aboutsummaryrefslogtreecommitdiff
path: root/gold/layout.cc
blob: 61b6895682cd4b4d4dfd69bd41573574aaeb2adf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
// layout.cc -- lay out output file sections for gold

#include "gold.h"

#include <cassert>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <utility>

#include "output.h"
#include "layout.h"

namespace gold
{

// Layout_task methods.

Layout_task::~Layout_task()
{
}

// This task can be run when it is unblocked.

Task::Is_runnable_type
Layout_task::is_runnable(Workqueue*)
{
  if (this->this_blocker_->is_blocked())
    return IS_BLOCKED;
  return IS_RUNNABLE;
}

// We don't need to hold any locks for the duration of this task.  In
// fact this task will be the only one running.

Task_locker*
Layout_task::locks(Workqueue*)
{
  return NULL;
}

// Lay out the sections.  This is called after all the input objects
// have been read.

void
Layout_task::run(Workqueue* workqueue)
{
  off_t file_size = this->layout_->finalize(this->input_objects_,
					    this->symtab_);

  // Now we know the final size of the output file and we know where
  // each piece of information goes.
  Output_file* of = new Output_file(this->options_);
  of->open(file_size);

  // Queue up the final set of tasks.
  gold::queue_final_tasks(this->options_, this->input_objects_,
			  this->symtab_, this->layout_, workqueue, of);
}

// Layout methods.

Layout::Layout(const General_options& options)
  : options_(options), last_shndx_(0), namepool_(), sympool_(), signatures_(),
    section_name_map_(), segment_list_(), section_list_(),
    special_output_list_()
{
  // Make space for more than enough segments for a typical file.
  // This is just for efficiency--it's OK if we wind up needing more.
  segment_list_.reserve(12);
}

// Hash a key we use to look up an output section mapping.

size_t
Layout::Hash_key::operator()(const Layout::Key& k) const
{
 return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
}

// Whether to include this section in the link.

template<int size, bool big_endian>
bool
Layout::include_section(Object*, const char*,
			const elfcpp::Shdr<size, big_endian>& shdr)
{
  // Some section types are never linked.  Some are only linked when
  // doing a relocateable link.
  switch (shdr.get_sh_type())
    {
    case elfcpp::SHT_NULL:
    case elfcpp::SHT_SYMTAB:
    case elfcpp::SHT_DYNSYM:
    case elfcpp::SHT_STRTAB:
    case elfcpp::SHT_HASH:
    case elfcpp::SHT_DYNAMIC:
    case elfcpp::SHT_SYMTAB_SHNDX:
      return false;

    case elfcpp::SHT_RELA:
    case elfcpp::SHT_REL:
    case elfcpp::SHT_GROUP:
      return this->options_.is_relocatable();

    default:
      // FIXME: Handle stripping debug sections here.
      return true;
    }
}

// Return the output section to use for input section NAME, with
// header HEADER, from object OBJECT.  Set *OFF to the offset of this
// input section without the output section.

template<int size, bool big_endian>
Output_section*
Layout::layout(Object* object, const char* name,
	       const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
{
  // We discard empty input sections.
  if (shdr.get_sh_size() == 0)
    return NULL;

  if (!this->include_section(object, name, shdr))
    return NULL;

  // Unless we are doing a relocateable link, .gnu.linkonce sections
  // are laid out as though they were named for the sections are
  // placed into.
  if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
    name = Layout::linkonce_output_name(name);

  // FIXME: Handle SHF_OS_NONCONFORMING here.

  // Canonicalize the section name.
  name = this->namepool_.add(name);

  // Find the output section.  The output section is selected based on
  // the section name, type, and flags.

  // FIXME: If we want to do relaxation, we need to modify this
  // algorithm.  We also build a list of input sections for each
  // output section.  Then we relax all the input sections.  Then we
  // walk down the list and adjust all the offsets.

  elfcpp::Elf_Word type = shdr.get_sh_type();
  elfcpp::Elf_Xword flags = shdr.get_sh_flags();
  const Key key(name, std::make_pair(type, flags));
  const std::pair<Key, Output_section*> v(key, NULL);
  std::pair<Section_name_map::iterator, bool> ins(
    this->section_name_map_.insert(v));

  Output_section* os;
  if (!ins.second)
    os = ins.first->second;
  else
    {
      // This is the first time we've seen this name/type/flags
      // combination.
      os = this->make_output_section(name, type, flags);
      ins.first->second = os;
    }

  // FIXME: Handle SHF_LINK_ORDER somewhere.

  *off = os->add_input_section(object, name, shdr);

  return os;
}

// Map section flags to segment flags.

elfcpp::Elf_Word
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
{
  elfcpp::Elf_Word ret = elfcpp::PF_R;
  if ((flags & elfcpp::SHF_WRITE) != 0)
    ret |= elfcpp::PF_W;
  if ((flags & elfcpp::SHF_EXECINSTR) != 0)
    ret |= elfcpp::PF_X;
  return ret;
}

// Make a new Output_section, and attach it to segments as
// appropriate.

Output_section*
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
			    elfcpp::Elf_Xword flags)
{
  ++this->last_shndx_;
  Output_section* os = new Output_section(name, type, flags,
					  this->last_shndx_);

  if ((flags & elfcpp::SHF_ALLOC) == 0)
    this->section_list_.push_back(os);
  else
    {
      // This output section goes into a PT_LOAD segment.

      elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);

      // The only thing we really care about for PT_LOAD segments is
      // whether or not they are writable, so that is how we search
      // for them.  People who need segments sorted on some other
      // basis will have to wait until we implement a mechanism for
      // them to describe the segments they want.

      Segment_list::const_iterator p;
      for (p = this->segment_list_.begin();
	   p != this->segment_list_.end();
	   ++p)
	{
	  if ((*p)->type() == elfcpp::PT_LOAD
	      && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
	    {
	      (*p)->add_output_section(os, seg_flags);
	      break;
	    }
	}

      if (p == this->segment_list_.end())
	{
	  Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
						    seg_flags);
	  this->segment_list_.push_back(oseg);
	  oseg->add_output_section(os, seg_flags);
	}

      // If we see a loadable SHT_NOTE section, we create a PT_NOTE
      // segment.
      if (type == elfcpp::SHT_NOTE)
	{
	  // See if we already have an equivalent PT_NOTE segment.
	  for (p = this->segment_list_.begin();
	       p != segment_list_.end();
	       ++p)
	    {
	      if ((*p)->type() == elfcpp::PT_NOTE
		  && (((*p)->flags() & elfcpp::PF_W)
		      == (seg_flags & elfcpp::PF_W)))
		{
		  (*p)->add_output_section(os, seg_flags);
		  break;
		}
	    }

	  if (p == this->segment_list_.end())
	    {
	      Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
							seg_flags);
	      this->segment_list_.push_back(oseg);
	      oseg->add_output_section(os, seg_flags);
	    }
	}

      // If we see a loadable SHF_TLS section, we create a PT_TLS
      // segment.
      if ((flags & elfcpp::SHF_TLS) != 0)
	{
	  // See if we already have an equivalent PT_TLS segment.
	  for (p = this->segment_list_.begin();
	       p != segment_list_.end();
	       ++p)
	    {
	      if ((*p)->type() == elfcpp::PT_TLS
		  && (((*p)->flags() & elfcpp::PF_W)
		      == (seg_flags & elfcpp::PF_W)))
		{
		  (*p)->add_output_section(os, seg_flags);
		  break;
		}
	    }

	  if (p == this->segment_list_.end())
	    {
	      Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
							seg_flags);
	      this->segment_list_.push_back(oseg);
	      oseg->add_output_section(os, seg_flags);
	    }
	}
    }

  return os;
}

// Find the first read-only PT_LOAD segment, creating one if
// necessary.

Output_segment*
Layout::find_first_load_seg()
{
  for (Segment_list::const_iterator p = this->segment_list_.begin();
       p != this->segment_list_.end();
       ++p)
    {
      if ((*p)->type() == elfcpp::PT_LOAD
	  && ((*p)->flags() & elfcpp::PF_R) != 0
	  && ((*p)->flags() & elfcpp::PF_W) == 0)
	return *p;
    }

  Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
  this->segment_list_.push_back(load_seg);
  return load_seg;
}

// Finalize the layout.  When this is called, we have created all the
// output sections and all the output segments which are based on
// input sections.  We have several things to do, and we have to do
// them in the right order, so that we get the right results correctly
// and efficiently.

// 1) Finalize the list of output segments and create the segment
// table header.

// 2) Finalize the dynamic symbol table and associated sections.

// 3) Determine the final file offset of all the output segments.

// 4) Determine the final file offset of all the SHF_ALLOC output
// sections.

// 5) Create the symbol table sections and the section name table
// section.

// 6) Finalize the symbol table: set symbol values to their final
// value and make a final determination of which symbols are going
// into the output symbol table.

// 7) Create the section table header.

// 8) Determine the final file offset of all the output sections which
// are not SHF_ALLOC, including the section table header.

// 9) Finalize the ELF file header.

// This function returns the size of the output file.

off_t
Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
{
  if (input_objects->any_dynamic())
    {
      // If there are any dynamic objects in the link, then we need
      // some additional segments: PT_PHDRS, PT_INTERP, and
      // PT_DYNAMIC.  We also need to finalize the dynamic symbol
      // table and create the dynamic hash table.
      abort();
    }

  // FIXME: Handle PT_GNU_STACK.

  Output_segment* load_seg = this->find_first_load_seg();

  // Lay out the segment headers.
  int size = input_objects->target()->get_size();
  bool big_endian = input_objects->target()->is_big_endian();
  Output_segment_headers* segment_headers;
  segment_headers = new Output_segment_headers(size, big_endian,
					       this->segment_list_);
  load_seg->add_initial_output_data(segment_headers);
  this->special_output_list_.push_back(segment_headers);
  // FIXME: Attach them to PT_PHDRS if necessary.

  // Lay out the file header.
  Output_file_header* file_header;
  file_header = new Output_file_header(size,
				       big_endian,
				       this->options_,
				       input_objects->target(),
				       symtab,
				       segment_headers);
  load_seg->add_initial_output_data(file_header);
  this->special_output_list_.push_back(file_header);

  // Set the file offsets of all the segments.
  off_t off = this->set_segment_offsets(input_objects->target(), load_seg);

  // Create the symbol table sections.
  // FIXME: We don't need to do this if we are stripping symbols.
  Output_section* osymtab;
  Output_section* ostrtab;
  this->create_symtab_sections(size, input_objects, symtab, &off,
			       &osymtab, &ostrtab);

  // Create the .shstrtab section.
  Output_section* shstrtab_section = this->create_shstrtab();

  // Set the file offsets of all the sections not associated with
  // segments.
  off = this->set_section_offsets(off);

  // Create the section table header.
  Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);

  file_header->set_section_info(oshdrs, shstrtab_section);

  // Now we know exactly where everything goes in the output file.

  return off;
}

// Return whether SEG1 should be before SEG2 in the output file.  This
// is based entirely on the segment type and flags.  When this is
// called the segment addresses has normally not yet been set.

bool
Layout::segment_precedes(const Output_segment* seg1,
			 const Output_segment* seg2)
{
  elfcpp::Elf_Word type1 = seg1->type();
  elfcpp::Elf_Word type2 = seg2->type();

  // The single PT_PHDR segment is required to precede any loadable
  // segment.  We simply make it always first.
  if (type1 == elfcpp::PT_PHDR)
    {
      assert(type2 != elfcpp::PT_PHDR);
      return true;
    }
  if (type2 == elfcpp::PT_PHDR)
    return false;

  // The single PT_INTERP segment is required to precede any loadable
  // segment.  We simply make it always second.
  if (type1 == elfcpp::PT_INTERP)
    {
      assert(type2 != elfcpp::PT_INTERP);
      return true;
    }
  if (type2 == elfcpp::PT_INTERP)
    return false;

  // We then put PT_LOAD segments before any other segments.
  if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
    return true;
  if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
    return false;

  const elfcpp::Elf_Word flags1 = seg1->flags();
  const elfcpp::Elf_Word flags2 = seg2->flags();

  // The order of non-PT_LOAD segments is unimportant.  We simply sort
  // by the numeric segment type and flags values.  There should not
  // be more than one segment with the same type and flags.
  if (type1 != elfcpp::PT_LOAD)
    {
      if (type1 != type2)
	return type1 < type2;
      assert(flags1 != flags2);
      return flags1 < flags2;
    }

  // We sort PT_LOAD segments based on the flags.  Readonly segments
  // come before writable segments.  Then executable segments come
  // before non-executable segments.  Then the unlikely case of a
  // non-readable segment comes before the normal case of a readable
  // segment.  If there are multiple segments with the same type and
  // flags, we require that the address be set, and we sort by
  // virtual address and then physical address.
  if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
    return (flags1 & elfcpp::PF_W) == 0;
  if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
    return (flags1 & elfcpp::PF_X) != 0;
  if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
    return (flags1 & elfcpp::PF_R) == 0;

  uint64_t vaddr1 = seg1->vaddr();
  uint64_t vaddr2 = seg2->vaddr();
  if (vaddr1 != vaddr2)
    return vaddr1 < vaddr2;

  uint64_t paddr1 = seg1->paddr();
  uint64_t paddr2 = seg2->paddr();
  assert(paddr1 != paddr2);
  return paddr1 < paddr2;
}

// Set the file offsets of all the segments.  They have all been
// created.  LOAD_SEG must be be laid out first.  Return the offset of
// the data to follow.

off_t
Layout::set_segment_offsets(const Target* target, Output_segment* load_seg)
{
  // Sort them into the final order.
  std::sort(this->segment_list_.begin(), this->segment_list_.end(),
	    Layout::Compare_segments());

  // Find the PT_LOAD segments, and set their addresses and offsets
  // and their section's addresses and offsets.
  uint64_t addr = target->text_segment_address();
  off_t off = 0;
  bool was_readonly = false;
  for (Segment_list::iterator p = this->segment_list_.begin();
       p != this->segment_list_.end();
       ++p)
    {
      if ((*p)->type() == elfcpp::PT_LOAD)
	{
	  if (load_seg != NULL && load_seg != *p)
	    abort();
	  load_seg = NULL;

	  // If the last segment was readonly, and this one is not,
	  // then skip the address forward one page, maintaining the
	  // same position within the page.  This lets us store both
	  // segments overlapping on a single page in the file, but
	  // the loader will put them on different pages in memory.

	  uint64_t orig_addr = addr;
	  uint64_t orig_off = off;

	  uint64_t aligned_addr = addr;
	  uint64_t abi_pagesize = target->abi_pagesize();
	  if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
	    {
	      uint64_t align = (*p)->max_data_align();

	      addr = (addr + align - 1) & ~ (align - 1);
	      aligned_addr = addr;
	      if ((addr & (abi_pagesize - 1)) != 0)
		addr = addr + abi_pagesize;
	    }

	  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
	  uint64_t new_addr = (*p)->set_section_addresses(addr, &off);

	  // Now that we know the size of this segment, we may be able
	  // to save a page in memory, at the cost of wasting some
	  // file space, by instead aligning to the start of a new
	  // page.  Here we use the real machine page size rather than
	  // the ABI mandated page size.

	  if (aligned_addr != addr)
	    {
	      uint64_t common_pagesize = target->common_pagesize();
	      uint64_t first_off = (common_pagesize
				    - (aligned_addr
				       & (common_pagesize - 1)));
	      uint64_t last_off = new_addr & (common_pagesize - 1);
	      if (first_off > 0
		  && last_off > 0
		  && ((aligned_addr & ~ (common_pagesize - 1))
		      != (new_addr & ~ (common_pagesize - 1)))
		  && first_off + last_off <= common_pagesize)
		{
		  addr = ((aligned_addr + common_pagesize - 1)
			  & ~ (common_pagesize - 1));
		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
		  new_addr = (*p)->set_section_addresses(addr, &off);
		}
	    }

	  addr = new_addr;

	  if (((*p)->flags() & elfcpp::PF_W) == 0)
	    was_readonly = true;
	}
    }

  // Handle the non-PT_LOAD segments, setting their offsets from their
  // section's offsets.
  for (Segment_list::iterator p = this->segment_list_.begin();
       p != this->segment_list_.end();
       ++p)
    {
      if ((*p)->type() != elfcpp::PT_LOAD)
	(*p)->set_offset();
    }

  return off;
}

// Set the file offset of all the sections not associated with a
// segment.

off_t
Layout::set_section_offsets(off_t off)
{
  for (Layout::Section_list::iterator p = this->section_list_.begin();
       p != this->section_list_.end();
       ++p)
    {
      if ((*p)->offset() != -1)
	continue;
      uint64_t addralign = (*p)->addralign();
      if (addralign != 0)
	off = (off + addralign - 1) & ~ (addralign - 1);
      (*p)->set_address(0, off);
      off += (*p)->data_size();
    }
  return off;
}

// Create the symbol table sections.

void
Layout::create_symtab_sections(int size, const Input_objects* input_objects,
			       Symbol_table* symtab,
			       off_t* poff,
			       Output_section** posymtab,
			       Output_section** postrtab)
{
  int symsize;
  unsigned int align;
  if (size == 32)
    {
      symsize = elfcpp::Elf_sizes<32>::sym_size;
      align = 4;
    }
  else if (size == 64)
    {
      symsize = elfcpp::Elf_sizes<64>::sym_size;
      align = 8;
    }
  else
    abort();

  off_t off = *poff;
  off = (off + align - 1) & ~ (align - 1);
  off_t startoff = off;

  // Save space for the dummy symbol at the start of the section.  We
  // never bother to write this out--it will just be left as zero.
  off += symsize;

  for (Input_objects::Object_list::const_iterator p = input_objects->begin();
       p != input_objects->end();
       ++p)
    {
      Task_lock_obj<Object> tlo(**p);
      off = (*p)->finalize_local_symbols(off, &this->sympool_);
    }

  unsigned int local_symcount = (off - startoff) / symsize;
  assert(local_symcount * symsize == off - startoff);

  off = symtab->finalize(off, &this->sympool_);

  this->sympool_.set_string_offsets();

  ++this->last_shndx_;
  const char* symtab_name = this->namepool_.add(".symtab");
  Output_section* osymtab = new Output_section_symtab(symtab_name,
						      off - startoff,
						      this->last_shndx_);
  this->section_list_.push_back(osymtab);

  ++this->last_shndx_;
  const char* strtab_name = this->namepool_.add(".strtab");
  Output_section *ostrtab = new Output_section_strtab(strtab_name,
						      &this->sympool_,
						      this->last_shndx_);
  this->section_list_.push_back(ostrtab);
  this->special_output_list_.push_back(ostrtab);

  osymtab->set_address(0, startoff);
  osymtab->set_link(ostrtab->shndx());
  osymtab->set_info(local_symcount);
  osymtab->set_entsize(symsize);
  osymtab->set_addralign(align);

  *poff = off;
  *posymtab = osymtab;
  *postrtab = ostrtab;
}

// Create the .shstrtab section, which holds the names of the
// sections.  At the time this is called, we have created all the
// output sections except .shstrtab itself.

Output_section*
Layout::create_shstrtab()
{
  // FIXME: We don't need to create a .shstrtab section if we are
  // stripping everything.

  const char* name = this->namepool_.add(".shstrtab");

  this->namepool_.set_string_offsets();

  ++this->last_shndx_;
  Output_section* os = new Output_section_strtab(name,
						 &this->namepool_,
						 this->last_shndx_);

  this->section_list_.push_back(os);
  this->special_output_list_.push_back(os);

  return os;
}

// Create the section headers.  SIZE is 32 or 64.  OFF is the file
// offset.

Output_section_headers*
Layout::create_shdrs(int size, bool big_endian, off_t* poff)
{
  Output_section_headers* oshdrs;
  oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
				      this->section_list_,
				      &this->namepool_);
  uint64_t addralign = oshdrs->addralign();
  off_t off = (*poff + addralign - 1) & ~ (addralign - 1);
  oshdrs->set_address(0, off);
  off += oshdrs->data_size();
  *poff = off;
  this->special_output_list_.push_back(oshdrs);
  return oshdrs;
}

// The mapping of .gnu.linkonce section names to real section names.

#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
{
  MAPPING_INIT("d.rel.ro", ".data.rel.ro"),	// Must be before "d".
  MAPPING_INIT("t", ".text"),
  MAPPING_INIT("r", ".rodata"),
  MAPPING_INIT("d", ".data"),
  MAPPING_INIT("b", ".bss"),
  MAPPING_INIT("s", ".sdata"),
  MAPPING_INIT("sb", ".sbss"),
  MAPPING_INIT("s2", ".sdata2"),
  MAPPING_INIT("sb2", ".sbss2"),
  MAPPING_INIT("wi", ".debug_info"),
  MAPPING_INIT("td", ".tdata"),
  MAPPING_INIT("tb", ".tbss"),
  MAPPING_INIT("lr", ".lrodata"),
  MAPPING_INIT("l", ".ldata"),
  MAPPING_INIT("lb", ".lbss"),
};
#undef MAPPING_INIT

const int Layout::linkonce_mapping_count =
  sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);

// Return the name of the output section to use for a .gnu.linkonce
// section.  This is based on the default ELF linker script of the old
// GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
// to ".text".

const char*
Layout::linkonce_output_name(const char* name)
{
  const char* s = name + sizeof(".gnu.linkonce") - 1;
  if (*s != '.')
    return name;
  ++s;
  const Linkonce_mapping* plm = linkonce_mapping;
  for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
    {
      if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
	return plm->to;
    }
  return name;
}

// Record the signature of a comdat section, and return whether to
// include it in the link.  If GROUP is true, this is a regular
// section group.  If GROUP is false, this is a group signature
// derived from the name of a linkonce section.  We want linkonce
// signatures and group signatures to block each other, but we don't
// want a linkonce signature to block another linkonce signature.

bool
Layout::add_comdat(const char* signature, bool group)
{
  std::string sig(signature);
  std::pair<Signatures::iterator, bool> ins(
    this->signatures_.insert(std::make_pair(signature, group)));

  if (ins.second)
    {
      // This is the first time we've seen this signature.
      return true;
    }

  if (ins.first->second)
    {
      // We've already seen a real section group with this signature.
      return false;
    }
  else if (group)
    {
      // This is a real section group, and we've already seen a
      // linkonce section with tihs signature.  Record that we've seen
      // a section group, and don't include this section group.
      ins.first->second = true;
      return false;
    }
  else
    {
      // We've already seen a linkonce section and this is a linkonce
      // section.  These don't block each other--this may be the same
      // symbol name with different section types.
      return true;
    }
}

// Write out data not associated with a section or the symbol table.

void
Layout::write_data(Output_file* of) const
{
  for (Data_list::const_iterator p = this->special_output_list_.begin();
       p != this->special_output_list_.end();
       ++p)
    (*p)->write(of);
}

// Write_data_task methods.

// We can always run this task.

Task::Is_runnable_type
Write_data_task::is_runnable(Workqueue*)
{
  return IS_RUNNABLE;
}

// We need to unlock FINAL_BLOCKER when finished.

Task_locker*
Write_data_task::locks(Workqueue* workqueue)
{
  return new Task_locker_block(*this->final_blocker_, workqueue);
}

// Run the task--write out the data.

void
Write_data_task::run(Workqueue*)
{
  this->layout_->write_data(this->of_);
}

// Write_symbols_task methods.

// We can always run this task.

Task::Is_runnable_type
Write_symbols_task::is_runnable(Workqueue*)
{
  return IS_RUNNABLE;
}

// We need to unlock FINAL_BLOCKER when finished.

Task_locker*
Write_symbols_task::locks(Workqueue* workqueue)
{
  return new Task_locker_block(*this->final_blocker_, workqueue);
}

// Run the task--write out the symbols.

void
Write_symbols_task::run(Workqueue*)
{
  this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
}

// Close_task methods.

// We can't run until FINAL_BLOCKER is unblocked.

Task::Is_runnable_type
Close_task::is_runnable(Workqueue*)
{
  if (this->final_blocker_->is_blocked())
    return IS_BLOCKED;
  return IS_RUNNABLE;
}

// We don't lock anything.

Task_locker*
Close_task::locks(Workqueue*)
{
  return NULL;
}

// Run the task--close the file.

void
Close_task::run(Workqueue*)
{
  this->of_->close();
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones for implemented targets.

template
Output_section*
Layout::layout<32, false>(Object* object, const char* name,
			  const elfcpp::Shdr<32, false>& shdr, off_t*);

template
Output_section*
Layout::layout<32, true>(Object* object, const char* name,
			 const elfcpp::Shdr<32, true>& shdr, off_t*);

template
Output_section*
Layout::layout<64, false>(Object* object, const char* name,
			  const elfcpp::Shdr<64, false>& shdr, off_t*);

template
Output_section*
Layout::layout<64, true>(Object* object, const char* name,
			 const elfcpp::Shdr<64, true>& shdr, off_t*);


} // End namespace gold.