aboutsummaryrefslogtreecommitdiff
path: root/gold/dwarf_reader.cc
blob: 189e6a6740f729fffdf12d56a03dacf449e81a26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
// dwarf_reader.cc -- parse dwarf2/3 debug information

// Copyright 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <algorithm>
#include <vector>

#include "elfcpp_swap.h"
#include "dwarf.h"
#include "object.h"
#include "parameters.h"
#include "reloc.h"
#include "dwarf_reader.h"
#include "int_encoding.h"
#include "compressed_output.h"

namespace gold {

struct LineStateMachine
{
  int file_num;
  uint64_t address;
  int line_num;
  int column_num;
  unsigned int shndx;    // the section address refers to
  bool is_stmt;          // stmt means statement.
  bool basic_block;
  bool end_sequence;
};

static void
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
{
  lsm->file_num = 1;
  lsm->address = 0;
  lsm->line_num = 1;
  lsm->column_num = 0;
  lsm->shndx = -1U;
  lsm->is_stmt = default_is_stmt;
  lsm->basic_block = false;
  lsm->end_sequence = false;
}

template<int size, bool big_endian>
Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
    Object* object,
    unsigned int read_shndx)
  : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
    symtab_buffer_(NULL), directories_(), files_(), current_header_index_(-1)
{
  unsigned int debug_shndx;

  for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
    {
      // FIXME: do this more efficiently: section_name() isn't super-fast
      std::string name = object->section_name(debug_shndx);
      if (name == ".debug_line" || name == ".zdebug_line")
	{
	  section_size_type buffer_size;
	  bool is_new = false;
	  this->buffer_ = object->decompressed_section_contents(debug_shndx,
								&buffer_size,
								&is_new);
	  if (is_new)
	    this->buffer_start_ = this->buffer_;
	  this->buffer_end_ = this->buffer_ + buffer_size;
	  break;
	}
    }
  if (this->buffer_ == NULL)
    return;

  // Find the relocation section for ".debug_line".
  // We expect these for relobjs (.o's) but not dynobjs (.so's).
  bool got_relocs = false;
  for (unsigned int reloc_shndx = 0;
       reloc_shndx < object->shnum();
       ++reloc_shndx)
    {
      unsigned int reloc_sh_type = object->section_type(reloc_shndx);
      if ((reloc_sh_type == elfcpp::SHT_REL
	   || reloc_sh_type == elfcpp::SHT_RELA)
	  && object->section_info(reloc_shndx) == debug_shndx)
	{
	  got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
                                                      reloc_sh_type);
	  this->track_relocs_type_ = reloc_sh_type;
	  break;
	}
    }

  // Finally, we need the symtab section to interpret the relocs.
  if (got_relocs)
    {
      unsigned int symtab_shndx;
      for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
        if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
          {
            this->symtab_buffer_ = object->section_contents(
                symtab_shndx, &this->symtab_buffer_size_, false);
            break;
          }
      if (this->symtab_buffer_ == NULL)
        return;
    }

  // Now that we have successfully read all the data, parse the debug
  // info.
  this->data_valid_ = true;
  this->read_line_mappings(object, read_shndx);
}

// Read the DWARF header.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
    const unsigned char* lineptr)
{
  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
  lineptr += 4;

  // In DWARF2/3, if the initial length is all 1 bits, then the offset
  // size is 8 and we need to read the next 8 bytes for the real length.
  if (initial_length == 0xffffffff)
    {
      header_.offset_size = 8;
      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
      lineptr += 8;
    }
  else
    header_.offset_size = 4;

  header_.total_length = initial_length;

  gold_assert(lineptr + header_.total_length <= buffer_end_);

  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
  lineptr += 2;

  if (header_.offset_size == 4)
    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
  else
    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
  lineptr += header_.offset_size;

  header_.min_insn_length = *lineptr;
  lineptr += 1;

  header_.default_is_stmt = *lineptr;
  lineptr += 1;

  header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
  lineptr += 1;

  header_.line_range = *lineptr;
  lineptr += 1;

  header_.opcode_base = *lineptr;
  lineptr += 1;

  header_.std_opcode_lengths.resize(header_.opcode_base + 1);
  header_.std_opcode_lengths[0] = 0;
  for (int i = 1; i < header_.opcode_base; i++)
    {
      header_.std_opcode_lengths[i] = *lineptr;
      lineptr += 1;
    }

  return lineptr;
}

// The header for a debug_line section is mildly complicated, because
// the line info is very tightly encoded.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_tables(
    const unsigned char* lineptr)
{
  ++this->current_header_index_;

  // Create a new directories_ entry and a new files_ entry for our new
  // header.  We initialize each with a single empty element, because
  // dwarf indexes directory and filenames starting at 1.
  gold_assert(static_cast<int>(this->directories_.size())
	      == this->current_header_index_);
  gold_assert(static_cast<int>(this->files_.size())
	      == this->current_header_index_);
  this->directories_.push_back(std::vector<std::string>(1));
  this->files_.push_back(std::vector<std::pair<int, std::string> >(1));

  // It is legal for the directory entry table to be empty.
  if (*lineptr)
    {
      int dirindex = 1;
      while (*lineptr)
        {
	  const char* dirname = reinterpret_cast<const char*>(lineptr);
          gold_assert(dirindex
		      == static_cast<int>(this->directories_.back().size()));
          this->directories_.back().push_back(dirname);
          lineptr += this->directories_.back().back().size() + 1;
          dirindex++;
        }
    }
  lineptr++;

  // It is also legal for the file entry table to be empty.
  if (*lineptr)
    {
      int fileindex = 1;
      size_t len;
      while (*lineptr)
        {
          const char* filename = reinterpret_cast<const char*>(lineptr);
          lineptr += strlen(filename) + 1;

          uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
          lineptr += len;

          if (dirindex >= this->directories_.back().size())
            dirindex = 0;
	  int dirindexi = static_cast<int>(dirindex);

          read_unsigned_LEB_128(lineptr, &len);   // mod_time
          lineptr += len;

          read_unsigned_LEB_128(lineptr, &len);   // filelength
          lineptr += len;

          gold_assert(fileindex
		      == static_cast<int>(this->files_.back().size()));
          this->files_.back().push_back(std::make_pair(dirindexi, filename));
          fileindex++;
        }
    }
  lineptr++;

  return lineptr;
}

// Process a single opcode in the .debug.line structure.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
    const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
{
  size_t oplen = 0;
  size_t templen;
  unsigned char opcode = *start;
  oplen++;
  start++;

  // If the opcode is great than the opcode_base, it is a special
  // opcode. Most line programs consist mainly of special opcodes.
  if (opcode >= header_.opcode_base)
    {
      opcode -= header_.opcode_base;
      const int advance_address = ((opcode / header_.line_range)
                                   * header_.min_insn_length);
      lsm->address += advance_address;

      const int advance_line = ((opcode % header_.line_range)
                                + header_.line_base);
      lsm->line_num += advance_line;
      lsm->basic_block = true;
      *len = oplen;
      return true;
    }

  // Otherwise, we have the regular opcodes
  switch (opcode)
    {
    case elfcpp::DW_LNS_copy:
      lsm->basic_block = false;
      *len = oplen;
      return true;

    case elfcpp::DW_LNS_advance_pc:
      {
        const uint64_t advance_address
            = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->address += header_.min_insn_length * advance_address;
      }
      break;

    case elfcpp::DW_LNS_advance_line:
      {
        const uint64_t advance_line = read_signed_LEB_128(start, &templen);
        oplen += templen;
        lsm->line_num += advance_line;
      }
      break;

    case elfcpp::DW_LNS_set_file:
      {
        const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->file_num = fileno;
      }
      break;

    case elfcpp::DW_LNS_set_column:
      {
        const uint64_t colno = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->column_num = colno;
      }
      break;

    case elfcpp::DW_LNS_negate_stmt:
      lsm->is_stmt = !lsm->is_stmt;
      break;

    case elfcpp::DW_LNS_set_basic_block:
      lsm->basic_block = true;
      break;

    case elfcpp::DW_LNS_fixed_advance_pc:
      {
        int advance_address;
        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
        oplen += 2;
        lsm->address += advance_address;
      }
      break;

    case elfcpp::DW_LNS_const_add_pc:
      {
        const int advance_address = (header_.min_insn_length
                                     * ((255 - header_.opcode_base)
                                        / header_.line_range));
        lsm->address += advance_address;
      }
      break;

    case elfcpp::DW_LNS_extended_op:
      {
        const uint64_t extended_op_len
            = read_unsigned_LEB_128(start, &templen);
        start += templen;
        oplen += templen + extended_op_len;

        const unsigned char extended_op = *start;
        start++;

        switch (extended_op)
          {
          case elfcpp::DW_LNE_end_sequence:
            // This means that the current byte is the one immediately
            // after a set of instructions.  Record the current line
            // for up to one less than the current address.
            lsm->line_num = -1;
            lsm->end_sequence = true;
            *len = oplen;
            return true;

          case elfcpp::DW_LNE_set_address:
            {
              lsm->address =
		elfcpp::Swap_unaligned<size, big_endian>::readval(start);
              typename Reloc_map::const_iterator it
                  = this->reloc_map_.find(start - this->buffer_);
              if (it != reloc_map_.end())
                {
		  // If this is a SHT_RELA section, then ignore the
		  // section contents.  This assumes that this is a
		  // straight reloc which just uses the reloc addend.
		  // The reloc addend has already been included in the
		  // symbol value.
		  if (this->track_relocs_type_ == elfcpp::SHT_RELA)
		    lsm->address = 0;
		  // Add in the symbol value.
		  lsm->address += it->second.second;
                  lsm->shndx = it->second.first;
                }
              else
                {
                  // If we're a normal .o file, with relocs, every
                  // set_address should have an associated relocation.
		  if (this->input_is_relobj())
                    this->data_valid_ = false;
                }
              break;
            }
          case elfcpp::DW_LNE_define_file:
            {
              const char* filename  = reinterpret_cast<const char*>(start);
              templen = strlen(filename) + 1;
              start += templen;

              uint64_t dirindex = read_unsigned_LEB_128(start, &templen);

              if (dirindex >= this->directories_.back().size())
                dirindex = 0;
	      int dirindexi = static_cast<int>(dirindex);

              // This opcode takes two additional ULEB128 parameters
              // (mod_time and filelength), but we don't use those
              // values.  Because OPLEN already tells us how far to
              // skip to the next opcode, we don't need to read
              // them at all.

              this->files_.back().push_back(std::make_pair(dirindexi,
							   filename));
            }
            break;
          }
      }
      break;

    default:
      {
        // Ignore unknown opcode  silently
        for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
          {
            size_t templen;
            read_unsigned_LEB_128(start, &templen);
            start += templen;
            oplen += templen;
          }
      }
      break;
  }
  *len = oplen;
  return false;
}

// Read the debug information at LINEPTR and store it in the line
// number map.

template<int size, bool big_endian>
unsigned const char*
Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
                                                    unsigned int shndx)
{
  struct LineStateMachine lsm;

  // LENGTHSTART is the place the length field is based on.  It is the
  // point in the header after the initial length field.
  const unsigned char* lengthstart = buffer_;

  // In 64 bit dwarf, the initial length is 12 bytes, because of the
  // 0xffffffff at the start.
  if (header_.offset_size == 8)
    lengthstart += 12;
  else
    lengthstart += 4;

  while (lineptr < lengthstart + header_.total_length)
    {
      ResetLineStateMachine(&lsm, header_.default_is_stmt);
      while (!lsm.end_sequence)
        {
          size_t oplength;
          bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
          if (add_line
              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
            {
              Offset_to_lineno_entry entry
                  = { static_cast<off_t>(lsm.address),
		      this->current_header_index_,
		      static_cast<unsigned int>(lsm.file_num),
		      true, lsm.line_num };
	      std::vector<Offset_to_lineno_entry>&
		map(this->line_number_map_[lsm.shndx]);
	      // If we see two consecutive entries with the same
	      // offset and a real line number, then mark the first
	      // one as non-canonical.
	      if (!map.empty()
		  && (map.back().offset == static_cast<off_t>(lsm.address))
		  && lsm.line_num != -1
		  && map.back().line_num != -1)
		map.back().last_line_for_offset = false;
	      map.push_back(entry);
            }
          lineptr += oplength;
        }
    }

  return lengthstart + header_.total_length;
}

// Looks in the symtab to see what section a symbol is in.

template<int size, bool big_endian>
unsigned int
Sized_dwarf_line_info<size, big_endian>::symbol_section(
    Object* object,
    unsigned int sym,
    typename elfcpp::Elf_types<size>::Elf_Addr* value,
    bool* is_ordinary)
{
  const int symsize = elfcpp::Elf_sizes<size>::sym_size;
  gold_assert(sym * symsize < this->symtab_buffer_size_);
  elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
  *value = elfsym.get_st_value();
  return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
}

// Read the relocations into a Reloc_map.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
{
  if (this->symtab_buffer_ == NULL)
    return;

  typename elfcpp::Elf_types<size>::Elf_Addr value;
  off_t reloc_offset;
  while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
    {
      const unsigned int sym = this->track_relocs_.next_symndx();

      bool is_ordinary;
      const unsigned int shndx = this->symbol_section(object, sym, &value,
						      &is_ordinary);

      // There is no reason to record non-ordinary section indexes, or
      // SHN_UNDEF, because they will never match the real section.
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
	{
	  value += this->track_relocs_.next_addend();
	  this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
	}

      this->track_relocs_.advance(reloc_offset + 1);
    }
}

// Read the line number info.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
							    unsigned int shndx)
{
  gold_assert(this->data_valid_ == true);

  this->read_relocs(object);
  while (this->buffer_ < this->buffer_end_)
    {
      const unsigned char* lineptr = this->buffer_;
      lineptr = this->read_header_prolog(lineptr);
      lineptr = this->read_header_tables(lineptr);
      lineptr = this->read_lines(lineptr, shndx);
      this->buffer_ = lineptr;
    }

  // Sort the lines numbers, so addr2line can use binary search.
  for (typename Lineno_map::iterator it = line_number_map_.begin();
       it != line_number_map_.end();
       ++it)
    // Each vector needs to be sorted by offset.
    std::sort(it->second.begin(), it->second.end());
}

// Some processing depends on whether the input is a .o file or not.
// For instance, .o files have relocs, and have .debug_lines
// information on a per section basis.  .so files, on the other hand,
// lack relocs, and offsets are unique, so we can ignore the section
// information.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
{
  // Only .o files have relocs and the symtab buffer that goes with them.
  return this->symtab_buffer_ != NULL;
}

// Given an Offset_to_lineno_entry vector, and an offset, figure out
// if the offset points into a function according to the vector (see
// comments below for the algorithm).  If it does, return an iterator
// into the vector that points to the line-number that contains that
// offset.  If not, it returns vector::end().

static std::vector<Offset_to_lineno_entry>::const_iterator
offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
                   off_t offset)
{
  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };

  // lower_bound() returns the smallest offset which is >= lookup_key.
  // If no offset in offsets is >= lookup_key, returns end().
  std::vector<Offset_to_lineno_entry>::const_iterator it
      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);

  // This code is easiest to understand with a concrete example.
  // Here's a possible offsets array:
  // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
  //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
  //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
  //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
  //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
  //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
  //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
  //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
  //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
  //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
  //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
  //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
  //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
  //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
  //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
  //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
  //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
  // The entries with line_num == -1 mark the end of a function: the
  // associated offset is one past the last instruction in the
  // function.  This can correspond to the beginning of the next
  // function (as is true for offset 3232); alternately, there can be
  // a gap between the end of one function and the start of the next
  // (as is true for some others, most obviously from 3236->5764).
  //
  // Case 1: lookup_key has offset == 10.  lower_bound returns
  //         offsets[0].  Since it's not an exact match and we're
  //         at the beginning of offsets, we return end() (invalid).
  // Case 2: lookup_key has offset 10000.  lower_bound returns
  //         offset[21] (end()).  We return end() (invalid).
  // Case 3: lookup_key has offset == 3211.  lower_bound matches
  //         offsets[0] exactly, and that's the entry we return.
  // Case 4: lookup_key has offset == 3232.  lower_bound returns
  //         offsets[4].  That's an exact match, but indicates
  //         end-of-function.  We check if offsets[5] is also an
  //         exact match but not end-of-function.  It is, so we
  //         return offsets[5].
  // Case 5: lookup_key has offset == 3214.  lower_bound returns
  //         offsets[1].  Since it's not an exact match, we back
  //         up to the offset that's < lookup_key, offsets[0].
  //         We note offsets[0] is a valid entry (not end-of-function),
  //         so that's the entry we return.
  // Case 6: lookup_key has offset == 4000.  lower_bound returns
  //         offsets[8].  Since it's not an exact match, we back
  //         up to offsets[7].  Since offsets[7] indicates
  //         end-of-function, we know lookup_key is between
  //         functions, so we return end() (not a valid offset).
  // Case 7: lookup_key has offset == 5794.  lower_bound returns
  //         offsets[19].  Since it's not an exact match, we back
  //         up to offsets[16].  Note we back up to the *first*
  //         entry with offset 5793, not just offsets[19-1].
  //         We note offsets[16] is a valid entry, so we return it.
  //         If offsets[16] had had line_num == -1, we would have
  //         checked offsets[17].  The reason for this is that
  //         16 and 17 can be in an arbitrary order, since we sort
  //         only by offset and last_line_for_offset.  (Note it
  //         doesn't help to use line_number as a tertiary sort key,
  //         since sometimes we want the -1 to be first and sometimes
  //         we want it to be last.)

  // This deals with cases (1) and (2).
  if ((it == offsets->begin() && offset < it->offset)
      || it == offsets->end())
    return offsets->end();

  // This deals with cases (3) and (4).
  if (offset == it->offset)
    {
      while (it != offsets->end()
             && it->offset == offset
             && it->line_num == -1)
        ++it;
      if (it == offsets->end() || it->offset != offset)
        return offsets->end();
      else
        return it;
    }

  // This handles the first part of case (7) -- we back up to the
  // *first* entry that has the offset that's behind us.
  gold_assert(it != offsets->begin());
  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
  --it;
  const off_t range_value = it->offset;
  while (it != offsets->begin() && (it-1)->offset == range_value)
    --it;

  // This handles cases (5), (6), and (7): if any entry in the
  // equal_range [it, range_end) has a line_num != -1, it's a valid
  // match.  If not, we're not in a function.  The line number we saw
  // last for an offset will be sorted first, so it'll get returned if
  // it's present.
  for (; it != range_end; ++it)
    if (it->line_num != -1)
      return it;
  return offsets->end();
}

// Returns the canonical filename:lineno for the address passed in.
// If other_lines is not NULL, appends the non-canonical lines
// assigned to the same address.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::do_addr2line(
    unsigned int shndx,
    off_t offset,
    std::vector<std::string>* other_lines)
{
  if (this->data_valid_ == false)
    return "";

  const std::vector<Offset_to_lineno_entry>* offsets;
  // If we do not have reloc information, then our input is a .so or
  // some similar data structure where all the information is held in
  // the offset.  In that case, we ignore the input shndx.
  if (this->input_is_relobj())
    offsets = &this->line_number_map_[shndx];
  else
    offsets = &this->line_number_map_[-1U];
  if (offsets->empty())
    return "";

  typename std::vector<Offset_to_lineno_entry>::const_iterator it
      = offset_to_iterator(offsets, offset);
  if (it == offsets->end())
    return "";

  std::string result = this->format_file_lineno(*it);
  if (other_lines != NULL)
    for (++it; it != offsets->end() && it->offset == offset; ++it)
      {
        if (it->line_num == -1)
          continue;  // The end of a previous function.
        other_lines->push_back(this->format_file_lineno(*it));
      }
  return result;
}

// Convert the file_num + line_num into a string.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
    const Offset_to_lineno_entry& loc) const
{
  std::string ret;

  gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
  gold_assert(loc.file_num
	      < static_cast<int>(this->files_[loc.header_num].size()));
  const std::pair<int, std::string>& filename_pair
      = this->files_[loc.header_num][loc.file_num];
  const std::string& filename = filename_pair.second;

  gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
  gold_assert(filename_pair.first
              < static_cast<int>(this->directories_[loc.header_num].size()));
  const std::string& dirname
      = this->directories_[loc.header_num][filename_pair.first];

  if (!dirname.empty())
    {
      ret += dirname;
      ret += "/";
    }
  ret += filename;
  if (ret.empty())
    ret = "(unknown)";

  char buffer[64];   // enough to hold a line number
  snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
  ret += ":";
  ret += buffer;

  return ret;
}

// Dwarf_line_info routines.

static unsigned int next_generation_count = 0;

struct Addr2line_cache_entry
{
  Object* object;
  unsigned int shndx;
  Dwarf_line_info* dwarf_line_info;
  unsigned int generation_count;
  unsigned int access_count;

  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
      : object(o), shndx(s), dwarf_line_info(d),
        generation_count(next_generation_count), access_count(0)
  {
    if (next_generation_count < (1U << 31))
      ++next_generation_count;
  }
};
// We expect this cache to be small, so don't bother with a hashtable
// or priority queue or anything: just use a simple vector.
static std::vector<Addr2line_cache_entry> addr2line_cache;

std::string
Dwarf_line_info::one_addr2line(Object* object,
                               unsigned int shndx, off_t offset,
                               size_t cache_size,
                               std::vector<std::string>* other_lines)
{
  Dwarf_line_info* lineinfo = NULL;
  std::vector<Addr2line_cache_entry>::iterator it;

  // First, check the cache.  If we hit, update the counts.
  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
    {
      if (it->object == object && it->shndx == shndx)
        {
          lineinfo = it->dwarf_line_info;
          it->generation_count = next_generation_count;
          // We cap generation_count at 2^31 -1 to avoid overflow.
          if (next_generation_count < (1U << 31))
            ++next_generation_count;
          // We cap access_count at 31 so 2^access_count doesn't overflow
          if (it->access_count < 31)
            ++it->access_count;
          break;
        }
    }

  // If we don't hit the cache, create a new object and insert into the
  // cache.
  if (lineinfo == NULL)
  {
    switch (parameters->size_and_endianness())
      {
#ifdef HAVE_TARGET_32_LITTLE
        case Parameters::TARGET_32_LITTLE:
          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_32_BIG
        case Parameters::TARGET_32_BIG:
          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
        case Parameters::TARGET_64_LITTLE:
          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_BIG
        case Parameters::TARGET_64_BIG:
          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
#endif
        default:
          gold_unreachable();
      }
    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
  }

  // Now that we have our object, figure out the answer
  std::string retval = lineinfo->addr2line(shndx, offset, other_lines);

  // Finally, if our cache has grown too big, delete old objects.  We
  // assume the common (probably only) case is deleting only one object.
  // We use a pretty simple scheme to evict: function of LRU and MFU.
  while (addr2line_cache.size() > cache_size)
    {
      unsigned int lowest_score = ~0U;
      std::vector<Addr2line_cache_entry>::iterator lowest
          = addr2line_cache.end();
      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
        {
          const unsigned int score = (it->generation_count
                                      + (1U << it->access_count));
          if (score < lowest_score)
            {
              lowest_score = score;
              lowest = it;
            }
        }
      if (lowest != addr2line_cache.end())
        {
          delete lowest->dwarf_line_info;
          addr2line_cache.erase(lowest);
        }
    }

  return retval;
}

void
Dwarf_line_info::clear_addr2line_cache()
{
  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
       it != addr2line_cache.end();
       ++it)
    delete it->dwarf_line_info;
  addr2line_cache.clear();
}

#ifdef HAVE_TARGET_32_LITTLE
template
class Sized_dwarf_line_info<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Sized_dwarf_line_info<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Sized_dwarf_line_info<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Sized_dwarf_line_info<64, true>;
#endif

} // End namespace gold.