aboutsummaryrefslogtreecommitdiff
path: root/gold/expression.cc
blob: e8fd9fd8954477e934bf5ee3599bce17808a98fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
// expression.cc -- expressions in linker scripts for gold

// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <string>

#include "parameters.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "script.h"
#include "script-c.h"

namespace gold
{

// This file holds the code which handles linker expressions.

// The dot symbol, which linker scripts refer to simply as ".",
// requires special treatment.  The dot symbol is set several times,
// section addresses will refer to it, output sections will change it,
// and it can be set based on the value of other symbols.  We simplify
// the handling by prohibiting setting the dot symbol to the value of
// a non-absolute symbol.

// When evaluating the value of an expression, we pass in a pointer to
// this struct, so that the expression evaluation can find the
// information it needs.

struct Expression::Expression_eval_info
{
  // The symbol table.
  const Symbol_table* symtab;
  // The layout--we use this to get section information.
  const Layout* layout;
  // Whether expressions can refer to the dot symbol.  The dot symbol
  // is only available within a SECTIONS clause.
  bool is_dot_available;
  // Whether the dot symbol currently has a value.
  bool dot_has_value;
  // The current value of the dot symbol.
  uint64_t dot_value;
  // Points to the IS_ABSOLUTE variable, which is set to false if the
  // expression uses a value which is not absolute.
  bool* is_absolute;
};

// Evaluate an expression.

uint64_t
Expression::eval(const Symbol_table* symtab, const Layout* layout)
{
  bool dummy;
  return this->eval_maybe_dot(symtab, layout, false, false, 0, &dummy);
}

// Evaluate an expression which may refer to the dot symbol.

uint64_t
Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
			  bool dot_has_value, uint64_t dot_value,
			  bool* is_absolute)
{
  return this->eval_maybe_dot(symtab, layout, true, dot_has_value, dot_value,
			      is_absolute);
}

// Evaluate an expression which may or may not refer to the dot
// symbol.

uint64_t
Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
			   bool is_dot_available, bool dot_has_value,
			   uint64_t dot_value, bool* is_absolute)
{
  Expression_eval_info eei;
  eei.symtab = symtab;
  eei.layout = layout;
  eei.is_dot_available = is_dot_available;
  eei.dot_has_value = dot_has_value;
  eei.dot_value = dot_value;

  // We assume the value is absolute, and only set this to false if we
  // find a section relative reference.
  *is_absolute = true;
  eei.is_absolute = is_absolute;

  return this->value(&eei);
}

// A number.

class Integer_expression : public Expression
{
 public:
  Integer_expression(uint64_t val)
    : val_(val)
  { }

  uint64_t
  value(const Expression_eval_info*)
  { return this->val_; }

  void
  print(FILE* f) const
  { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }

 private:
  uint64_t val_;
};

extern "C" Expression*
script_exp_integer(uint64_t val)
{
  return new Integer_expression(val);
}

// An expression whose value is the value of a symbol.

class Symbol_expression : public Expression
{
 public:
  Symbol_expression(const char* name, size_t length)
    : name_(name, length)
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "%s", this->name_.c_str()); }

 private:
  std::string name_;
};

uint64_t
Symbol_expression::value(const Expression_eval_info* eei)
{
  Symbol* sym = eei->symtab->lookup(this->name_.c_str());
  if (sym == NULL || !sym->is_defined())
    {
      gold_error(_("undefined symbol '%s' referenced in expression"),
		 this->name_.c_str());
      return 0;
    }

  // If this symbol does not have an absolute value, then the whole
  // expression does not have an absolute value.  This is not strictly
  // accurate: the subtraction of two symbols in the same section is
  // absolute.  This is unlikely to matter in practice, as this value
  // is only used for error checking.
  if (!sym->value_is_absolute())
    *eei->is_absolute = false;

  if (parameters->get_size() == 32)
    return eei->symtab->get_sized_symbol<32>(sym)->value();
  else if (parameters->get_size() == 64)
    return eei->symtab->get_sized_symbol<64>(sym)->value();
  else
    gold_unreachable();
}

// An expression whose value is the value of the special symbol ".".
// This is only valid within a SECTIONS clause.

class Dot_expression : public Expression
{
 public:
  Dot_expression()
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "."); }
};

uint64_t
Dot_expression::value(const Expression_eval_info* eei)
{
  if (!eei->is_dot_available)
    {
      gold_error(_("invalid reference to dot symbol outside of "
		   "SECTIONS clause"));
      return 0;
    }
  else if (!eei->dot_has_value)
    {
      gold_error(_("invalid reference to dot symbol before "
		   "it has been given a value"));
      return 0;
    }
  return eei->dot_value;
}

// A string.  This is either the name of a symbol, or ".".

extern "C" Expression*
script_exp_string(const char* name, size_t length)
{
  if (length == 1 && name[0] == '.')
    return new Dot_expression();
  else
    return new Symbol_expression(name, length);
}

// A unary expression.

class Unary_expression : public Expression
{
 public:
  Unary_expression(Expression* arg)
    : arg_(arg)
  { }

  ~Unary_expression()
  { delete this->arg_; }

 protected:
  uint64_t
  arg_value(const Expression_eval_info* eei) const
  { return this->arg_->value(eei); }

  void
  arg_print(FILE* f) const
  { this->arg_->print(f); }

 private:
  Expression* arg_;
};

// Handle unary operators.  We use a preprocessor macro as a hack to
// capture the C operator.

#define UNARY_EXPRESSION(NAME, OPERATOR)			\
  class Unary_ ## NAME : public Unary_expression		\
  {								\
   public:							\
    Unary_ ## NAME(Expression* arg)				\
      : Unary_expression(arg)					\
    { }								\
    								\
    uint64_t							\
    value(const Expression_eval_info* eei)			\
    { return OPERATOR this->arg_value(eei); }			\
								\
    void							\
    print(FILE* f) const					\
    {								\
      fprintf(f, "(%s ", #OPERATOR);				\
      this->arg_print(f);					\
      fprintf(f, ")");						\
    }								\
  };								\
  								\
  extern "C" Expression*					\
  script_exp_unary_ ## NAME(Expression* arg)			\
  {								\
    return new Unary_ ## NAME(arg);				\
  }

UNARY_EXPRESSION(minus, -)
UNARY_EXPRESSION(logical_not, !)
UNARY_EXPRESSION(bitwise_not, ~)

// A binary expression.

class Binary_expression : public Expression
{
 public:
  Binary_expression(Expression* left, Expression* right)
    : left_(left), right_(right)
  { }

  ~Binary_expression()
  {
    delete this->left_;
    delete this->right_;
  }

 protected:
  uint64_t
  left_value(const Expression_eval_info* eei) const
  { return this->left_->value(eei); }

  uint64_t
  right_value(const Expression_eval_info* eei) const
  { return this->right_->value(eei); }

  void
  left_print(FILE* f) const
  { this->left_->print(f); }

  void
  right_print(FILE* f) const
  { this->right_->print(f); }

  // This is a call to function FUNCTION_NAME.  Print it.  This is for
  // debugging.
  void
  print_function(FILE* f, const char *function_name) const
  {
    fprintf(f, "%s(", function_name);
    this->left_print(f);
    fprintf(f, ", ");
    this->right_print(f);
    fprintf(f, ")");
  }

 private:
  Expression* left_;
  Expression* right_;
};

// Handle binary operators.  We use a preprocessor macro as a hack to
// capture the C operator.

#define BINARY_EXPRESSION(NAME, OPERATOR)				\
  class Binary_ ## NAME : public Binary_expression			\
  {									\
  public:								\
    Binary_ ## NAME(Expression* left, Expression* right)		\
      : Binary_expression(left, right)					\
    { }									\
									\
    uint64_t								\
    value(const Expression_eval_info* eei)				\
    {									\
      return (this->left_value(eei)					\
	      OPERATOR this->right_value(eei));				\
    }									\
									\
    void								\
    print(FILE* f) const						\
    {									\
      fprintf(f, "(");							\
      this->left_print(f);						\
      fprintf(f, " %s ", #OPERATOR);					\
      this->right_print(f);						\
      fprintf(f, ")");							\
    }									\
  };									\
									\
  extern "C" Expression*						\
  script_exp_binary_ ## NAME(Expression* left, Expression* right)	\
  {									\
    return new Binary_ ## NAME(left, right);				\
  }

BINARY_EXPRESSION(mult, *)
BINARY_EXPRESSION(div, /)
BINARY_EXPRESSION(mod, %)
BINARY_EXPRESSION(add, +)
BINARY_EXPRESSION(sub, -)
BINARY_EXPRESSION(lshift, <<)
BINARY_EXPRESSION(rshift, >>)
BINARY_EXPRESSION(eq, ==)
BINARY_EXPRESSION(ne, !=)
BINARY_EXPRESSION(le, <=)
BINARY_EXPRESSION(ge, >=)
BINARY_EXPRESSION(lt, <)
BINARY_EXPRESSION(gt, >)
BINARY_EXPRESSION(bitwise_and, &)
BINARY_EXPRESSION(bitwise_xor, ^)
BINARY_EXPRESSION(bitwise_or, |)
BINARY_EXPRESSION(logical_and, &&)
BINARY_EXPRESSION(logical_or, ||)

// A trinary expression.

class Trinary_expression : public Expression
{
 public:
  Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
    : arg1_(arg1), arg2_(arg2), arg3_(arg3)
  { }

  ~Trinary_expression()
  {
    delete this->arg1_;
    delete this->arg2_;
    delete this->arg3_;
  }

 protected:
  uint64_t
  arg1_value(const Expression_eval_info* eei) const
  { return this->arg1_->value(eei); }

  uint64_t
  arg2_value(const Expression_eval_info* eei) const
  { return this->arg2_->value(eei); }

  uint64_t
  arg3_value(const Expression_eval_info* eei) const
  { return this->arg3_->value(eei); }

  void
  arg1_print(FILE* f) const
  { this->arg1_->print(f); }

  void
  arg2_print(FILE* f) const
  { this->arg2_->print(f); }

  void
  arg3_print(FILE* f) const
  { this->arg3_->print(f); }

 private:
  Expression* arg1_;
  Expression* arg2_;
  Expression* arg3_;
};

// The conditional operator.

class Trinary_cond : public Trinary_expression
{
 public:
  Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
    : Trinary_expression(arg1, arg2, arg3)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    return (this->arg1_value(eei)
	    ? this->arg2_value(eei)
	    : this->arg3_value(eei));
  }

  void
  print(FILE* f) const
  {
    fprintf(f, "(");
    this->arg1_print(f);
    fprintf(f, " ? ");
    this->arg2_print(f);
    fprintf(f, " : ");
    this->arg3_print(f);
    fprintf(f, ")");
  }
};

extern "C" Expression*
script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
{
  return new Trinary_cond(arg1, arg2, arg3);
}

// Max function.

class Max_expression : public Binary_expression
{
 public:
  Max_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  { return std::max(this->left_value(eei), this->right_value(eei)); }

  void
  print(FILE* f) const
  { this->print_function(f, "MAX"); }
};

extern "C" Expression*
script_exp_function_max(Expression* left, Expression* right)
{
  return new Max_expression(left, right);
}

// Min function.

class Min_expression : public Binary_expression
{
 public:
  Min_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  { return std::min(this->left_value(eei), this->right_value(eei)); }

  void
  print(FILE* f) const
  { this->print_function(f, "MIN"); }
};

extern "C" Expression*
script_exp_function_min(Expression* left, Expression* right)
{
  return new Min_expression(left, right);
}

// Align function.

class Align_expression : public Binary_expression
{
 public:
  Align_expression(Expression* left, Expression* right)
    : Binary_expression(left, right)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    uint64_t align = this->right_value(eei);
    uint64_t value = this->left_value(eei);
    if (align <= 1)
      return value;
    return ((value + align - 1) / align) * align;
  }

  void
  print(FILE* f) const
  { this->print_function(f, "ALIGN"); }
};

extern "C" Expression*
script_exp_function_align(Expression* left, Expression* right)
{
  return new Align_expression(left, right);
}

// Assert function.

class Assert_expression : public Unary_expression
{
 public:
  Assert_expression(Expression* arg, const char* message, size_t length)
    : Unary_expression(arg), message_(message, length)
  { }

  uint64_t
  value(const Expression_eval_info* eei)
  {
    uint64_t value = this->arg_value(eei);
    if (!value)
      gold_error("%s", this->message_.c_str());
    return value;
  }

  void
  print(FILE* f) const
  {
    fprintf(f, "ASSERT(");
    this->arg_print(f);
    fprintf(f, ", %s)", this->message_.c_str());
  }

 private:
  std::string message_;
};

extern "C" Expression*
script_exp_function_assert(Expression* expr, const char* message,
			   size_t length)
{
  return new Assert_expression(expr, message, length);
}

// Addr function.

class Addr_expression : public Expression
{
 public:
  Addr_expression(const char* section_name, size_t section_name_len)
    : section_name_(section_name, section_name_len)
  { }

  uint64_t
  value(const Expression_eval_info*);

  void
  print(FILE* f) const
  { fprintf(f, "ADDR(%s)", this->section_name_.c_str()); }

 private:
  std::string section_name_;
};

uint64_t
Addr_expression::value(const Expression_eval_info* eei)
{
  const char* section_name = this->section_name_.c_str();
  Output_section* os = eei->layout->find_output_section(section_name);
  if (os == NULL)
    {
      gold_error("ADDR called on nonexistent output section '%s'",
		 section_name);
      return 0;
    }

  // Note that the address of a section is an absolute address, and we
  // should not clear *EEI->IS_ABSOLUTE here.

  return os->address();
}

extern "C" Expression*
script_exp_function_addr(const char* section_name, size_t section_name_len)
{
  return new Addr_expression(section_name, section_name_len);
}

// Functions.

extern "C" Expression*
script_exp_function_defined(const char*, size_t)
{
  gold_fatal(_("DEFINED not implemented"));
}

extern "C" Expression*
script_exp_function_sizeof_headers()
{
  gold_fatal(_("SIZEOF_HEADERS not implemented"));
}

extern "C" Expression*
script_exp_function_alignof(const char*, size_t)
{
  gold_fatal(_("ALIGNOF not implemented"));
}

extern "C" Expression*
script_exp_function_sizeof(const char*, size_t)
{
  gold_fatal(_("SIZEOF not implemented"));
}

extern "C" Expression*
script_exp_function_loadaddr(const char*, size_t)
{
  gold_fatal(_("LOADADDR not implemented"));
}

extern "C" Expression*
script_exp_function_origin(const char*, size_t)
{
  gold_fatal(_("ORIGIN not implemented"));
}

extern "C" Expression*
script_exp_function_length(const char*, size_t)
{
  gold_fatal(_("LENGTH not implemented"));
}

extern "C" Expression*
script_exp_function_constant(const char*, size_t)
{
  gold_fatal(_("CONSTANT not implemented"));
}

extern "C" Expression*
script_exp_function_absolute(Expression*)
{
  gold_fatal(_("ABSOLUTE not implemented"));
}

extern "C" Expression*
script_exp_function_data_segment_align(Expression*, Expression*)
{
  gold_fatal(_("DATA_SEGMENT_ALIGN not implemented"));
}

extern "C" Expression*
script_exp_function_data_segment_relro_end(Expression*, Expression*)
{
  gold_fatal(_("DATA_SEGMENT_RELRO_END not implemented"));
}

extern "C" Expression*
script_exp_function_data_segment_end(Expression*)
{
  gold_fatal(_("DATA_SEGMENT_END not implemented"));
}

extern "C" Expression*
script_exp_function_segment_start(const char*, size_t, Expression*)
{
  gold_fatal(_("SEGMENT_START not implemented"));
}

} // End namespace gold.