last_got_offset();
  }

 protected:
  // Write out the GOT table.
  void
  do_write(Output_file*);

 private:
  // This POD class holds a single GOT entry.
  class Got_entry
  {
   public:
    // Create a zero entry.
    Got_entry()
      : local_sym_index_(CONSTANT_CODE)
    { this->u_.constant = 0; }

    // Create a global symbol entry.
    explicit Got_entry(Symbol* gsym)
      : local_sym_index_(GSYM_CODE)
    { this->u_.gsym = gsym; }

    // Create a local symbol entry.
    Got_entry(Sized_relobj<size, big_endian>* object,
              unsigned int local_sym_index)
      : local_sym_index_(local_sym_index)
    {
      gold_assert(local_sym_index != GSYM_CODE
		  && local_sym_index != CONSTANT_CODE);
      this->u_.object = object;
    }

    // Create a constant entry.  The constant is a host value--it will
    // be swapped, if necessary, when it is written out.
    explicit Got_entry(Valtype constant)
      : local_sym_index_(CONSTANT_CODE)
    { this->u_.constant = constant; }

    // Write the GOT entry to an output view.
    void
    write(unsigned char* pov) const;

   private:
    enum
    {
      GSYM_CODE = -1U,
      CONSTANT_CODE = -2U
    };

    union
    {
      // For a local symbol, the object.
      Sized_relobj<size, big_endian>* object;
      // For a global symbol, the symbol.
      Symbol* gsym;
      // For a constant, the constant.
      Valtype constant;
    } u_;
    // For a local symbol, the local symbol index.  This is GSYM_CODE
    // for a global symbol, or CONSTANT_CODE for a constant.
    unsigned int local_sym_index_;
  };

  typedef std::vector<Got_entry> Got_entries;

  // Return the offset into the GOT of GOT entry I.
  unsigned int
  got_offset(unsigned int i) const
  { return i * (size / 8); }

  // Return the offset into the GOT of the last entry added.
  unsigned int
  last_got_offset() const
  { return this->got_offset(this->entries_.size() - 1); }

  // Set the size of the section.
  void
  set_got_size()
  { this->set_current_data_size(this->got_offset(this->entries_.size())); }

  // The list of GOT entries.
  Got_entries entries_;
};

// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
// section.

class Output_data_dynamic : public Output_section_data
{
 public:
  Output_data_dynamic(Stringpool* pool)
    : Output_section_data(Output_data::default_alignment()),
      entries_(), pool_(pool)
  { }

  // Add a new dynamic entry with a fixed numeric value.
  void
  add_constant(elfcpp::DT tag, unsigned int val)
  { this->add_entry(Dynamic_entry(tag, val)); }

  // Add a new dynamic entry with the address of output data.
  void
  add_section_address(elfcpp::DT tag, const Output_data* od)
  { this->add_entry(Dynamic_entry(tag, od, false)); }

  // Add a new dynamic entry with the address of output data
  // plus a constant offset.
  void
  add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
                          unsigned int offset)
  { this->add_entry(Dynamic_entry(tag, od, offset)); }

  // Add a new dynamic entry with the size of output data.
  void
  add_section_size(elfcpp::DT tag, const Output_data* od)
  { this->add_entry(Dynamic_entry(tag, od, true)); }

  // Add a new dynamic entry with the address of a symbol.
  void
  add_symbol(elfcpp::DT tag, const Symbol* sym)
  { this->add_entry(Dynamic_entry(tag, sym)); }

  // Add a new dynamic entry with a string.
  void
  add_string(elfcpp::DT tag, const char* str)
  { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }

  void
  add_string(elfcpp::DT tag, const std::string& str)
  { this->add_string(tag, str.c_str()); }

 protected:
  // Adjust the output section to set the entry size.
  void
  do_adjust_output_section(Output_section*);

  // Set the final data size.
  void
  set_final_data_size();

  // Write out the dynamic entries.
  void
  do_write(Output_file*);

 private:
  // This POD class holds a single dynamic entry.
  class Dynamic_entry
  {
   public:
    // Create an entry with a fixed numeric value.
    Dynamic_entry(elfcpp::DT tag, unsigned int val)
      : tag_(tag), offset_(DYNAMIC_NUMBER)
    { this->u_.val = val; }

    // Create an entry with the size or address of a section.
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
      : tag_(tag),
	offset_(section_size
		? DYNAMIC_SECTION_SIZE
		: DYNAMIC_SECTION_ADDRESS)
    { this->u_.od = od; }

    // Create an entry with the address of a section plus a constant offset.
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
      : tag_(tag),
	offset_(offset)
    { this->u_.od = od; }

    // Create an entry with the address of a symbol.
    Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
      : tag_(tag), offset_(DYNAMIC_SYMBOL)
    { this->u_.sym = sym; }

    // Create an entry with a string.
    Dynamic_entry(elfcpp::DT tag, const char* str)
      : tag_(tag), offset_(DYNAMIC_STRING)
    { this->u_.str = str; }

    // Write the dynamic entry to an output view.
    template<int size, bool big_endian>
    void
    write(unsigned char* pov, const Stringpool*) const;

   private:
    // Classification is encoded in the OFFSET field.
    enum Classification
    {
      // Section address.
      DYNAMIC_SECTION_ADDRESS = 0,
      // Number.
      DYNAMIC_NUMBER = -1U,
      // Section size.
      DYNAMIC_SECTION_SIZE = -2U,
      // Symbol adress.
      DYNAMIC_SYMBOL = -3U,
      // String.
      DYNAMIC_STRING = -4U
      // Any other value indicates a section address plus OFFSET.
    };

    union
    {
      // For DYNAMIC_NUMBER.
      unsigned int val;
      // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
      const Output_data* od;
      // For DYNAMIC_SYMBOL.
      const Symbol* sym;
      // For DYNAMIC_STRING.
      const char* str;
    } u_;
    // The dynamic tag.
    elfcpp::DT tag_;
    // The type of entry (Classification) or offset within a section.
    unsigned int offset_;
  };

  // Add an entry to the list.
  void
  add_entry(const Dynamic_entry& entry)
  { this->entries_.push_back(entry); }

  // Sized version of write function.
  template<int size, bool big_endian>
  void
  sized_write(Output_file* of);

  // The type of the list of entries.
  typedef std::vector<Dynamic_entry> Dynamic_entries;

  // The entries.
  Dynamic_entries entries_;
  // The pool used for strings.
  Stringpool* pool_;
};

// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
// which may be required if the object file has more than
// SHN_LORESERVE sections.

class Output_symtab_xindex : public Output_section_data
{
 public:
  Output_symtab_xindex(size_t symcount)
    : Output_section_data(symcount * 4, 4),
      entries_()
  { }

  // Add an entry: symbol number SYMNDX has section SHNDX.
  void
  add(unsigned int symndx, unsigned int shndx)
  { this->entries_.push_back(std::make_pair(symndx, shndx)); }

 protected:
  void
  do_write(Output_file*);

 private:
  template<bool big_endian>
  void
  endian_do_write(unsigned char*);

  // It is likely that most symbols will not require entries.  Rather
  // than keep a vector for all symbols, we keep pairs of symbol index
  // and section index.
  typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;

  // The entries we need.
  Xindex_entries entries_;
};

// An output section.  We don't expect to have too many output
// sections, so we don't bother to do a template on the size.

class Output_section : public Output_data
{
 public:
  // Create an output section, giving the name, type, and flags.
  Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
  virtual ~Output_section();

  // Add a new input section SHNDX, named NAME, with header SHDR, from
  // object OBJECT.  RELOC_SHNDX is the index of a relocation section
  // which applies to this section, or 0 if none, or -1U if more than
  // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
  // in a linker script; in that case we need to keep track of input
  // sections associated with an output section.  Return the offset
  // within the output section.
  template<int size, bool big_endian>
  off_t
  add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
		    const char *name,
		    const elfcpp::Shdr<size, big_endian>& shdr,
		    unsigned int reloc_shndx, bool have_sections_script);

  // Add generated data POSD to this output section.
  void
  add_output_section_data(Output_section_data* posd);

  // Return the section name.
  const char*
  name() const
  { return this->name_; }

  // Return the section type.
  elfcpp::Elf_Word
  type() const
  { return this->type_; }

  // Return the section flags.
  elfcpp::Elf_Xword
  flags() const
  { return this->flags_; }

  // Set the section flags.  This may only be used with the Layout
  // code when it is prepared to move the section to a different
  // segment.
  void
  set_flags(elfcpp::Elf_Xword flags)
  { this->flags_ = flags; }

  // Update the output section flags based on input section flags.
  void
  update_flags_for_input_section(elfcpp::Elf_Xword flags)
  {
    this->flags_ |= (flags
		     & (elfcpp::SHF_WRITE
			| elfcpp::SHF_ALLOC
			| elfcpp::SHF_EXECINSTR));
  }

  // Return the entsize field.
  uint64_t
  entsize() const
  { return this->entsize_; }

  // Set the entsize field.
  void
  set_entsize(uint64_t v);

  // Set the load address.
  void
  set_load_address(uint64_t load_address)
  {
    this->load_address_ = load_address;
    this->has_load_address_ = true;
  }

  // Set the link field to the output section index of a section.
  void
  set_link_section(const Output_data* od)
  {
    gold_assert(this->link_ == 0
		&& !this->should_link_to_symtab_
		&& !this->should_link_to_dynsym_);
    this->link_section_ = od;
  }

  // Set the link field to a constant.
  void
  set_link(unsigned int v)
  {
    gold_assert(this->link_section_ == NULL
		&& !this->should_link_to_symtab_
		&& !this->should_link_to_dynsym_);
    this->link_ = v;
  }

  // Record that this section should link to the normal symbol table.
  void
  set_should_link_to_symtab()
  {
    gold_assert(this->link_section_ == NULL
		&& this->link_ == 0
		&& !this->should_link_to_dynsym_);
    this->should_link_to_symtab_ = true;
  }

  // Record that this section should link to the dynamic symbol table.
  void
  set_should_link_to_dynsym()
  {
    gold_assert(this->link_section_ == NULL
		&& this->link_ == 0
		&& !this->should_link_to_symtab_);
    this->should_link_to_dynsym_ = true;
  }

  // Return the info field.
  unsigned int
  info() const
  {
    gold_assert(this->info_section_ == NULL
		&& this->info_symndx_ == NULL);
    return this->info_;
  }

  // Set the info field to the output section index of a section.
  void
  set_info_section(const Output_section* os)
  {
    gold_assert((this->info_section_ == NULL
		 || (this->info_section_ == os
		     && this->info_uses_section_index_))
		&& this->info_symndx_ == NULL
		&& this->info_ == 0);
    this->info_section_ = os;
    this->info_uses_section_index_= true;
  }

  // Set the info field to the symbol table index of a symbol.
  void
  set_info_symndx(const Symbol* sym)
  {
    gold_assert(this->info_section_ == NULL
		&& (this->info_symndx_ == NULL
		    || this->info_symndx_ == sym)
		&& this->info_ == 0);
    this->info_symndx_ = sym;
  }

  // Set the info field to the symbol table index of a section symbol.
  void
  set_info_section_symndx(const Output_section* os)
  {
    gold_assert((this->info_section_ == NULL
		 || (this->info_section_ == os
		     && !this->info_uses_section_index_))
		&& this->info_symndx_ == NULL
		&& this->info_ == 0);
    this->info_section_ = os;
    this->info_uses_section_index_ = false;
  }

  // Set the info field to a constant.
  void
  set_info(unsigned int v)
  {
    gold_assert(this->info_section_ == NULL
		&& this->info_symndx_ == NULL
		&& (this->info_ == 0
		    || this->info_ == v));
    this->info_ = v;
  }

  // Set the addralign field.
  void
  set_addralign(uint64_t v)
  { this->addralign_ = v; }

  // Whether the output section index has been set.
  bool
  has_out_shndx() const
  { return this->out_shndx_ != -1U; }

  // Indicate that we need a symtab index.
  void
  set_needs_symtab_index()
  { this->needs_symtab_index_ = true; }

  // Return whether we need a symtab index.
  bool
  needs_symtab_index() const
  { return this->needs_symtab_index_; }

  // Get the symtab index.
  unsigned int
  symtab_index() const
  {
    gold_assert(this->symtab_index_ != 0);
    return this->symtab_index_;
  }

  // Set the symtab index.
  void
  set_symtab_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->symtab_index_ = index;
  }

  // Indicate that we need a dynsym index.
  void
  set_needs_dynsym_index()
  { this->needs_dynsym_index_ = true; }

  // Return whether we need a dynsym index.
  bool
  needs_dynsym_index() const
  { return this->needs_dynsym_index_; }

  // Get the dynsym index.
  unsigned int
  dynsym_index() const
  {
    gold_assert(this->dynsym_index_ != 0);
    return this->dynsym_index_;
  }

  // Set the dynsym index.
  void
  set_dynsym_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->dynsym_index_ = index;
  }

  // Return whether the input sections sections attachd to this output
  // section may require sorting.  This is used to handle constructor
  // priorities compatibly with GNU ld.
  bool
  may_sort_attached_input_sections() const
  { return this->may_sort_attached_input_sections_; }

  // Record that the input sections attached to this output section
  // may require sorting.
  void
  set_may_sort_attached_input_sections()
  { this->may_sort_attached_input_sections_ = true; }

  // Return whether the input sections attached to this output section
  // require sorting.  This is used to handle constructor priorities
  // compatibly with GNU ld.
  bool
  must_sort_attached_input_sections() const
  { return this->must_sort_attached_input_sections_; }

  // Record that the input sections attached to this output section
  // require sorting.
  void
  set_must_sort_attached_input_sections()
  { this->must_sort_attached_input_sections_ = true; }

  // Return whether this section should be written after all the input
  // sections are complete.
  bool
  after_input_sections() const
  { return this->after_input_sections_; }

  // Record that this section should be written after all the input
  // sections are complete.
  void
  set_after_input_sections()
  { this->after_input_sections_ = true; }

  // Return whether this section requires postprocessing after all
  // relocations have been applied.
  bool
  requires_postprocessing() const
  { return this->requires_postprocessing_; }

  // If a section requires postprocessing, return the buffer to use.
  unsigned char*
  postprocessing_buffer() const
  {
    gold_assert(this->postprocessing_buffer_ != NULL);
    return this->postprocessing_buffer_;
  }

  // If a section requires postprocessing, create the buffer to use.
  void
  create_postprocessing_buffer();

  // If a section requires postprocessing, this is the size of the
  // buffer to which relocations should be applied.
  off_t
  postprocessing_buffer_size() const
  { return this->current_data_size_for_child(); }

  // Modify the section name.  This is only permitted for an
  // unallocated section, and only before the size has been finalized.
  // Otherwise the name will not get into Layout::namepool_.
  void
  set_name(const char* newname)
  {
    gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
    gold_assert(!this->is_data_size_valid());
    this->name_ = newname;
  }

  // Return whether the offset OFFSET in the input section SHNDX in
  // object OBJECT is being included in the link.
  bool
  is_input_address_mapped(const Relobj* object, unsigned int shndx,
			  off_t offset) const;

  // Return the offset within the output section of OFFSET relative to
  // the start of input section SHNDX in object OBJECT.
  section_offset_type
  output_offset(const Relobj* object, unsigned int shndx,
		section_offset_type offset) const;

  // Return the output virtual address of OFFSET relative to the start
  // of input section SHNDX in object OBJECT.
  uint64_t
  output_address(const Relobj* object, unsigned int shndx,
		 off_t offset) const;

  // Return the output address of the start of the merged section for
  // input section SHNDX in object OBJECT.  This is not necessarily
  // the offset corresponding to input offset 0 in the section, since
  // the section may be mapped arbitrarily.
  uint64_t
  starting_output_address(const Relobj* object, unsigned int shndx) const;

  // Record that this output section was found in the SECTIONS clause
  // of a linker script.
  void
  set_found_in_sections_clause()
  { this->found_in_sections_clause_ = true; }

  // Return whether this output section was found in the SECTIONS
  // clause of a linker script.
  bool
  found_in_sections_clause() const
  { return this->found_in_sections_clause_; }

  // Write the section header into *OPHDR.
  template<int size, bool big_endian>
  void
  write_header(const Layout*, const Stringpool*,
	       elfcpp::Shdr_write<size, big_endian>*) const;

  // The next few calls are for linker script support.

  // Store the list of input sections for this Output_section into the
  // list passed in.  This removes the input sections, leaving only
  // any Output_section_data elements.  This returns the size of those
  // Output_section_data elements.  ADDRESS is the address of this
  // output section.  FILL is the fill value to use, in case there are
  // any spaces between the remaining Output_section_data elements.
  uint64_t
  get_input_sections(uint64_t address, const std::string& fill,
		     std::list<std::pair<Relobj*, unsigned int > >*);

  // Add an input section from a script.
  void
  add_input_section_for_script(Relobj* object, unsigned int shndx,
			       off_t data_size, uint64_t addralign);

  // Set the current size of the output section.
  void
  set_current_data_size(off_t size)
  { this->set_current_data_size_for_child(size); }

  // Get the current size of the output section.
  off_t
  current_data_size() const
  { return this->current_data_size_for_child(); }

  // End of linker script support.

  // Print merge statistics to stderr.
  void
  print_merge_stats();

 protected:
  // Return the output section--i.e., the object itself.
  Output_section*
  do_output_section()
  { return this; }

  // Return the section index in the output file.
  unsigned int
  do_out_shndx() const
  {
    gold_assert(this->out_shndx_ != -1U);
    return this->out_shndx_;
  }

  // Set the output section index.
  void
  do_set_out_shndx(unsigned int shndx)
  {
    gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
    this->out_shndx_ = shndx;
  }

  // Set the final data size of the Output_section.  For a typical
  // Output_section, there is nothing to do, but if there are any
  // Output_section_data objects we need to set their final addresses
  // here.
  virtual void
  set_final_data_size();

  // Reset the address and file offset.
  void
  do_reset_address_and_file_offset();

  // Write the data to the file.  For a typical Output_section, this
  // does nothing: the data is written out by calling Object::Relocate
  // on each input object.  But if there are any Output_section_data
  // objects we do need to write them out here.
  virtual void
  do_write(Output_file*);

  // Return the address alignment--function required by parent class.
  uint64_t
  do_addralign() const
  { return this->addralign_; }

  // Return whether there is a load address.
  bool
  do_has_load_address() const
  { return this->has_load_address_; }

  // Return the load address.
  uint64_t
  do_load_address() const
  {
    gold_assert(this->has_load_address_);
    return this->load_address_;
  }

  // Return whether this is an Output_section.
  bool
  do_is_section() const
  { return true; }

  // Return whether this is a section of the specified type.
  bool
  do_is_section_type(elfcpp::Elf_Word type) const
  { return this->type_ == type; }

  // Return whether the specified section flag is set.
  bool
  do_is_section_flag_set(elfcpp::Elf_Xword flag) const
  { return (this->flags_ & flag) != 0; }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  void
  do_set_tls_offset(uint64_t tls_base);

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  uint64_t
  do_tls_offset() const
  { return this->tls_offset_; }

  // This may be implemented by a child class.
  virtual void
  do_finalize_name(Layout*)
  { }

  // Record that this section requires postprocessing after all
  // relocations have been applied.  This is called by a child class.
  void
  set_requires_postprocessing()
  {
    this->requires_postprocessing_ = true;
    this->after_input_sections_ = true;
  }

  // Write all the data of an Output_section into the postprocessing
  // buffer.
  void
  write_to_postprocessing_buffer();

 private:
  // In some cases we need to keep a list of the input sections
  // associated with this output section.  We only need the list if we
  // might have to change the offsets of the input section within the
  // output section after we add the input section.  The ordinary
  // input sections will be written out when we process the object
  // file, and as such we don't need to track them here.  We do need
  // to track Output_section_data objects here.  We store instances of
  // this structure in a std::vector, so it must be a POD.  There can
  // be many instances of this structure, so we use a union to save
  // some space.
  class Input_section
  {
   public:
    Input_section()
      : shndx_(0), p2align_(0)
    {
      this->u1_.data_size = 0;
      this->u2_.object = NULL;
    }

    // For an ordinary input section.
    Input_section(Relobj* object, unsigned int shndx, off_t data_size,
		  uint64_t addralign)
      : shndx_(shndx),
	p2align_(ffsll(static_cast<long long>(addralign)))
    {
      gold_assert(shndx != OUTPUT_SECTION_CODE
		  && shndx != MERGE_DATA_SECTION_CODE
		  && shndx != MERGE_STRING_SECTION_CODE);
      this->u1_.data_size = data_size;
      this->u2_.object = object;
    }

    // For a non-merge output section.
    Input_section(Output_section_data* posd)
      : shndx_(OUTPUT_SECTION_CODE),
	p2align_(ffsll(static_cast<long long>(posd->addralign())))
    {
      this->u1_.data_size = 0;
      this->u2_.posd = posd;
    }

    // For a merge section.
    Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
      : shndx_(is_string
	       ? MERGE_STRING_SECTION_CODE
	       : MERGE_DATA_SECTION_CODE),
	p2align_(ffsll(static_cast<long long>(posd->addralign())))
    {
      this->u1_.entsize = entsize;
      this->u2_.posd = posd;
    }

    // The required alignment.
    uint64_t
    addralign() const
    {
      return (this->p2align_ == 0
	      ? 0
	      : static_cast<uint64_t>(1) << (this->p2align_ - 1));
    }

    // Return the required size.
    off_t
    data_size() const;

    // Whether this is an input section.
    bool
    is_input_section() const
    {
      return (this->shndx_ != OUTPUT_SECTION_CODE
	      && this->shndx_ != MERGE_DATA_SECTION_CODE
	      && this->shndx_ != MERGE_STRING_SECTION_CODE);
    }

    // Return whether this is a merge section which matches the
    // parameters.
    bool
    is_merge_section(bool is_string, uint64_t entsize,
                     uint64_t addralign) const
    {
      return (this->shndx_ == (is_string
			       ? MERGE_STRING_SECTION_CODE
			       : MERGE_DATA_SECTION_CODE)
	      && this->u1_.entsize == entsize
              && this->addralign() == addralign);
    }

    // Return the object for an input section.
    Relobj*
    relobj() const
    {
      gold_assert(this->is_input_section());
      return this->u2_.object;
    }

    // Return the input section index for an input section.
    unsigned int
    shndx() const
    {
      gold_assert(this->is_input_section());
      return this->shndx_;
    }

    // Set the output section.
    void
    set_output_section(Output_section* os)
    {
      gold_assert(!this->is_input_section());
      this->u2_.posd->set_output_section(os);
    }

    // Set the address and file offset.  This is called during
    // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
    // the enclosing section.
    void
    set_address_and_file_offset(uint64_t address, off_t file_offset,
				off_t section_file_offset);

    // Reset the address and file offset.
    void
    reset_address_and_file_offset();

    // Finalize the data size.
    void
    finalize_data_size();

    // Add an input section, for SHF_MERGE sections.
    bool
    add_input_section(Relobj* object, unsigned int shndx)
    {
      gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
      return this->u2_.posd->add_input_section(object, shndx);
    }

    // Given an input OBJECT, an input section index SHNDX within that
    // object, and an OFFSET relative to the start of that input
    // section, return whether or not the output offset is known.  If
    // this function returns true, it sets *POUTPUT to the offset in
    // the output section, relative to the start of the input section
    // in the output section.  *POUTPUT may be different from OFFSET
    // for a merged section.
    bool
    output_offset(const Relobj* object, unsigned int shndx,
		  section_offset_type offset,
		  section_offset_type *poutput) const;

    // Return whether this is the merge section for the input section
    // SHNDX in OBJECT.
    bool
    is_merge_section_for(const Relobj* object, unsigned int shndx) const;

    // Write out the data.  This does nothing for an input section.
    void
    write(Output_file*);

    // Write the data to a buffer.  This does nothing for an input
    // section.
    void
    write_to_buffer(unsigned char*);

    // Print statistics about merge sections to stderr.
    void
    print_merge_stats(const char* section_name)
    {
      if (this->shndx_ == MERGE_DATA_SECTION_CODE
	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
	this->u2_.posd->print_merge_stats(section_name);
    }

   private:
    // Code values which appear in shndx_.  If the value is not one of
    // these codes, it is the input section index in the object file.
    enum
    {
      // An Output_section_data.
      OUTPUT_SECTION_CODE = -1U,
      // An Output_section_data for an SHF_MERGE section with
      // SHF_STRINGS not set.
      MERGE_DATA_SECTION_CODE = -2U,
      // An Output_section_data for an SHF_MERGE section with
      // SHF_STRINGS set.
      MERGE_STRING_SECTION_CODE = -3U
    };

    // For an ordinary input section, this is the section index in the
    // input file.  For an Output_section_data, this is
    // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
    // MERGE_STRING_SECTION_CODE.
    unsigned int shndx_;
    // The required alignment, stored as a power of 2.
    unsigned int p2align_;
    union
    {
      // For an ordinary input section, the section size.
      off_t data_size;
      // For OUTPUT_SECTION_CODE, this is not used.  For
      // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
      // entity size.
      uint64_t entsize;
    } u1_;
    union
    {
      // For an ordinary input section, the object which holds the
      // input section.
      Relobj* object;
      // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
      // MERGE_STRING_SECTION_CODE, the data.
      Output_section_data* posd;
    } u2_;
  };

  typedef std::vector<Input_section> Input_section_list;

  // This class is used to sort the input sections.
  class Input_section_sort_entry;

  // This is the sort comparison function.
  struct Input_section_sort_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // Fill data.  This is used to fill in data between input sections.
  // It is also used for data statements (BYTE, WORD, etc.) in linker
  // scripts.  When we have to keep track of the input sections, we
  // can use an Output_data_const, but we don't want to have to keep
  // track of input sections just to implement fills.
  class Fill
  {
   public:
    Fill(off_t section_offset, off_t length)
      : section_offset_(section_offset),
	length_(convert_to_section_size_type(length))
    { }

    // Return section offset.
    off_t
    section_offset() const
    { return this->section_offset_; }

    // Return fill length.
    section_size_type
    length() const
    { return this->length_; }

   private:
    // The offset within the output section.
    off_t section_offset_;
    // The length of the space to fill.
    section_size_type length_;
  };

  typedef std::vector<Fill> Fill_list;

  // Add a new output section by Input_section.
  void
  add_output_section_data(Input_section*);

  // Add an SHF_MERGE input section.  Returns true if the section was
  // handled.
  bool
  add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
			  uint64_t entsize, uint64_t addralign);

  // Add an output SHF_MERGE section POSD to this output section.
  // IS_STRING indicates whether it is a SHF_STRINGS section, and
  // ENTSIZE is the entity size.  This returns the entry added to
  // input_sections_.
  void
  add_output_merge_section(Output_section_data* posd, bool is_string,
			   uint64_t entsize);

  // Sort the attached input sections.
  void
  sort_attached_input_sections();

  // Most of these fields are only valid after layout.

  // The name of the section.  This will point into a Stringpool.
  const char* name_;
  // The section address is in the parent class.
  // The section alignment.
  uint64_t addralign_;
  // The section entry size.
  uint64_t entsize_;
  // The load address.  This is only used when using a linker script
  // with a SECTIONS clause.  The has_load_address_ field indicates
  // whether this field is valid.
  uint64_t load_address_;
  // The file offset is in the parent class.
  // Set the section link field to the index of this section.
  const Output_data* link_section_;
  // If link_section_ is NULL, this is the link field.
  unsigned int link_;
  // Set the section info field to the index of this section.
  const Output_section* info_section_;
  // If info_section_ is NULL, set the info field to the symbol table
  // index of this symbol.
  const Symbol* info_symndx_;
  // If info_section_ and info_symndx_ are NULL, this is the section
  // info field.
  unsigned int info_;
  // The section type.
  const elfcpp::Elf_Word type_;
  // The section flags.
  elfcpp::Elf_Xword flags_;
  // The section index.
  unsigned int out_shndx_;
  // If there is a STT_SECTION for this output section in the normal
  // symbol table, this is the symbol index.  This starts out as zero.
  // It is initialized in Layout::finalize() to be the index, or -1U
  // if there isn't one.
  unsigned int symtab_index_;
  // If there is a STT_SECTION for this output section in the dynamic
  // symbol table, this is the symbol index.  This starts out as zero.
  // It is initialized in Layout::finalize() to be the index, or -1U
  // if there isn't one.
  unsigned int dynsym_index_;
  // The input sections.  This will be empty in cases where we don't
  // need to keep track of them.
  Input_section_list input_sections_;
  // The offset of the first entry in input_sections_.
  off_t first_input_offset_;
  // The fill data.  This is separate from input_sections_ because we
  // often will need fill sections without needing to keep track of
  // input sections.
  Fill_list fills_;
  // If the section requires postprocessing, this buffer holds the
  // section contents during relocation.
  unsigned char* postprocessing_buffer_;
  // Whether this output section needs a STT_SECTION symbol in the
  // normal symbol table.  This will be true if there is a relocation
  // which needs it.
  bool needs_symtab_index_ : 1;
  // Whether this output section needs a STT_SECTION symbol in the
  // dynamic symbol table.  This will be true if there is a dynamic
  // relocation which needs it.
  bool needs_dynsym_index_ : 1;
  // Whether the link field of this output section should point to the
  // normal symbol table.
  bool should_link_to_symtab_ : 1;
  // Whether the link field of this output section should point to the
  // dynamic symbol table.
  bool should_link_to_dynsym_ : 1;
  // Whether this section should be written after all the input
  // sections are complete.
  bool after_input_sections_ : 1;
  // Whether this section requires post processing after all
  // relocations have been applied.
  bool requires_postprocessing_ : 1;
  // Whether an input section was mapped to this output section
  // because of a SECTIONS clause in a linker script.
  bool found_in_sections_clause_ : 1;
  // Whether this section has an explicitly specified load address.
  bool has_load_address_ : 1;
  // True if the info_section_ field means the section index of the
  // section, false if it means the symbol index of the corresponding
  // section symbol.
  bool info_uses_section_index_ : 1;
  // True if the input sections attached to this output section may
  // need sorting.
  bool may_sort_attached_input_sections_ : 1;
  // True if the input sections attached to this output section must
  // be sorted.
  bool must_sort_attached_input_sections_ : 1;
  // True if the input sections attached to this output section have
  // already been sorted.
  bool attached_input_sections_are_sorted_ : 1;
  // For SHT_TLS sections, the offset of this section relative to the base
  // of the TLS segment.
  uint64_t tls_offset_;
};

// An output segment.  PT_LOAD segments are built from collections of
// output sections.  Other segments typically point within PT_LOAD
// segments, and are built directly as needed.

class Output_segment
{
 public:
  // Create an output segment, specifying the type and flags.
  Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);

  // Return the virtual address.
  uint64_t
  vaddr() const
  { return this->vaddr_; }

  // Return the physical address.
  uint64_t
  paddr() const
  { return this->paddr_; }

  // Return the segment type.
  elfcpp::Elf_Word
  type() const
  { return this->type_; }

  // Return the segment flags.
  elfcpp::Elf_Word
  flags() const
  { return this->flags_; }

  // Return the memory size.
  uint64_t
  memsz() const
  { return this->memsz_; }

  // Return the file size.
  off_t
  filesz() const
  { return this->filesz_; }

  // Return the file offset.
  off_t
  offset() const
  { return this->offset_; }

  // Return the maximum alignment of the Output_data.
  uint64_t
  maximum_alignment();

  // Add an Output_section to this segment.
  void
  add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
  { this->add_output_section(os, seg_flags, false); }

  // Add an Output_section to the start of this segment.
  void
  add_initial_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
  { this->add_output_section(os, seg_flags, true); }

  // Remove an Output_section from this segment.  It is an error if it
  // is not present.
  void
  remove_output_section(Output_section* os);

  // Add an Output_data (which is not an Output_section) to the start
  // of this segment.
  void
  add_initial_output_data(Output_data*);

  // Return true if this segment has any sections which hold actual
  // data, rather than being a BSS section.
  bool
  has_any_data_sections() const
  { return !this->output_data_.empty(); }

  // Return the number of dynamic relocations applied to this segment.
  unsigned int
  dynamic_reloc_count() const;

  // Return the address of the first section.
  uint64_t
  first_section_load_address() const;

  // Return whether the addresses have been set already.
  bool
  are_addresses_set() const
  { return this->are_addresses_set_; }

  // Set the addresses.
  void
  set_addresses(uint64_t vaddr, uint64_t paddr)
  {
    this->vaddr_ = vaddr;
    this->paddr_ = paddr;
    this->are_addresses_set_ = true;
  }

  // Set the segment flags.  This is only used if we have a PHDRS
  // clause which explicitly specifies the flags.
  void
  set_flags(elfcpp::Elf_Word flags)
  { this->flags_ = flags; }

  // Set the address of the segment to ADDR and the offset to *POFF
  // and set the addresses and offsets of all contained output
  // sections accordingly.  Set the section indexes of all contained
  // output sections starting with *PSHNDX.  If RESET is true, first
  // reset the addresses of the contained sections.  Return the
  // address of the immediately following segment.  Update *POFF and
  // *PSHNDX.  This should only be called for a PT_LOAD segment.
  uint64_t
  set_section_addresses(const Layout*, bool reset, uint64_t addr, off_t* poff,
			unsigned int* pshndx);

  // Set the minimum alignment of this segment.  This may be adjusted
  // upward based on the section alignments.
  void
  set_minimum_p_align(uint64_t align)
  { this->min_p_align_ = align; }

  // Set the offset of this segment based on the section.  This should
  // only be called for a non-PT_LOAD segment.
  void
  set_offset();

  // Set the TLS offsets of the sections contained in the PT_TLS segment.
  void
  set_tls_offsets();

  // Return the number of output sections.
  unsigned int
  output_section_count() const;

  // Return the section attached to the list segment with the lowest
  // load address.  This is used when handling a PHDRS clause in a
  // linker script.
  Output_section*
  section_with_lowest_load_address() const;

  // Write the segment header into *OPHDR.
  template<int size, bool big_endian>
  void
  write_header(elfcpp::Phdr_write<size, big_endian>*);

  // Write the section headers of associated sections into V.
  template<int size, bool big_endian>
  unsigned char*
  write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
			unsigned int* pshndx) const;

 private:
  Output_segment(const Output_segment&);
  Output_segment& operator=(const Output_segment&);

  typedef std::list<Output_data*> Output_data_list;

  // Add an Output_section to this segment, specifying front or back.
  void
  add_output_section(Output_section*, elfcpp::Elf_Word seg_flags,
		     bool front);

  // Find the maximum alignment in an Output_data_list.
  static uint64_t
  maximum_alignment_list(const Output_data_list*);

  // Set the section addresses in an Output_data_list.
  uint64_t
  set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
                             uint64_t addr, off_t* poff, unsigned int* pshndx,
                             bool* in_tls);

  // Return the number of Output_sections in an Output_data_list.
  unsigned int
  output_section_count_list(const Output_data_list*) const;

  // Return the number of dynamic relocs in an Output_data_list.
  unsigned int
  dynamic_reloc_count_list(const Output_data_list*) const;

  // Find the section with the lowest load address in an
  // Output_data_list.
  void
  lowest_load_address_in_list(const Output_data_list* pdl,
			      Output_section** found,
			      uint64_t* found_lma) const;

  // Write the section headers in the list into V.
  template<int size, bool big_endian>
  unsigned char*
  write_section_headers_list(const Layout*, const Stringpool*,
			     const Output_data_list*, unsigned char* v,
			     unsigned int* pshdx) const;

  // The list of output data with contents attached to this segment.
  Output_data_list output_data_;
  // The list of output data without contents attached to this segment.
  Output_data_list output_bss_;
  // The segment virtual address.
  uint64_t vaddr_;
  // The segment physical address.
  uint64_t paddr_;
  // The size of the segment in memory.
  uint64_t memsz_;
  // The maximum section alignment.  The is_max_align_known_ field
  // indicates whether this has been finalized.
  uint64_t max_align_;
  // The required minimum value for the p_align field.  This is used
  // for PT_LOAD segments.  Note that this does not mean that
  // addresses should be aligned to this value; it means the p_paddr
  // and p_vaddr fields must be congruent modulo this value.  For
  // non-PT_LOAD segments, the dynamic linker works more efficiently
  // if the p_align field has the more conventional value, although it
  // can align as needed.
  uint64_t min_p_align_;
  // The offset of the segment data within the file.
  off_t offset_;
  // The size of the segment data in the file.
  off_t filesz_;
  // The segment type;
  elfcpp::Elf_Word type_;
  // The segment flags.
  elfcpp::Elf_Word flags_;
  // Whether we have finalized max_align_.
  bool is_max_align_known_ : 1;
  // Whether vaddr and paddr were set by a linker script.
  bool are_addresses_set_ : 1;
};

// This class represents the output file.

class Output_file
{
 public:
  Output_file(const char* name);

  // Indicate that this is a temporary file which should not be
  // output.
  void
  set_is_temporary()
  { this->is_temporary_ = true; }

  // Open the output file.  FILE_SIZE is the final size of the file.
  void
  open(off_t file_size);

  // Resize the output file.
  void
  resize(off_t file_size);

  // Close the output file (flushing all buffered data) and make sure
  // there are no errors.
  void
  close();

  // We currently always use mmap which makes the view handling quite
  // simple.  In the future we may support other approaches.

  // Write data to the output file.
  void
  write(off_t offset, const void* data, size_t len)
  { memcpy(this->base_ + offset, data, len); }

  // Get a buffer to use to write to the file, given the offset into
  // the file and the size.
  unsigned char*
  get_output_view(off_t start, size_t size)
  {
    gold_assert(start >= 0
                && start + static_cast<off_t>(size) <= this->file_size_);
    return this->base_ + start;
  }

  // VIEW must have been returned by get_output_view.  Write the
  // buffer to the file, passing in the offset and the size.
  void
  write_output_view(off_t, size_t, unsigned char*)
  { }

  // Get a read/write buffer.  This is used when we want to write part
  // of the file, read it in, and write it again.
  unsigned char*
  get_input_output_view(off_t start, size_t size)
  { return this->get_output_view(start, size); }

  // Write a read/write buffer back to the file.
  void
  write_input_output_view(off_t, size_t, unsigned char*)
  { }

  // Get a read buffer.  This is used when we just want to read part
  // of the file back it in.
  const unsigned char*
  get_input_view(off_t start, size_t size)
  { return this->get_output_view(start, size); }

  // Release a read bfufer.
  void
  free_input_view(off_t, size_t, const unsigned char*)
  { }

 private:
  // Map the file into memory and return a pointer to the map.
  void
  map();

  // Unmap the file from memory (and flush to disk buffers).
  void
  unmap();

  // File name.
  const char* name_;
  // File descriptor.
  int o_;
  // File size.
  off_t file_size_;
  // Base of file mapped into memory.
  unsigned char* base_;
  // True iff base_ points to a memory buffer rather than an output file.
  bool map_is_anonymous_;
  // True if this is a temporary file which should not be output.
  bool is_temporary_;
};

} // End namespace gold.

#endif // !defined(GOLD_OUTPUT_H)