1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
// dwarf_reader.cc -- parse dwarf2/3 debug information
// Copyright 2007 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include "elfcpp_swap.h"
#include "dwarf.h"
#include "dwarf_reader.h"
namespace {
// Read an unsigned LEB128 number. Each byte contains 7 bits of
// information, plus one bit saying whether the number continues or
// not.
uint64_t
read_unsigned_LEB_128(const unsigned char* buffer, size_t* len)
{
uint64_t result = 0;
size_t num_read = 0;
unsigned int shift = 0;
unsigned char byte;
do
{
byte = *buffer++;
num_read++;
result |= (static_cast<uint64_t>(byte & 0x7f)) << shift;
shift += 7;
}
while (byte & 0x80);
*len = num_read;
return result;
}
// Read a signed LEB128 number. These are like regular LEB128
// numbers, except the last byte may have a sign bit set.
int64_t
read_signed_LEB_128(const unsigned char* buffer, size_t* len)
{
int64_t result = 0;
int shift = 0;
size_t num_read = 0;
unsigned char byte;
do
{
byte = *buffer++;
num_read++;
result |= (static_cast<uint64_t>(byte & 0x7f) << shift);
shift += 7;
}
while (byte & 0x80);
if ((shift < 8 * static_cast<int>(sizeof(result))) && (byte & 0x40))
result |= -((static_cast<int64_t>(1)) << shift);
*len = num_read;
return result;
}
} // End anonymous namespace.
namespace gold {
// This is the format of a DWARF2/3 line state machine that we process
// opcodes using. There is no need for anything outside the lineinfo
// processor to know how this works.
struct LineStateMachine
{
int file_num;
uint64_t address;
int line_num;
int column_num;
unsigned int shndx; // the section address refers to
bool is_stmt; // stmt means statement.
bool basic_block;
bool end_sequence;
};
static void
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
{
lsm->file_num = 1;
lsm->address = 0;
lsm->line_num = 1;
lsm->column_num = 0;
lsm->shndx = -1;
lsm->is_stmt = default_is_stmt;
lsm->basic_block = false;
lsm->end_sequence = false;
}
// Read the DWARF header.
template<int size, bool big_endian>
const unsigned char*
Dwarf_line_info<size, big_endian>::read_header_prolog(
const unsigned char* lineptr)
{
uint32_t initial_length = elfcpp::Swap<32, big_endian>::readval(lineptr);
lineptr += 4;
// In DWARF2/3, if the initial length is all 1 bits, then the offset
// size is 8 and we need to read the next 8 bytes for the real length.
if (initial_length == 0xffffffff)
{
header_.offset_size = 8;
initial_length = elfcpp::Swap<64, big_endian>::readval(lineptr);
lineptr += 8;
}
else
header_.offset_size = 4;
header_.total_length = initial_length;
gold_assert(lineptr + header_.total_length <= buffer_end_);
header_.version = elfcpp::Swap<16, big_endian>::readval(lineptr);
lineptr += 2;
if (header_.offset_size == 4)
header_.prologue_length = elfcpp::Swap<32, big_endian>::readval(lineptr);
else
header_.prologue_length = elfcpp::Swap<64, big_endian>::readval(lineptr);
lineptr += header_.offset_size;
header_.min_insn_length = *lineptr;
lineptr += 1;
header_.default_is_stmt = *lineptr;
lineptr += 1;
header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
lineptr += 1;
header_.line_range = *lineptr;
lineptr += 1;
header_.opcode_base = *lineptr;
lineptr += 1;
header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
header_.std_opcode_lengths[0] = 0;
for (int i = 1; i < header_.opcode_base; i++)
{
header_.std_opcode_lengths[i] = *lineptr;
lineptr += 1;
}
return lineptr;
}
// The header for a debug_line section is mildly complicated, because
// the line info is very tightly encoded.
template<int size, bool big_endian>
const unsigned char*
Dwarf_line_info<size, big_endian>::read_header_tables(
const unsigned char* lineptr)
{
// It is legal for the directory entry table to be empty.
if (*lineptr)
{
int dirindex = 1;
while (*lineptr)
{
const unsigned char* dirname = lineptr;
gold_assert(dirindex == static_cast<int>(directories_.size()));
directories_.push_back(reinterpret_cast<const char*>(dirname));
lineptr += directories_.back().size() + 1;
dirindex++;
}
}
lineptr++;
// It is also legal for the file entry table to be empty.
if (*lineptr)
{
int fileindex = 1;
size_t len;
while (*lineptr)
{
const char* filename = reinterpret_cast<const char*>(lineptr);
lineptr += strlen(filename) + 1;
uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
if (dirindex >= directories_.size())
dirindex = 0;
lineptr += len;
read_unsigned_LEB_128(lineptr, &len); // mod_time
lineptr += len;
read_unsigned_LEB_128(lineptr, &len); // filelength
lineptr += len;
gold_assert(fileindex == static_cast<int>(files_.size()));
files_.push_back(std::pair<int, std::string>(dirindex, filename));
fileindex++;
}
}
lineptr++;
return lineptr;
}
// Process a single opcode in the .debug.line structure.
// Templating on size and big_endian would yield more efficient (and
// simpler) code, but would bloat the binary. Speed isn't important
// here.
template<int size, bool big_endian>
bool
Dwarf_line_info<size, big_endian>::process_one_opcode(
const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
{
size_t oplen = 0;
size_t templen;
unsigned char opcode = *start;
oplen++;
start++;
// If the opcode is great than the opcode_base, it is a special
// opcode. Most line programs consist mainly of special opcodes.
if (opcode >= header_.opcode_base)
{
opcode -= header_.opcode_base;
const int advance_address = ((opcode / header_.line_range)
* header_.min_insn_length);
lsm->address += advance_address;
const int advance_line = ((opcode % header_.line_range)
+ header_.line_base);
lsm->line_num += advance_line;
lsm->basic_block = true;
*len = oplen;
return true;
}
// Otherwise, we have the regular opcodes
switch (opcode)
{
case elfcpp::DW_LNS_copy:
lsm->basic_block = false;
*len = oplen;
return true;
case elfcpp::DW_LNS_advance_pc:
{
const uint64_t advance_address
= read_unsigned_LEB_128(start, &templen);
oplen += templen;
lsm->address += header_.min_insn_length * advance_address;
}
break;
case elfcpp::DW_LNS_advance_line:
{
const uint64_t advance_line = read_signed_LEB_128(start, &templen);
oplen += templen;
lsm->line_num += advance_line;
}
break;
case elfcpp::DW_LNS_set_file:
{
const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
oplen += templen;
lsm->file_num = fileno;
}
break;
case elfcpp::DW_LNS_set_column:
{
const uint64_t colno = read_unsigned_LEB_128(start, &templen);
oplen += templen;
lsm->column_num = colno;
}
break;
case elfcpp::DW_LNS_negate_stmt:
lsm->is_stmt = !lsm->is_stmt;
break;
case elfcpp::DW_LNS_set_basic_block:
lsm->basic_block = true;
break;
case elfcpp::DW_LNS_fixed_advance_pc:
{
int advance_address;
advance_address = elfcpp::Swap<16, big_endian>::readval(start);
oplen += 2;
lsm->address += advance_address;
}
break;
case elfcpp::DW_LNS_const_add_pc:
{
const int advance_address = (header_.min_insn_length
* ((255 - header_.opcode_base)
/ header_.line_range));
lsm->address += advance_address;
}
break;
case elfcpp::DW_LNS_extended_op:
{
const uint64_t extended_op_len
= read_unsigned_LEB_128(start, &templen);
start += templen;
oplen += templen + extended_op_len;
const unsigned char extended_op = *start;
start++;
switch (extended_op)
{
case elfcpp::DW_LNE_end_sequence:
lsm->end_sequence = true;
*len = oplen;
return true;
case elfcpp::DW_LNE_set_address:
// FIXME: modify the address based on the reloc
lsm->address = elfcpp::Swap<size, big_endian>::readval(start);
// FIXME: set lsm->shndx from the reloc
lsm->shndx = 1;
break;
case elfcpp::DW_LNE_define_file:
{
const char* filename = reinterpret_cast<const char*>(start);
templen = strlen(filename) + 1;
start += templen;
uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
if (dirindex >= directories_.size())
dirindex = 0;
oplen += templen;
read_unsigned_LEB_128(start, &templen); // mod_time
oplen += templen;
read_unsigned_LEB_128(start, &templen); // filelength
oplen += templen;
files_.push_back(std::pair<int, std::string>(dirindex,
filename));
}
break;
}
}
break;
default:
{
// Ignore unknown opcode silently
for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
{
size_t templen;
read_unsigned_LEB_128(start, &templen);
start += templen;
oplen += templen;
}
}
break;
}
*len = oplen;
return false;
}
// Read the debug information at LINEPTR and store it in the line
// number map.
template<int size, bool big_endian>
unsigned const char*
Dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr)
{
struct LineStateMachine lsm;
// LENGTHSTART is the place the length field is based on. It is the
// point in the header after the initial length field.
const unsigned char* lengthstart = buffer_;
// In 64 bit dwarf, the initial length is 12 bytes, because of the
// 0xffffffff at the start.
if (header_.offset_size == 8)
lengthstart += 12;
else
lengthstart += 4;
while (lineptr < lengthstart + header_.total_length)
{
ResetLineStateMachine(&lsm, header_.default_is_stmt);
while (!lsm.end_sequence)
{
size_t oplength;
bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
if (add_line)
{
Offset_to_lineno_entry entry
= { lsm.address, lsm.file_num, lsm.line_num };
line_number_map_[lsm.shndx].push_back(entry);
}
lineptr += oplength;
}
}
return lengthstart + header_.total_length;
}
template<int size, bool big_endian>
void
Dwarf_line_info<size, big_endian>::read_line_mappings()
{
while (buffer_ < buffer_end_)
{
const unsigned char* lineptr = buffer_;
lineptr = this->read_header_prolog(lineptr);
lineptr = this->read_header_tables(lineptr);
lineptr = this->read_lines(lineptr);
buffer_ = lineptr;
}
// Sort the lines numbers, so addr2line can use binary search.
for (typename Lineno_map::iterator it = line_number_map_.begin();
it != line_number_map_.end();
++it)
// Each vector needs to be sorted by offset.
sort(it->second.begin(), it->second.end());
}
// Return a string for a file name and line number.
template<int size, bool big_endian>
std::string
Dwarf_line_info<size, big_endian>::addr2line(unsigned int shndx, off_t offset)
{
const Offset_to_lineno_entry lookup_key = { offset, 0, 0 };
std::vector<Offset_to_lineno_entry>& offsets = line_number_map_[shndx];
typename std::vector<Offset_to_lineno_entry>::const_iterator it
= std::lower_bound(offsets.begin(), offsets.end(), lookup_key);
// If we found an exact match, great, otherwise find the last entry
// before the passed-in offset.
if (it->offset > offset)
{
if (it == offsets.begin())
return "";
--it;
gold_assert(it->offset < offset);
}
// Convert the file_num + line_num into a string.
std::string ret;
gold_assert(it->file_num < static_cast<int>(files_.size()));
const std::pair<int, std::string>& filename_pair = files_[it->file_num];
gold_assert(filename_pair.first < static_cast<int>(directories_.size()));
const std::string& dirname = directories_[filename_pair.first];
const std::string& filename = filename_pair.second;
if (!dirname.empty())
{
ret += dirname;
ret += "/";
}
ret += filename;
if (ret.empty())
ret = "(unknown)";
char buffer[64]; // enough to hold a line number
snprintf(buffer, sizeof(buffer), "%d", it->line_num);
ret += ":";
ret += buffer;
return ret;
}
#ifdef HAVE_TARGET_32_LITTLE
template
class Dwarf_line_info<32, false>;
#endif
#ifdef HAVE_TARGET_32_BIG
template
class Dwarf_line_info<32, true>;
#endif
#ifdef HAVE_TARGET_64_LITTLE
template
class Dwarf_line_info<64, false>;
#endif
#ifdef HAVE_TARGET_64_BIG
template
class Dwarf_line_info<64, true>;
#endif
} // End namespace gold.
|