aboutsummaryrefslogtreecommitdiff
path: root/gold/arm.cc
blob: f655d59a1288a95cd4c687b104942788439d69a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
// arm.cc -- arm target support for gold.

// Copyright 2009 Free Software Foundation, Inc.
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
// by Ian Lance Taylor <iant@google.com>.
// This file also contains borrowed and adapted code from
// bfd/elf32-arm.c.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>
#include <limits>
#include <cstdio>
#include <string>
#include <algorithm>
#include <map>
#include <utility>

#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "arm.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "defstd.h"
#include "gc.h"
#include "attributes.h"

namespace
{

using namespace gold;

template<bool big_endian>
class Output_data_plt_arm;

template<bool big_endian>
class Stub_table;

template<bool big_endian>
class Arm_input_section;

class Arm_exidx_cantunwind;

class Arm_exidx_merged_section;

class Arm_exidx_fixup;

template<bool big_endian>
class Arm_output_section;

class Arm_exidx_input_section;

template<bool big_endian>
class Arm_relobj;

template<bool big_endian>
class Target_arm;

// For convenience.
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;

// Maximum branch offsets for ARM, THUMB and THUMB2.
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);

// The arm target class.
//
// This is a very simple port of gold for ARM-EABI.  It is intended for
// supporting Android only for the time being.  Only these relocation types
// are supported.
//
// R_ARM_NONE
// R_ARM_ABS32
// R_ARM_ABS32_NOI
// R_ARM_ABS16
// R_ARM_ABS12
// R_ARM_ABS8
// R_ARM_THM_ABS5
// R_ARM_BASE_ABS
// R_ARM_REL32
// R_ARM_THM_CALL
// R_ARM_COPY
// R_ARM_GLOB_DAT
// R_ARM_BASE_PREL
// R_ARM_JUMP_SLOT
// R_ARM_RELATIVE
// R_ARM_GOTOFF32
// R_ARM_GOT_BREL
// R_ARM_GOT_PREL
// R_ARM_PLT32
// R_ARM_CALL
// R_ARM_JUMP24
// R_ARM_TARGET1
// R_ARM_PREL31
// R_ARM_ABS8
// R_ARM_MOVW_ABS_NC
// R_ARM_MOVT_ABS
// R_ARM_THM_MOVW_ABS_NC
// R_ARM_THM_MOVT_ABS
// R_ARM_MOVW_PREL_NC
// R_ARM_MOVT_PREL
// R_ARM_THM_MOVW_PREL_NC
// R_ARM_THM_MOVT_PREL
// R_ARM_V4BX
// R_ARM_THM_JUMP6
// R_ARM_THM_JUMP8
// R_ARM_THM_JUMP11
// 
// TODOs:
// - Support more relocation types as needed. 
// - Make PLTs more flexible for different architecture features like
//   Thumb-2 and BE8.
// There are probably a lot more.

// Instruction template class.  This class is similar to the insn_sequence
// struct in bfd/elf32-arm.c.

class Insn_template
{
 public:
  // Types of instruction templates.
  enum Type
    {
      THUMB16_TYPE = 1,
      // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
      // templates with class-specific semantics.  Currently this is used
      // only by the Cortex_a8_stub class for handling condition codes in
      // conditional branches.
      THUMB16_SPECIAL_TYPE,
      THUMB32_TYPE,
      ARM_TYPE,
      DATA_TYPE
    };

  // Factory methods to create instruction templates in different formats.

  static const Insn_template
  thumb16_insn(uint32_t data)
  { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 

  // A Thumb conditional branch, in which the proper condition is inserted
  // when we build the stub.
  static const Insn_template
  thumb16_bcond_insn(uint32_t data)
  { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 

  static const Insn_template
  thumb32_insn(uint32_t data)
  { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 

  static const Insn_template
  thumb32_b_insn(uint32_t data, int reloc_addend)
  {
    return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
			 reloc_addend);
  } 

  static const Insn_template
  arm_insn(uint32_t data)
  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }

  static const Insn_template
  arm_rel_insn(unsigned data, int reloc_addend)
  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }

  static const Insn_template
  data_word(unsigned data, unsigned int r_type, int reloc_addend)
  { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 

  // Accessors.  This class is used for read-only objects so no modifiers
  // are provided.

  uint32_t
  data() const
  { return this->data_; }

  // Return the instruction sequence type of this.
  Type
  type() const
  { return this->type_; }

  // Return the ARM relocation type of this.
  unsigned int
  r_type() const
  { return this->r_type_; }

  int32_t
  reloc_addend() const
  { return this->reloc_addend_; }

  // Return size of instruction template in bytes.
  size_t
  size() const;

  // Return byte-alignment of instruction template.
  unsigned
  alignment() const;

 private:
  // We make the constructor private to ensure that only the factory
  // methods are used.
  inline
  Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
    : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
  { }

  // Instruction specific data.  This is used to store information like
  // some of the instruction bits.
  uint32_t data_;
  // Instruction template type.
  Type type_;
  // Relocation type if there is a relocation or R_ARM_NONE otherwise.
  unsigned int r_type_;
  // Relocation addend.
  int32_t reloc_addend_;
};

// Macro for generating code to stub types. One entry per long/short
// branch stub

#define DEF_STUBS \
  DEF_STUB(long_branch_any_any) \
  DEF_STUB(long_branch_v4t_arm_thumb) \
  DEF_STUB(long_branch_thumb_only) \
  DEF_STUB(long_branch_v4t_thumb_thumb) \
  DEF_STUB(long_branch_v4t_thumb_arm) \
  DEF_STUB(short_branch_v4t_thumb_arm) \
  DEF_STUB(long_branch_any_arm_pic) \
  DEF_STUB(long_branch_any_thumb_pic) \
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
  DEF_STUB(long_branch_thumb_only_pic) \
  DEF_STUB(a8_veneer_b_cond) \
  DEF_STUB(a8_veneer_b) \
  DEF_STUB(a8_veneer_bl) \
  DEF_STUB(a8_veneer_blx) \
  DEF_STUB(v4_veneer_bx)

// Stub types.

#define DEF_STUB(x) arm_stub_##x,
typedef enum
  {
    arm_stub_none,
    DEF_STUBS

    // First reloc stub type.
    arm_stub_reloc_first = arm_stub_long_branch_any_any,
    // Last  reloc stub type.
    arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,

    // First Cortex-A8 stub type.
    arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
    // Last Cortex-A8 stub type.
    arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
    
    // Last stub type.
    arm_stub_type_last = arm_stub_v4_veneer_bx
  } Stub_type;
#undef DEF_STUB

// Stub template class.  Templates are meant to be read-only objects.
// A stub template for a stub type contains all read-only attributes
// common to all stubs of the same type.

class Stub_template
{
 public:
  Stub_template(Stub_type, const Insn_template*, size_t);

  ~Stub_template()
  { }

  // Return stub type.
  Stub_type
  type() const
  { return this->type_; }

  // Return an array of instruction templates.
  const Insn_template*
  insns() const
  { return this->insns_; }

  // Return size of template in number of instructions.
  size_t
  insn_count() const
  { return this->insn_count_; }

  // Return size of template in bytes.
  size_t
  size() const
  { return this->size_; }

  // Return alignment of the stub template.
  unsigned
  alignment() const
  { return this->alignment_; }
  
  // Return whether entry point is in thumb mode.
  bool
  entry_in_thumb_mode() const
  { return this->entry_in_thumb_mode_; }

  // Return number of relocations in this template.
  size_t
  reloc_count() const
  { return this->relocs_.size(); }

  // Return index of the I-th instruction with relocation.
  size_t
  reloc_insn_index(size_t i) const
  {
    gold_assert(i < this->relocs_.size());
    return this->relocs_[i].first;
  }

  // Return the offset of the I-th instruction with relocation from the
  // beginning of the stub.
  section_size_type
  reloc_offset(size_t i) const
  {
    gold_assert(i < this->relocs_.size());
    return this->relocs_[i].second;
  }

 private:
  // This contains information about an instruction template with a relocation
  // and its offset from start of stub.
  typedef std::pair<size_t, section_size_type> Reloc;

  // A Stub_template may not be copied.  We want to share templates as much
  // as possible.
  Stub_template(const Stub_template&);
  Stub_template& operator=(const Stub_template&);
  
  // Stub type.
  Stub_type type_;
  // Points to an array of Insn_templates.
  const Insn_template* insns_;
  // Number of Insn_templates in insns_[].
  size_t insn_count_;
  // Size of templated instructions in bytes.
  size_t size_;
  // Alignment of templated instructions.
  unsigned alignment_;
  // Flag to indicate if entry is in thumb mode.
  bool entry_in_thumb_mode_;
  // A table of reloc instruction indices and offsets.  We can find these by
  // looking at the instruction templates but we pre-compute and then stash
  // them here for speed. 
  std::vector<Reloc> relocs_;
};

//
// A class for code stubs.  This is a base class for different type of
// stubs used in the ARM target.
//

class Stub
{
 private:
  static const section_offset_type invalid_offset =
    static_cast<section_offset_type>(-1);

 public:
  Stub(const Stub_template* stub_template)
    : stub_template_(stub_template), offset_(invalid_offset)
  { }

  virtual
   ~Stub()
  { }

  // Return the stub template.
  const Stub_template*
  stub_template() const
  { return this->stub_template_; }

  // Return offset of code stub from beginning of its containing stub table.
  section_offset_type
  offset() const
  {
    gold_assert(this->offset_ != invalid_offset);
    return this->offset_;
  }

  // Set offset of code stub from beginning of its containing stub table.
  void
  set_offset(section_offset_type offset)
  { this->offset_ = offset; }
  
  // Return the relocation target address of the i-th relocation in the
  // stub.  This must be defined in a child class.
  Arm_address
  reloc_target(size_t i)
  { return this->do_reloc_target(i); }

  // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
  void
  write(unsigned char* view, section_size_type view_size, bool big_endian)
  { this->do_write(view, view_size, big_endian); }

  // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
  // for the i-th instruction.
  uint16_t
  thumb16_special(size_t i)
  { return this->do_thumb16_special(i); }

 protected:
  // This must be defined in the child class.
  virtual Arm_address
  do_reloc_target(size_t) = 0;

  // This may be overridden in the child class.
  virtual void
  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
  {
    if (big_endian)
      this->do_fixed_endian_write<true>(view, view_size);
    else
      this->do_fixed_endian_write<false>(view, view_size);
  }
  
  // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
  // instruction template.
  virtual uint16_t
  do_thumb16_special(size_t)
  { gold_unreachable(); }

 private:
  // A template to implement do_write.
  template<bool big_endian>
  void inline
  do_fixed_endian_write(unsigned char*, section_size_type);

  // Its template.
  const Stub_template* stub_template_;
  // Offset within the section of containing this stub.
  section_offset_type offset_;
};

// Reloc stub class.  These are stubs we use to fix up relocation because
// of limited branch ranges.

class Reloc_stub : public Stub
{
 public:
  static const unsigned int invalid_index = static_cast<unsigned int>(-1);
  // We assume we never jump to this address.
  static const Arm_address invalid_address = static_cast<Arm_address>(-1);

  // Return destination address.
  Arm_address
  destination_address() const
  {
    gold_assert(this->destination_address_ != this->invalid_address);
    return this->destination_address_;
  }

  // Set destination address.
  void
  set_destination_address(Arm_address address)
  {
    gold_assert(address != this->invalid_address);
    this->destination_address_ = address;
  }

  // Reset destination address.
  void
  reset_destination_address()
  { this->destination_address_ = this->invalid_address; }

  // Determine stub type for a branch of a relocation of R_TYPE going
  // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
  // the branch target is a thumb instruction.  TARGET is used for look
  // up ARM-specific linker settings.
  static Stub_type
  stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
		      Arm_address branch_target, bool target_is_thumb);

  // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
  // and an addend.  Since we treat global and local symbol differently, we
  // use a Symbol object for a global symbol and a object-index pair for
  // a local symbol.
  class Key
  {
   public:
    // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
    // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
    // and R_SYM must not be invalid_index.
    Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
	unsigned int r_sym, int32_t addend)
      : stub_type_(stub_type), addend_(addend)
    {
      if (symbol != NULL)
	{
	  this->r_sym_ = Reloc_stub::invalid_index;
	  this->u_.symbol = symbol;
	}
      else
	{
	  gold_assert(relobj != NULL && r_sym != invalid_index);
	  this->r_sym_ = r_sym;
	  this->u_.relobj = relobj;
	}
    }

    ~Key()
    { }

    // Accessors: Keys are meant to be read-only object so no modifiers are
    // provided.

    // Return stub type.
    Stub_type
    stub_type() const
    { return this->stub_type_; }

    // Return the local symbol index or invalid_index.
    unsigned int
    r_sym() const
    { return this->r_sym_; }

    // Return the symbol if there is one.
    const Symbol*
    symbol() const
    { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }

    // Return the relobj if there is one.
    const Relobj*
    relobj() const
    { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }

    // Whether this equals to another key k.
    bool
    eq(const Key& k) const 
    {
      return ((this->stub_type_ == k.stub_type_)
	      && (this->r_sym_ == k.r_sym_)
	      && ((this->r_sym_ != Reloc_stub::invalid_index)
		  ? (this->u_.relobj == k.u_.relobj)
		  : (this->u_.symbol == k.u_.symbol))
	      && (this->addend_ == k.addend_));
    }

    // Return a hash value.
    size_t
    hash_value() const
    {
      return (this->stub_type_
	      ^ this->r_sym_
	      ^ gold::string_hash<char>(
		    (this->r_sym_ != Reloc_stub::invalid_index)
		    ? this->u_.relobj->name().c_str()
		    : this->u_.symbol->name())
	      ^ this->addend_);
    }

    // Functors for STL associative containers.
    struct hash
    {
      size_t
      operator()(const Key& k) const
      { return k.hash_value(); }
    };

    struct equal_to
    {
      bool
      operator()(const Key& k1, const Key& k2) const
      { return k1.eq(k2); }
    };

    // Name of key.  This is mainly for debugging.
    std::string
    name() const;

   private:
    // Stub type.
    Stub_type stub_type_;
    // If this is a local symbol, this is the index in the defining object.
    // Otherwise, it is invalid_index for a global symbol.
    unsigned int r_sym_;
    // If r_sym_ is invalid index.  This points to a global symbol.
    // Otherwise, this points a relobj.  We used the unsized and target
    // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
    // Arm_relobj.  This is done to avoid making the stub class a template
    // as most of the stub machinery is endianity-neutral.  However, it
    // may require a bit of casting done by users of this class.
    union
    {
      const Symbol* symbol;
      const Relobj* relobj;
    } u_;
    // Addend associated with a reloc.
    int32_t addend_;
  };

 protected:
  // Reloc_stubs are created via a stub factory.  So these are protected.
  Reloc_stub(const Stub_template* stub_template)
    : Stub(stub_template), destination_address_(invalid_address)
  { }

  ~Reloc_stub()
  { }

  friend class Stub_factory;

  // Return the relocation target address of the i-th relocation in the
  // stub.
  Arm_address
  do_reloc_target(size_t i)
  {
    // All reloc stub have only one relocation.
    gold_assert(i == 0);
    return this->destination_address_;
  }

 private:
  // Address of destination.
  Arm_address destination_address_;
};

// Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
// THUMB branch that meets the following conditions:
// 
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
//    branch address is 0xffe.
// 2. The branch target address is in the same page as the first word of the
//    branch.
// 3. The branch follows a 32-bit instruction which is not a branch.
//
// To do the fix up, we need to store the address of the branch instruction
// and its target at least.  We also need to store the original branch
// instruction bits for the condition code in a conditional branch.  The
// condition code is used in a special instruction template.  We also want
// to identify input sections needing Cortex-A8 workaround quickly.  We store
// extra information about object and section index of the code section
// containing a branch being fixed up.  The information is used to mark
// the code section when we finalize the Cortex-A8 stubs.
//

class Cortex_a8_stub : public Stub
{
 public:
  ~Cortex_a8_stub()
  { }

  // Return the object of the code section containing the branch being fixed
  // up.
  Relobj*
  relobj() const
  { return this->relobj_; }

  // Return the section index of the code section containing the branch being
  // fixed up.
  unsigned int
  shndx() const
  { return this->shndx_; }

  // Return the source address of stub.  This is the address of the original
  // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
  // instruction.
  Arm_address
  source_address() const
  { return this->source_address_; }

  // Return the destination address of the stub.  This is the branch taken
  // address of the original branch instruction.  LSB is 1 if it is a THUMB
  // instruction address.
  Arm_address
  destination_address() const
  { return this->destination_address_; }

  // Return the instruction being fixed up.
  uint32_t
  original_insn() const
  { return this->original_insn_; }

 protected:
  // Cortex_a8_stubs are created via a stub factory.  So these are protected.
  Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
		 unsigned int shndx, Arm_address source_address,
		 Arm_address destination_address, uint32_t original_insn)
    : Stub(stub_template), relobj_(relobj), shndx_(shndx),
      source_address_(source_address | 1U),
      destination_address_(destination_address),
      original_insn_(original_insn)
  { }

  friend class Stub_factory;

  // Return the relocation target address of the i-th relocation in the
  // stub.
  Arm_address
  do_reloc_target(size_t i)
  {
    if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
      {
        // The conditional branch veneer has two relocations.
        gold_assert(i < 2);
	return i == 0 ? this->source_address_ + 4 : this->destination_address_;
      }
    else
      {
        // All other Cortex-A8 stubs have only one relocation.
        gold_assert(i == 0);
        return this->destination_address_;
      }
  }

  // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
  uint16_t
  do_thumb16_special(size_t);

 private:
  // Object of the code section containing the branch being fixed up.
  Relobj* relobj_;
  // Section index of the code section containing the branch begin fixed up.
  unsigned int shndx_;
  // Source address of original branch.
  Arm_address source_address_;
  // Destination address of the original branch.
  Arm_address destination_address_;
  // Original branch instruction.  This is needed for copying the condition
  // code from a condition branch to its stub.
  uint32_t original_insn_;
};

// ARMv4 BX Rx branch relocation stub class.
class Arm_v4bx_stub : public Stub
{
 public:
  ~Arm_v4bx_stub()
  { }

  // Return the associated register.
  uint32_t
  reg() const
  { return this->reg_; }

 protected:
  // Arm V4BX stubs are created via a stub factory.  So these are protected.
  Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
    : Stub(stub_template), reg_(reg)
  { }

  friend class Stub_factory;

  // Return the relocation target address of the i-th relocation in the
  // stub.
  Arm_address
  do_reloc_target(size_t)
  { gold_unreachable(); }

  // This may be overridden in the child class.
  virtual void
  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
  {
    if (big_endian)
      this->do_fixed_endian_v4bx_write<true>(view, view_size);
    else
      this->do_fixed_endian_v4bx_write<false>(view, view_size);
  }

 private:
  // A template to implement do_write.
  template<bool big_endian>
  void inline
  do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
  {
    const Insn_template* insns = this->stub_template()->insns();
    elfcpp::Swap<32, big_endian>::writeval(view,
					   (insns[0].data()
					   + (this->reg_ << 16)));
    view += insns[0].size();
    elfcpp::Swap<32, big_endian>::writeval(view,
					   (insns[1].data() + this->reg_));
    view += insns[1].size();
    elfcpp::Swap<32, big_endian>::writeval(view,
					   (insns[2].data() + this->reg_));
  }

  // A register index (r0-r14), which is associated with the stub.
  uint32_t reg_;
};

// Stub factory class.

class Stub_factory
{
 public:
  // Return the unique instance of this class.
  static const Stub_factory&
  get_instance()
  {
    static Stub_factory singleton;
    return singleton;
  }

  // Make a relocation stub.
  Reloc_stub*
  make_reloc_stub(Stub_type stub_type) const
  {
    gold_assert(stub_type >= arm_stub_reloc_first
		&& stub_type <= arm_stub_reloc_last);
    return new Reloc_stub(this->stub_templates_[stub_type]);
  }

  // Make a Cortex-A8 stub.
  Cortex_a8_stub*
  make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
		      Arm_address source, Arm_address destination,
		      uint32_t original_insn) const
  {
    gold_assert(stub_type >= arm_stub_cortex_a8_first
		&& stub_type <= arm_stub_cortex_a8_last);
    return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
			      source, destination, original_insn);
  }

  // Make an ARM V4BX relocation stub.
  // This method creates a stub from the arm_stub_v4_veneer_bx template only.
  Arm_v4bx_stub*
  make_arm_v4bx_stub(uint32_t reg) const
  {
    gold_assert(reg < 0xf);
    return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
			     reg);
  }

 private:
  // Constructor and destructor are protected since we only return a single
  // instance created in Stub_factory::get_instance().
  
  Stub_factory();

  // A Stub_factory may not be copied since it is a singleton.
  Stub_factory(const Stub_factory&);
  Stub_factory& operator=(Stub_factory&);
  
  // Stub templates.  These are initialized in the constructor.
  const Stub_template* stub_templates_[arm_stub_type_last+1];
};

// A class to hold stubs for the ARM target.

template<bool big_endian>
class Stub_table : public Output_data
{
 public:
  Stub_table(Arm_input_section<big_endian>* owner)
    : Output_data(), owner_(owner), reloc_stubs_(), cortex_a8_stubs_(),
      arm_v4bx_stubs_(0xf), prev_data_size_(0), prev_addralign_(1)
  { }

  ~Stub_table()
  { }

  // Owner of this stub table.
  Arm_input_section<big_endian>*
  owner() const
  { return this->owner_; }

  // Whether this stub table is empty.
  bool
  empty() const
  {
    return (this->reloc_stubs_.empty()
	    && this->cortex_a8_stubs_.empty()
	    && this->arm_v4bx_stubs_.empty());
  }

  // Return the current data size.
  off_t
  current_data_size() const
  { return this->current_data_size_for_child(); }

  // Add a STUB with using KEY.  Caller is reponsible for avoid adding
  // if already a STUB with the same key has been added. 
  void
  add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
  {
    const Stub_template* stub_template = stub->stub_template();
    gold_assert(stub_template->type() == key.stub_type());
    this->reloc_stubs_[key] = stub;
  }

  // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
  // Caller is reponsible for avoid adding if already a STUB with the same
  // address has been added. 
  void
  add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
  {
    std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
    this->cortex_a8_stubs_.insert(value);
  }

  // Add an ARM V4BX relocation stub. A register index will be retrieved
  // from the stub.
  void
  add_arm_v4bx_stub(Arm_v4bx_stub* stub)
  {
    gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
    this->arm_v4bx_stubs_[stub->reg()] = stub;
  }

  // Remove all Cortex-A8 stubs.
  void
  remove_all_cortex_a8_stubs();

  // Look up a relocation stub using KEY.  Return NULL if there is none.
  Reloc_stub*
  find_reloc_stub(const Reloc_stub::Key& key) const
  {
    typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
    return (p != this->reloc_stubs_.end()) ? p->second : NULL;
  }

  // Look up an arm v4bx relocation stub using the register index.
  // Return NULL if there is none.
  Arm_v4bx_stub*
  find_arm_v4bx_stub(const uint32_t reg) const
  {
    gold_assert(reg < 0xf);
    return this->arm_v4bx_stubs_[reg];
  }

  // Relocate stubs in this stub table.
  void
  relocate_stubs(const Relocate_info<32, big_endian>*,
		 Target_arm<big_endian>*, Output_section*,
		 unsigned char*, Arm_address, section_size_type);

  // Update data size and alignment at the end of a relaxation pass.  Return
  // true if either data size or alignment is different from that of the
  // previous relaxation pass.
  bool
  update_data_size_and_addralign();

  // Finalize stubs.  Set the offsets of all stubs and mark input sections
  // needing the Cortex-A8 workaround.
  void
  finalize_stubs();
  
  // Apply Cortex-A8 workaround to an address range.
  void
  apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
					      unsigned char*, Arm_address,
					      section_size_type);

 protected:
  // Write out section contents.
  void
  do_write(Output_file*);
 
  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return this->prev_addralign_; }

  // Reset address and file offset.
  void
  do_reset_address_and_file_offset()
  { this->set_current_data_size_for_child(this->prev_data_size_); }

  // Set final data size.
  void
  set_final_data_size()
  { this->set_data_size(this->current_data_size()); }
  
 private:
  // Relocate one stub.
  void
  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
		Target_arm<big_endian>*, Output_section*,
		unsigned char*, Arm_address, section_size_type);

  // Unordered map of relocation stubs.
  typedef
    Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
		  Reloc_stub::Key::equal_to>
    Reloc_stub_map;

  // List of Cortex-A8 stubs ordered by addresses of branches being
  // fixed up in output.
  typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
  // List of Arm V4BX relocation stubs ordered by associated registers.
  typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;

  // Owner of this stub table.
  Arm_input_section<big_endian>* owner_;
  // The relocation stubs.
  Reloc_stub_map reloc_stubs_;
  // The cortex_a8_stubs.
  Cortex_a8_stub_list cortex_a8_stubs_;
  // The Arm V4BX relocation stubs.
  Arm_v4bx_stub_list arm_v4bx_stubs_;
  // data size of this in the previous pass.
  off_t prev_data_size_;
  // address alignment of this in the previous pass.
  uint64_t prev_addralign_;
};

// Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
// we add to the end of an EXIDX input section that goes into the output.

class Arm_exidx_cantunwind : public Output_section_data
{
 public:
  Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
    : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
  { }

  // Return the object containing the section pointed by this.
  Relobj*
  relobj() const
  { return this->relobj_; }

  // Return the section index of the section pointed by this.
  unsigned int
  shndx() const
  { return this->shndx_; }

 protected:
  void
  do_write(Output_file* of)
  {
    if (parameters->target().is_big_endian())
      this->do_fixed_endian_write<true>(of);
    else
      this->do_fixed_endian_write<false>(of);
  }

 private:
  // Implement do_write for a given endianity.
  template<bool big_endian>
  void inline
  do_fixed_endian_write(Output_file*);
  
  // The object containing the section pointed by this.
  Relobj* relobj_;
  // The section index of the section pointed by this.
  unsigned int shndx_;
};

// During EXIDX coverage fix-up, we compact an EXIDX section.  The
// Offset map is used to map input section offset within the EXIDX section
// to the output offset from the start of this EXIDX section. 

typedef std::map<section_offset_type, section_offset_type>
	Arm_exidx_section_offset_map;

// Arm_exidx_merged_section class.  This represents an EXIDX input section
// with some of its entries merged.

class Arm_exidx_merged_section : public Output_relaxed_input_section
{
 public:
  // Constructor for Arm_exidx_merged_section.
  // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
  // SECTION_OFFSET_MAP points to a section offset map describing how
  // parts of the input section are mapped to output.  DELETED_BYTES is
  // the number of bytes deleted from the EXIDX input section.
  Arm_exidx_merged_section(
      const Arm_exidx_input_section& exidx_input_section,
      const Arm_exidx_section_offset_map& section_offset_map,
      uint32_t deleted_bytes);

  // Return the original EXIDX input section.
  const Arm_exidx_input_section&
  exidx_input_section() const
  { return this->exidx_input_section_; }

  // Return the section offset map.
  const Arm_exidx_section_offset_map&
  section_offset_map() const
  { return this->section_offset_map_; }

 protected:
  // Write merged section into file OF.
  void
  do_write(Output_file* of);

  bool
  do_output_offset(const Relobj*, unsigned int, section_offset_type,
		  section_offset_type*) const;

 private:
  // Original EXIDX input section.
  const Arm_exidx_input_section& exidx_input_section_;
  // Section offset map.
  const Arm_exidx_section_offset_map& section_offset_map_;
};

// A class to wrap an ordinary input section containing executable code.

template<bool big_endian>
class Arm_input_section : public Output_relaxed_input_section
{
 public:
  Arm_input_section(Relobj* relobj, unsigned int shndx)
    : Output_relaxed_input_section(relobj, shndx, 1),
      original_addralign_(1), original_size_(0), stub_table_(NULL)
  { }

  ~Arm_input_section()
  { }

  // Initialize.
  void
  init();
  
  // Whether this is a stub table owner.
  bool
  is_stub_table_owner() const
  { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }

  // Return the stub table.
  Stub_table<big_endian>*
  stub_table() const
  { return this->stub_table_; }

  // Set the stub_table.
  void
  set_stub_table(Stub_table<big_endian>* stub_table)
  { this->stub_table_ = stub_table; }

  // Downcast a base pointer to an Arm_input_section pointer.  This is
  // not type-safe but we only use Arm_input_section not the base class.
  static Arm_input_section<big_endian>*
  as_arm_input_section(Output_relaxed_input_section* poris)
  { return static_cast<Arm_input_section<big_endian>*>(poris); }

 protected:
  // Write data to output file.
  void
  do_write(Output_file*);

  // Return required alignment of this.
  uint64_t
  do_addralign() const
  {
    if (this->is_stub_table_owner())
      return std::max(this->stub_table_->addralign(),
		      this->original_addralign_);
    else
      return this->original_addralign_;
  }

  // Finalize data size.
  void
  set_final_data_size();

  // Reset address and file offset.
  void
  do_reset_address_and_file_offset();

  // Output offset.
  bool
  do_output_offset(const Relobj* object, unsigned int shndx,
		   section_offset_type offset,
                   section_offset_type* poutput) const
  {
    if ((object == this->relobj())
	&& (shndx == this->shndx())
	&& (offset >= 0)
	&& (convert_types<uint64_t, section_offset_type>(offset)
	    <= this->original_size_))
      {
	*poutput = offset;
	return true;
      }
    else
      return false;
  }

 private:
  // Copying is not allowed.
  Arm_input_section(const Arm_input_section&);
  Arm_input_section& operator=(const Arm_input_section&);

  // Address alignment of the original input section.
  uint64_t original_addralign_;
  // Section size of the original input section.
  uint64_t original_size_;
  // Stub table.
  Stub_table<big_endian>* stub_table_;
};

// Arm_exidx_fixup class.  This is used to define a number of methods
// and keep states for fixing up EXIDX coverage.

class Arm_exidx_fixup
{
 public:
  Arm_exidx_fixup(Output_section* exidx_output_section)
    : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
      last_inlined_entry_(0), last_input_section_(NULL),
      section_offset_map_(NULL)
  { }

  ~Arm_exidx_fixup()
  { delete this->section_offset_map_; }

  // Process an EXIDX section for entry merging.  Return  number of bytes to
  // be deleted in output.  If parts of the input EXIDX section are merged
  // a heap allocated Arm_exidx_section_offset_map is store in the located
  // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
  // releasing it.
  template<bool big_endian>
  uint32_t
  process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
			Arm_exidx_section_offset_map** psection_offset_map);
  
  // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
  // input section, if there is not one already.
  void
  add_exidx_cantunwind_as_needed();

 private:
  // Copying is not allowed.
  Arm_exidx_fixup(const Arm_exidx_fixup&);
  Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);

  // Type of EXIDX unwind entry.
  enum Unwind_type
  {
    // No type.
    UT_NONE,
    // EXIDX_CANTUNWIND.
    UT_EXIDX_CANTUNWIND,
    // Inlined entry.
    UT_INLINED_ENTRY,
    // Normal entry.
    UT_NORMAL_ENTRY,
  };

  // Process an EXIDX entry.  We only care about the second word of the
  // entry.  Return true if the entry can be deleted.
  bool
  process_exidx_entry(uint32_t second_word);

  // Update the current section offset map during EXIDX section fix-up.
  // If there is no map, create one.  INPUT_OFFSET is the offset of a
  // reference point, DELETED_BYTES is the number of deleted by in the
  // section so far.  If DELETE_ENTRY is true, the reference point and
  // all offsets after the previous reference point are discarded.
  void
  update_offset_map(section_offset_type input_offset,
		    section_size_type deleted_bytes, bool delete_entry);

  // EXIDX output section.
  Output_section* exidx_output_section_;
  // Unwind type of the last EXIDX entry processed.
  Unwind_type last_unwind_type_;
  // Last seen inlined EXIDX entry.
  uint32_t last_inlined_entry_;
  // Last processed EXIDX input section.
  Arm_exidx_input_section* last_input_section_;
  // Section offset map created in process_exidx_section.
  Arm_exidx_section_offset_map* section_offset_map_;
};

// Arm output section class.  This is defined mainly to add a number of
// stub generation methods.

template<bool big_endian>
class Arm_output_section : public Output_section
{
 public:
  Arm_output_section(const char* name, elfcpp::Elf_Word type,
		     elfcpp::Elf_Xword flags)
    : Output_section(name, type, flags)
  { }

  ~Arm_output_section()
  { }
  
  // Group input sections for stub generation.
  void
  group_sections(section_size_type, bool, Target_arm<big_endian>*);

  // Downcast a base pointer to an Arm_output_section pointer.  This is
  // not type-safe but we only use Arm_output_section not the base class.
  static Arm_output_section<big_endian>*
  as_arm_output_section(Output_section* os)
  { return static_cast<Arm_output_section<big_endian>*>(os); }

 private:
  // For convenience.
  typedef Output_section::Input_section Input_section;
  typedef Output_section::Input_section_list Input_section_list;

  // Create a stub group.
  void create_stub_group(Input_section_list::const_iterator,
			 Input_section_list::const_iterator,
			 Input_section_list::const_iterator,
			 Target_arm<big_endian>*,
			 std::vector<Output_relaxed_input_section*>*);
};

// Arm_exidx_input_section class.  This represents an EXIDX input section.

class Arm_exidx_input_section
{
 public:
  static const section_offset_type invalid_offset =
    static_cast<section_offset_type>(-1);

  Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
			  unsigned int link, uint32_t size, uint32_t addralign)
    : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
      addralign_(addralign)
  { }

  ~Arm_exidx_input_section()
  { }
  	
  // Accessors:  This is a read-only class.

  // Return the object containing this EXIDX input section.
  Relobj*
  relobj() const
  { return this->relobj_; }

  // Return the section index of this EXIDX input section.
  unsigned int
  shndx() const
  { return this->shndx_; }

  // Return the section index of linked text section in the same object.
  unsigned int
  link() const
  { return this->link_; }

  // Return size of the EXIDX input section.
  uint32_t
  size() const
  { return this->size_; }

  // Reutnr address alignment of EXIDX input section.
  uint32_t
  addralign() const
  { return this->addralign_; }

 private:
  // Object containing this.
  Relobj* relobj_;
  // Section index of this.
  unsigned int shndx_;
  // text section linked to this in the same object.
  unsigned int link_;
  // Size of this.  For ARM 32-bit is sufficient.
  uint32_t size_;
  // Address alignment of this.  For ARM 32-bit is sufficient.
  uint32_t addralign_;
};

// Arm_relobj class.

template<bool big_endian>
class Arm_relobj : public Sized_relobj<32, big_endian>
{
 public:
  static const Arm_address invalid_address = static_cast<Arm_address>(-1);

  Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
             const typename elfcpp::Ehdr<32, big_endian>& ehdr)
    : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
      stub_tables_(), local_symbol_is_thumb_function_(),
      attributes_section_data_(NULL), mapping_symbols_info_(),
      section_has_cortex_a8_workaround_(NULL)
  { }

  ~Arm_relobj()
  { delete this->attributes_section_data_; }
 
  // Return the stub table of the SHNDX-th section if there is one.
  Stub_table<big_endian>*
  stub_table(unsigned int shndx) const
  {
    gold_assert(shndx < this->stub_tables_.size());
    return this->stub_tables_[shndx];
  }

  // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
  void
  set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
  {
    gold_assert(shndx < this->stub_tables_.size());
    this->stub_tables_[shndx] = stub_table;
  }

  // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
  // index.  This is only valid after do_count_local_symbol is called.
  bool
  local_symbol_is_thumb_function(unsigned int r_sym) const
  {
    gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
    return this->local_symbol_is_thumb_function_[r_sym];
  }
  
  // Scan all relocation sections for stub generation.
  void
  scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
			  const Layout*);

  // Convert regular input section with index SHNDX to a relaxed section.
  void
  convert_input_section_to_relaxed_section(unsigned shndx)
  {
    // The stubs have relocations and we need to process them after writing
    // out the stubs.  So relocation now must follow section write.
    this->invalidate_section_offset(shndx);
    this->set_relocs_must_follow_section_writes();
  }

  // Downcast a base pointer to an Arm_relobj pointer.  This is
  // not type-safe but we only use Arm_relobj not the base class.
  static Arm_relobj<big_endian>*
  as_arm_relobj(Relobj* relobj)
  { return static_cast<Arm_relobj<big_endian>*>(relobj); }

  // Processor-specific flags in ELF file header.  This is valid only after
  // reading symbols.
  elfcpp::Elf_Word
  processor_specific_flags() const
  { return this->processor_specific_flags_; }

  // Attribute section data  This is the contents of the .ARM.attribute section
  // if there is one.
  const Attributes_section_data*
  attributes_section_data() const
  { return this->attributes_section_data_; }

  // Mapping symbol location.
  typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;

  // Functor for STL container.
  struct Mapping_symbol_position_less
  {
    bool
    operator()(const Mapping_symbol_position& p1,
	       const Mapping_symbol_position& p2) const
    {
      return (p1.first < p2.first
	      || (p1.first == p2.first && p1.second < p2.second));
    }
  };
  
  // We only care about the first character of a mapping symbol, so
  // we only store that instead of the whole symbol name.
  typedef std::map<Mapping_symbol_position, char,
		   Mapping_symbol_position_less> Mapping_symbols_info;

  // Whether a section contains any Cortex-A8 workaround.
  bool
  section_has_cortex_a8_workaround(unsigned int shndx) const
  { 
    return (this->section_has_cortex_a8_workaround_ != NULL
	    && (*this->section_has_cortex_a8_workaround_)[shndx]);
  }
  
  // Mark a section that has Cortex-A8 workaround.
  void
  mark_section_for_cortex_a8_workaround(unsigned int shndx)
  {
    if (this->section_has_cortex_a8_workaround_ == NULL)
      this->section_has_cortex_a8_workaround_ =
	new std::vector<bool>(this->shnum(), false);
    (*this->section_has_cortex_a8_workaround_)[shndx] = true;
  }

  // Return the EXIDX section of an text section with index SHNDX or NULL
  // if the text section has no associated EXIDX section.
  const Arm_exidx_input_section*
  exidx_input_section_by_link(unsigned int shndx) const
  {
    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
    return ((p != this->exidx_section_map_.end()
	     && p->second->link() == shndx)
	    ? p->second
	    : NULL);
  }

  // Return the EXIDX section with index SHNDX or NULL if there is none.
  const Arm_exidx_input_section*
  exidx_input_section_by_shndx(unsigned shndx) const
  {
    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
    return ((p != this->exidx_section_map_.end()
	     && p->second->shndx() == shndx)
	    ? p->second
	    : NULL);
  }

 protected:
  // Post constructor setup.
  void
  do_setup()
  {
    // Call parent's setup method.
    Sized_relobj<32, big_endian>::do_setup();

    // Initialize look-up tables.
    Stub_table_list empty_stub_table_list(this->shnum(), NULL);
    this->stub_tables_.swap(empty_stub_table_list);
  }

  // Count the local symbols.
  void
  do_count_local_symbols(Stringpool_template<char>*,
                         Stringpool_template<char>*);

  void
  do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
		       const unsigned char* pshdrs,
		       typename Sized_relobj<32, big_endian>::Views* pivews);

  // Read the symbol information.
  void
  do_read_symbols(Read_symbols_data* sd);

  // Process relocs for garbage collection.
  void
  do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);

 private:

  // Whether a section needs to be scanned for relocation stubs.
  bool
  section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
				    const Relobj::Output_sections&,
				    const Symbol_table *);

  // Whether a section needs to be scanned for the Cortex-A8 erratum.
  bool
  section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
					unsigned int, Output_section*,
					const Symbol_table *);

  // Scan a section for the Cortex-A8 erratum.
  void
  scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
				     unsigned int, Output_section*,
				     Target_arm<big_endian>*);

  // Make a new Arm_exidx_input_section object for EXIDX section with
  // index SHNDX and section header SHDR.
  void
  make_exidx_input_section(unsigned int shndx,
			   const elfcpp::Shdr<32, big_endian>& shdr);

  typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
  typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
    Exidx_section_map;

  // List of stub tables.
  Stub_table_list stub_tables_;
  // Bit vector to tell if a local symbol is a thumb function or not.
  // This is only valid after do_count_local_symbol is called.
  std::vector<bool> local_symbol_is_thumb_function_;
  // processor-specific flags in ELF file header.
  elfcpp::Elf_Word processor_specific_flags_;
  // Object attributes if there is an .ARM.attributes section or NULL.
  Attributes_section_data* attributes_section_data_;
  // Mapping symbols information.
  Mapping_symbols_info mapping_symbols_info_;
  // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
  std::vector<bool>* section_has_cortex_a8_workaround_;
  // Map a text section to its associated .ARM.exidx section, if there is one.
  Exidx_section_map exidx_section_map_;
};

// Arm_dynobj class.

template<bool big_endian>
class Arm_dynobj : public Sized_dynobj<32, big_endian>
{
 public:
  Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
	     const elfcpp::Ehdr<32, big_endian>& ehdr)
    : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
      processor_specific_flags_(0), attributes_section_data_(NULL)
  { }
 
  ~Arm_dynobj()
  { delete this->attributes_section_data_; }

  // Downcast a base pointer to an Arm_relobj pointer.  This is
  // not type-safe but we only use Arm_relobj not the base class.
  static Arm_dynobj<big_endian>*
  as_arm_dynobj(Dynobj* dynobj)
  { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }

  // Processor-specific flags in ELF file header.  This is valid only after
  // reading symbols.
  elfcpp::Elf_Word
  processor_specific_flags() const
  { return this->processor_specific_flags_; }

  // Attributes section data.
  const Attributes_section_data*
  attributes_section_data() const
  { return this->attributes_section_data_; }

 protected:
  // Read the symbol information.
  void
  do_read_symbols(Read_symbols_data* sd);

 private:
  // processor-specific flags in ELF file header.
  elfcpp::Elf_Word processor_specific_flags_;
  // Object attributes if there is an .ARM.attributes section or NULL.
  Attributes_section_data* attributes_section_data_;
};

// Functor to read reloc addends during stub generation.

template<int sh_type, bool big_endian>
struct Stub_addend_reader
{
  // Return the addend for a relocation of a particular type.  Depending
  // on whether this is a REL or RELA relocation, read the addend from a
  // view or from a Reloc object.
  elfcpp::Elf_types<32>::Elf_Swxword
  operator()(
    unsigned int /* r_type */,
    const unsigned char* /* view */,
    const typename Reloc_types<sh_type,
			       32, big_endian>::Reloc& /* reloc */) const;
};

// Specialized Stub_addend_reader for SHT_REL type relocation sections.

template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
{
  elfcpp::Elf_types<32>::Elf_Swxword
  operator()(
    unsigned int,
    const unsigned char*,
    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
};

// Specialized Stub_addend_reader for RELA type relocation sections.
// We currently do not handle RELA type relocation sections but it is trivial
// to implement the addend reader.  This is provided for completeness and to
// make it easier to add support for RELA relocation sections in the future.

template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
{
  elfcpp::Elf_types<32>::Elf_Swxword
  operator()(
    unsigned int,
    const unsigned char*,
    const typename Reloc_types<elfcpp::SHT_RELA, 32,
			       big_endian>::Reloc& reloc) const
  { return reloc.get_r_addend(); }
};

// Cortex_a8_reloc class.  We keep record of relocation that may need
// the Cortex-A8 erratum workaround.

class Cortex_a8_reloc
{
 public:
  Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
		  Arm_address destination)
    : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
  { }

  ~Cortex_a8_reloc()
  { }

  // Accessors:  This is a read-only class.
  
  // Return the relocation stub associated with this relocation if there is
  // one.
  const Reloc_stub*
  reloc_stub() const
  { return this->reloc_stub_; } 
  
  // Return the relocation type.
  unsigned int
  r_type() const
  { return this->r_type_; }

  // Return the destination address of the relocation.  LSB stores the THUMB
  // bit.
  Arm_address
  destination() const
  { return this->destination_; }

 private:
  // Associated relocation stub if there is one, or NULL.
  const Reloc_stub* reloc_stub_;
  // Relocation type.
  unsigned int r_type_;
  // Destination address of this relocation.  LSB is used to distinguish
  // ARM/THUMB mode.
  Arm_address destination_;
};

// Utilities for manipulating integers of up to 32-bits

namespace utils
{
  // Sign extend an n-bit unsigned integer stored in an uint32_t into
  // an int32_t.  NO_BITS must be between 1 to 32.
  template<int no_bits>
  static inline int32_t
  sign_extend(uint32_t bits)
  {
    gold_assert(no_bits >= 0 && no_bits <= 32);
    if (no_bits == 32)
      return static_cast<int32_t>(bits);
    uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
    bits &= mask;
    uint32_t top_bit = 1U << (no_bits - 1);
    int32_t as_signed = static_cast<int32_t>(bits);
    return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
  }

  // Detects overflow of an NO_BITS integer stored in a uint32_t.
  template<int no_bits>
  static inline bool
  has_overflow(uint32_t bits)
  {
    gold_assert(no_bits >= 0 && no_bits <= 32);
    if (no_bits == 32)
      return false;
    int32_t max = (1 << (no_bits - 1)) - 1;
    int32_t min = -(1 << (no_bits - 1));
    int32_t as_signed = static_cast<int32_t>(bits);
    return as_signed > max || as_signed < min;
  }

  // Detects overflow of an NO_BITS integer stored in a uint32_t when it
  // fits in the given number of bits as either a signed or unsigned value.
  // For example, has_signed_unsigned_overflow<8> would check
  // -128 <= bits <= 255
  template<int no_bits>
  static inline bool
  has_signed_unsigned_overflow(uint32_t bits)
  {
    gold_assert(no_bits >= 2 && no_bits <= 32);
    if (no_bits == 32)
      return false;
    int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
    int32_t min = -(1 << (no_bits - 1));
    int32_t as_signed = static_cast<int32_t>(bits);
    return as_signed > max || as_signed < min;
  }

  // Select bits from A and B using bits in MASK.  For each n in [0..31],
  // the n-th bit in the result is chosen from the n-th bits of A and B.
  // A zero selects A and a one selects B.
  static inline uint32_t
  bit_select(uint32_t a, uint32_t b, uint32_t mask)
  { return (a & ~mask) | (b & mask); }
};

template<bool big_endian>
class Target_arm : public Sized_target<32, big_endian>
{
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
    Reloc_section;

  // When were are relocating a stub, we pass this as the relocation number.
  static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);

  Target_arm()
    : Sized_target<32, big_endian>(&arm_info),
      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), stub_tables_(),
      stub_factory_(Stub_factory::get_instance()), may_use_blx_(false),
      should_force_pic_veneer_(false), arm_input_section_map_(),
      attributes_section_data_(NULL), fix_cortex_a8_(false),
      cortex_a8_relocs_info_()
  { }

  // Whether we can use BLX.
  bool
  may_use_blx() const
  { return this->may_use_blx_; }

  // Set use-BLX flag.
  void
  set_may_use_blx(bool value)
  { this->may_use_blx_ = value; }
  
  // Whether we force PCI branch veneers.
  bool
  should_force_pic_veneer() const
  { return this->should_force_pic_veneer_; }

  // Set PIC veneer flag.
  void
  set_should_force_pic_veneer(bool value)
  { this->should_force_pic_veneer_ = value; }
  
  // Whether we use THUMB-2 instructions.
  bool
  using_thumb2() const
  {
    Object_attribute* attr =
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
    int arch = attr->int_value();
    return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
  }

  // Whether we use THUMB/THUMB-2 instructions only.
  bool
  using_thumb_only() const
  {
    Object_attribute* attr =
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
    if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
	&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
      return false;
    attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
    return attr->int_value() == 'M';
  }

  // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
  bool
  may_use_arm_nop() const
  {
    Object_attribute* attr =
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
    int arch = attr->int_value();
    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
	    || arch == elfcpp::TAG_CPU_ARCH_V6K
	    || arch == elfcpp::TAG_CPU_ARCH_V7
	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
  }

  // Whether we have THUMB-2 NOP.W instruction.
  bool
  may_use_thumb2_nop() const
  {
    Object_attribute* attr =
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
    int arch = attr->int_value();
    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
	    || arch == elfcpp::TAG_CPU_ARCH_V7
	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
  }
  
  // Process the relocations to determine unreferenced sections for 
  // garbage collection.
  void
  gc_process_relocs(Symbol_table* symtab,
		    Layout* layout,
		    Sized_relobj<32, big_endian>* object,
		    unsigned int data_shndx,
		    unsigned int sh_type,
		    const unsigned char* prelocs,
		    size_t reloc_count,
		    Output_section* output_section,
		    bool needs_special_offset_handling,
		    size_t local_symbol_count,
		    const unsigned char* plocal_symbols);

  // Scan the relocations to look for symbol adjustments.
  void
  scan_relocs(Symbol_table* symtab,
	      Layout* layout,
	      Sized_relobj<32, big_endian>* object,
	      unsigned int data_shndx,
	      unsigned int sh_type,
	      const unsigned char* prelocs,
	      size_t reloc_count,
	      Output_section* output_section,
	      bool needs_special_offset_handling,
	      size_t local_symbol_count,
	      const unsigned char* plocal_symbols);

  // Finalize the sections.
  void
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

  // Return the value to use for a dynamic symbol which requires special
  // treatment.
  uint64_t
  do_dynsym_value(const Symbol*) const;

  // Relocate a section.
  void
  relocate_section(const Relocate_info<32, big_endian>*,
		   unsigned int sh_type,
		   const unsigned char* prelocs,
		   size_t reloc_count,
		   Output_section* output_section,
		   bool needs_special_offset_handling,
		   unsigned char* view,
		   Arm_address view_address,
		   section_size_type view_size,
		   const Reloc_symbol_changes*);

  // Scan the relocs during a relocatable link.
  void
  scan_relocatable_relocs(Symbol_table* symtab,
			  Layout* layout,
			  Sized_relobj<32, big_endian>* object,
			  unsigned int data_shndx,
			  unsigned int sh_type,
			  const unsigned char* prelocs,
			  size_t reloc_count,
			  Output_section* output_section,
			  bool needs_special_offset_handling,
			  size_t local_symbol_count,
			  const unsigned char* plocal_symbols,
			  Relocatable_relocs*);

  // Relocate a section during a relocatable link.
  void
  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
			   unsigned int sh_type,
			   const unsigned char* prelocs,
			   size_t reloc_count,
			   Output_section* output_section,
			   off_t offset_in_output_section,
			   const Relocatable_relocs*,
			   unsigned char* view,
			   Arm_address view_address,
			   section_size_type view_size,
			   unsigned char* reloc_view,
			   section_size_type reloc_view_size);

  // Return whether SYM is defined by the ABI.
  bool
  do_is_defined_by_abi(Symbol* sym) const
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }

  // Return the size of the GOT section.
  section_size_type
  got_size()
  {
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
  }

  // Map platform-specific reloc types
  static unsigned int
  get_real_reloc_type (unsigned int r_type);

  //
  // Methods to support stub-generations.
  //
  
  // Return the stub factory
  const Stub_factory&
  stub_factory() const
  { return this->stub_factory_; }

  // Make a new Arm_input_section object.
  Arm_input_section<big_endian>*
  new_arm_input_section(Relobj*, unsigned int);

  // Find the Arm_input_section object corresponding to the SHNDX-th input
  // section of RELOBJ.
  Arm_input_section<big_endian>*
  find_arm_input_section(Relobj* relobj, unsigned int shndx) const;

  // Make a new Stub_table
  Stub_table<big_endian>*
  new_stub_table(Arm_input_section<big_endian>*);

  // Scan a section for stub generation.
  void
  scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
			 const unsigned char*, size_t, Output_section*,
			 bool, const unsigned char*, Arm_address,
			 section_size_type);

  // Relocate a stub. 
  void
  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
		Output_section*, unsigned char*, Arm_address,
		section_size_type);
 
  // Get the default ARM target.
  static Target_arm<big_endian>*
  default_target()
  {
    gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
		&& parameters->target().is_big_endian() == big_endian);
    return static_cast<Target_arm<big_endian>*>(
	     parameters->sized_target<32, big_endian>());
  }

  // Whether relocation type uses LSB to distinguish THUMB addresses.
  static bool
  reloc_uses_thumb_bit(unsigned int r_type);

  // Whether NAME belongs to a mapping symbol.
  static bool
  is_mapping_symbol_name(const char* name)
  {
    return (name
	    && name[0] == '$'
	    && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
	    && (name[2] == '\0' || name[2] == '.'));
  }

  // Whether we work around the Cortex-A8 erratum.
  bool
  fix_cortex_a8() const
  { return this->fix_cortex_a8_; }

  // Whether we fix R_ARM_V4BX relocation.
  // 0 - do not fix
  // 1 - replace with MOV instruction (armv4 target)
  // 2 - make interworking veneer (>= armv4t targets only)
  General_options::Fix_v4bx
  fix_v4bx() const
  { return parameters->options().fix_v4bx(); }

  // Scan a span of THUMB code section for Cortex-A8 erratum.
  void
  scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
				  section_size_type, section_size_type,
				  const unsigned char*, Arm_address);

  // Apply Cortex-A8 workaround to a branch.
  void
  apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
			     unsigned char*, Arm_address);

 protected:
  // Make an ELF object.
  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
		     const elfcpp::Ehdr<32, big_endian>& ehdr);

  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
		     const elfcpp::Ehdr<32, !big_endian>&)
  { gold_unreachable(); }

  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
		      const elfcpp::Ehdr<64, false>&)
  { gold_unreachable(); }

  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
		     const elfcpp::Ehdr<64, true>&)
  { gold_unreachable(); }

  // Make an output section.
  Output_section*
  do_make_output_section(const char* name, elfcpp::Elf_Word type,
			 elfcpp::Elf_Xword flags)
  { return new Arm_output_section<big_endian>(name, type, flags); }

  void
  do_adjust_elf_header(unsigned char* view, int len) const;

  // We only need to generate stubs, and hence perform relaxation if we are
  // not doing relocatable linking.
  bool
  do_may_relax() const
  { return !parameters->options().relocatable(); }

  bool
  do_relax(int, const Input_objects*, Symbol_table*, Layout*);

  // Determine whether an object attribute tag takes an integer, a
  // string or both.
  int
  do_attribute_arg_type(int tag) const;

  // Reorder tags during output.
  int
  do_attributes_order(int num) const;

 private:
  // The class which scans relocations.
  class Scan
  {
   public:
    Scan()
      : issued_non_pic_error_(false)
    { }

    inline void
    local(Symbol_table* symtab, Layout* layout, Target_arm* target,
	  Sized_relobj<32, big_endian>* object,
	  unsigned int data_shndx,
	  Output_section* output_section,
	  const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
	  const elfcpp::Sym<32, big_endian>& lsym);

    inline void
    global(Symbol_table* symtab, Layout* layout, Target_arm* target,
	   Sized_relobj<32, big_endian>* object,
	   unsigned int data_shndx,
	   Output_section* output_section,
	   const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
	   Symbol* gsym);

   private:
    static void
    unsupported_reloc_local(Sized_relobj<32, big_endian>*,
			    unsigned int r_type);

    static void
    unsupported_reloc_global(Sized_relobj<32, big_endian>*,
			     unsigned int r_type, Symbol*);

    void
    check_non_pic(Relobj*, unsigned int r_type);

    // Almost identical to Symbol::needs_plt_entry except that it also
    // handles STT_ARM_TFUNC.
    static bool
    symbol_needs_plt_entry(const Symbol* sym)
    {
      // An undefined symbol from an executable does not need a PLT entry.
      if (sym->is_undefined() && !parameters->options().shared())
	return false;

      return (!parameters->doing_static_link()
	      && (sym->type() == elfcpp::STT_FUNC
		  || sym->type() == elfcpp::STT_ARM_TFUNC)
	      && (sym->is_from_dynobj()
		  || sym->is_undefined()
		  || sym->is_preemptible()));
    }

    // Whether we have issued an error about a non-PIC compilation.
    bool issued_non_pic_error_;
  };

  // The class which implements relocation.
  class Relocate
  {
   public:
    Relocate()
    { }

    ~Relocate()
    { }

    // Return whether the static relocation needs to be applied.
    inline bool
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
			      int ref_flags,
			      bool is_32bit,
			      Output_section* output_section);

    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    inline bool
    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
	     Output_section*,  size_t relnum,
	     const elfcpp::Rel<32, big_endian>&,
	     unsigned int r_type, const Sized_symbol<32>*,
	     const Symbol_value<32>*,
	     unsigned char*, Arm_address,
	     section_size_type);

    // Return whether we want to pass flag NON_PIC_REF for this
    // reloc.  This means the relocation type accesses a symbol not via
    // GOT or PLT.
    static inline bool
    reloc_is_non_pic (unsigned int r_type)
    {
      switch (r_type)
	{
	// These relocation types reference GOT or PLT entries explicitly.
	case elfcpp::R_ARM_GOT_BREL:
	case elfcpp::R_ARM_GOT_ABS:
	case elfcpp::R_ARM_GOT_PREL:
	case elfcpp::R_ARM_GOT_BREL12:
	case elfcpp::R_ARM_PLT32_ABS:
	case elfcpp::R_ARM_TLS_GD32:
	case elfcpp::R_ARM_TLS_LDM32:
	case elfcpp::R_ARM_TLS_IE32:
	case elfcpp::R_ARM_TLS_IE12GP:

	// These relocate types may use PLT entries.
	case elfcpp::R_ARM_CALL:
	case elfcpp::R_ARM_THM_CALL:
	case elfcpp::R_ARM_JUMP24:
	case elfcpp::R_ARM_THM_JUMP24:
	case elfcpp::R_ARM_THM_JUMP19:
	case elfcpp::R_ARM_PLT32:
	case elfcpp::R_ARM_THM_XPC22:
	  return false;

	default:
	  return true;
	}
    }
  };

  // A class which returns the size required for a relocation type,
  // used while scanning relocs during a relocatable link.
  class Relocatable_size_for_reloc
  {
   public:
    unsigned int
    get_size_for_reloc(unsigned int, Relobj*);
  };

  // Get the GOT section, creating it if necessary.
  Output_data_got<32, big_endian>*
  got_section(Symbol_table*, Layout*);

  // Get the GOT PLT section.
  Output_data_space*
  got_plt_section() const
  {
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
  }

  // Create a PLT entry for a global symbol.
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);

  // Get the PLT section.
  const Output_data_plt_arm<big_endian>*
  plt_section() const
  {
    gold_assert(this->plt_ != NULL);
    return this->plt_;
  }

  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  rel_dyn_section(Layout*);

  // Return true if the symbol may need a COPY relocation.
  // References from an executable object to non-function symbols
  // defined in a dynamic object may need a COPY relocation.
  bool
  may_need_copy_reloc(Symbol* gsym)
  {
    return (gsym->type() != elfcpp::STT_ARM_TFUNC
	    && gsym->may_need_copy_reloc());
  }

  // Add a potential copy relocation.
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
	     Sized_relobj<32, big_endian>* object,
	     unsigned int shndx, Output_section* output_section,
	     Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
				  symtab->get_sized_symbol<32>(sym),
				  object, shndx, output_section, reloc,
				  this->rel_dyn_section(layout));
  }

  // Whether two EABI versions are compatible.
  static bool
  are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);

  // Merge processor-specific flags from input object and those in the ELF
  // header of the output.
  void
  merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);

  // Get the secondary compatible architecture.
  static int
  get_secondary_compatible_arch(const Attributes_section_data*);

  // Set the secondary compatible architecture.
  static void
  set_secondary_compatible_arch(Attributes_section_data*, int);

  static int
  tag_cpu_arch_combine(const char*, int, int*, int, int);

  // Helper to print AEABI enum tag value.
  static std::string
  aeabi_enum_name(unsigned int);

  // Return string value for TAG_CPU_name.
  static std::string
  tag_cpu_name_value(unsigned int);

  // Merge object attributes from input object and those in the output.
  void
  merge_object_attributes(const char*, const Attributes_section_data*);

  // Helper to get an AEABI object attribute
  Object_attribute*
  get_aeabi_object_attribute(int tag) const
  {
    Attributes_section_data* pasd = this->attributes_section_data_;
    gold_assert(pasd != NULL);
    Object_attribute* attr =
      pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
    gold_assert(attr != NULL);
    return attr;
  }

  //
  // Methods to support stub-generations.
  //

  // Group input sections for stub generation.
  void
  group_sections(Layout*, section_size_type, bool);

  // Scan a relocation for stub generation.
  void
  scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
		      const Sized_symbol<32>*, unsigned int,
		      const Symbol_value<32>*,
		      elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);

  // Scan a relocation section for stub.
  template<int sh_type>
  void
  scan_reloc_section_for_stubs(
      const Relocate_info<32, big_endian>* relinfo,
      const unsigned char* prelocs,
      size_t reloc_count,
      Output_section* output_section,
      bool needs_special_offset_handling,
      const unsigned char* view,
      elfcpp::Elf_types<32>::Elf_Addr view_address,
      section_size_type);

  // Information about this specific target which we pass to the
  // general Target structure.
  static const Target::Target_info arm_info;

  // The types of GOT entries needed for this platform.
  enum Got_type
  {
    GOT_TYPE_STANDARD = 0	// GOT entry for a regular symbol
  };

  typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;

  // Map input section to Arm_input_section.
  typedef Unordered_map<Section_id,
			Arm_input_section<big_endian>*,
			Section_id_hash>
	  Arm_input_section_map;
    
  // Map output addresses to relocs for Cortex-A8 erratum.
  typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
	  Cortex_a8_relocs_info;

  // The GOT section.
  Output_data_got<32, big_endian>* got_;
  // The PLT section.
  Output_data_plt_arm<big_endian>* plt_;
  // The GOT PLT section.
  Output_data_space* got_plt_;
  // The dynamic reloc section.
  Reloc_section* rel_dyn_;
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  // Vector of Stub_tables created.
  Stub_table_list stub_tables_;
  // Stub factory.
  const Stub_factory &stub_factory_;
  // Whether we can use BLX.
  bool may_use_blx_;
  // Whether we force PIC branch veneers.
  bool should_force_pic_veneer_;
  // Map for locating Arm_input_sections.
  Arm_input_section_map arm_input_section_map_;
  // Attributes section data in output.
  Attributes_section_data* attributes_section_data_;
  // Whether we want to fix code for Cortex-A8 erratum.
  bool fix_cortex_a8_;
  // Map addresses to relocs for Cortex-A8 erratum.
  Cortex_a8_relocs_info cortex_a8_relocs_info_;
};

template<bool big_endian>
const Target::Target_info Target_arm<big_endian>::arm_info =
{
  32,			// size
  big_endian,		// is_big_endian
  elfcpp::EM_ARM,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  false,		// has_code_fill
  true,			// is_default_stack_executable
  '\0',			// wrap_char
  "/usr/lib/libc.so.1",	// dynamic_linker
  0x8000,		// default_text_segment_address
  0x1000,		// abi_pagesize (overridable by -z max-page-size)
  0x1000,		// common_pagesize (overridable by -z common-page-size)
  elfcpp::SHN_UNDEF,	// small_common_shndx
  elfcpp::SHN_UNDEF,	// large_common_shndx
  0,			// small_common_section_flags
  0,			// large_common_section_flags
  ".ARM.attributes",	// attributes_section
  "aeabi"		// attributes_vendor
};

// Arm relocate functions class
//

template<bool big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
{
 public:
  typedef enum
  {
    STATUS_OKAY,	// No error during relocation.
    STATUS_OVERFLOW,	// Relocation oveflow.
    STATUS_BAD_RELOC	// Relocation cannot be applied.
  } Status;

 private:
  typedef Relocate_functions<32, big_endian> Base;
  typedef Arm_relocate_functions<big_endian> This;

  // Encoding of imm16 argument for movt and movw ARM instructions
  // from ARM ARM:
  //     
  //     imm16 := imm4 | imm12
  //
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
  // +-------+---------------+-------+-------+-----------------------+
  // |       |               |imm4   |       |imm12                  |
  // +-------+---------------+-------+-------+-----------------------+

  // Extract the relocation addend from VAL based on the ARM
  // instruction encoding described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  extract_arm_movw_movt_addend(
      typename elfcpp::Swap<32, big_endian>::Valtype val)
  {
    // According to the Elf ABI for ARM Architecture the immediate
    // field is sign-extended to form the addend.
    return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
  }

  // Insert X into VAL based on the ARM instruction encoding described
  // above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  insert_val_arm_movw_movt(
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype x)
  {
    val &= 0xfff0f000;
    val |= x & 0x0fff;
    val |= (x & 0xf000) << 4;
    return val;
  }

  // Encoding of imm16 argument for movt and movw Thumb2 instructions
  // from ARM ARM:
  //     
  //     imm16 := imm4 | i | imm3 | imm8
  //
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
  // +---------+-+-----------+-------++-+-----+-------+---------------+
  // |         |i|           |imm4   || |imm3 |       |imm8           |
  // +---------+-+-----------+-------++-+-----+-------+---------------+

  // Extract the relocation addend from VAL based on the Thumb2
  // instruction encoding described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  extract_thumb_movw_movt_addend(
      typename elfcpp::Swap<32, big_endian>::Valtype val)
  {
    // According to the Elf ABI for ARM Architecture the immediate
    // field is sign-extended to form the addend.
    return utils::sign_extend<16>(((val >> 4) & 0xf000)
				  | ((val >> 15) & 0x0800)
				  | ((val >> 4) & 0x0700)
				  | (val & 0x00ff));
  }

  // Insert X into VAL based on the Thumb2 instruction encoding
  // described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  insert_val_thumb_movw_movt(
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype x)
  {
    val &= 0xfbf08f00;
    val |= (x & 0xf000) << 4;
    val |= (x & 0x0800) << 15;
    val |= (x & 0x0700) << 4;
    val |= (x & 0x00ff);
    return val;
  }

  // Handle ARM long branches.
  static typename This::Status
  arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
		    unsigned char *, const Sized_symbol<32>*,
		    const Arm_relobj<big_endian>*, unsigned int,
		    const Symbol_value<32>*, Arm_address, Arm_address, bool);

  // Handle THUMB long branches.
  static typename This::Status
  thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
		      unsigned char *, const Sized_symbol<32>*,
		      const Arm_relobj<big_endian>*, unsigned int,
		      const Symbol_value<32>*, Arm_address, Arm_address, bool);

 public:

  // Return the branch offset of a 32-bit THUMB branch.
  static inline int32_t
  thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
  {
    // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
    // involving the J1 and J2 bits.
    uint32_t s = (upper_insn & (1U << 10)) >> 10;
    uint32_t upper = upper_insn & 0x3ffU;
    uint32_t lower = lower_insn & 0x7ffU;
    uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
    uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
    uint32_t i1 = j1 ^ s ? 0 : 1;
    uint32_t i2 = j2 ^ s ? 0 : 1;

    return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
				  | (upper << 12) | (lower << 1));
  }

  // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
  // UPPER_INSN is the original upper instruction of the branch.  Caller is
  // responsible for overflow checking and BLX offset adjustment.
  static inline uint16_t
  thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
  {
    uint32_t s = offset < 0 ? 1 : 0;
    uint32_t bits = static_cast<uint32_t>(offset);
    return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
  }

  // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
  // LOWER_INSN is the original lower instruction of the branch.  Caller is
  // responsible for overflow checking and BLX offset adjustment.
  static inline uint16_t
  thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
  {
    uint32_t s = offset < 0 ? 1 : 0;
    uint32_t bits = static_cast<uint32_t>(offset);
    return ((lower_insn & ~0x2fffU)
            | ((((bits >> 23) & 1) ^ !s) << 13)
            | ((((bits >> 22) & 1) ^ !s) << 11)
            | ((bits >> 1) & 0x7ffU));
  }

  // Return the branch offset of a 32-bit THUMB conditional branch.
  static inline int32_t
  thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
  {
    uint32_t s = (upper_insn & 0x0400U) >> 10;
    uint32_t j1 = (lower_insn & 0x2000U) >> 13;
    uint32_t j2 = (lower_insn & 0x0800U) >> 11;
    uint32_t lower = (lower_insn & 0x07ffU);
    uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);

    return utils::sign_extend<21>((upper << 12) | (lower << 1));
  }

  // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
  // instruction.  UPPER_INSN is the original upper instruction of the branch.
  // Caller is responsible for overflow checking.
  static inline uint16_t
  thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
  {
    uint32_t s = offset < 0 ? 1 : 0;
    uint32_t bits = static_cast<uint32_t>(offset);
    return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
  }

  // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
  // instruction.  LOWER_INSN is the original lower instruction of the branch.
  // Caller is reponsible for overflow checking.
  static inline uint16_t
  thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
  {
    uint32_t bits = static_cast<uint32_t>(offset);
    uint32_t j2 = (bits & 0x00080000U) >> 19;
    uint32_t j1 = (bits & 0x00040000U) >> 18;
    uint32_t lo = (bits & 0x00000ffeU) >> 1;

    return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
  }

  // R_ARM_ABS8: S + A
  static inline typename This::Status
  abs8(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<8>(val);
    Reltype x = psymval->value(object, addend);
    val = utils::bit_select(val, x, 0xffU);
    elfcpp::Swap<8, big_endian>::writeval(wv, val);
    return (utils::has_signed_unsigned_overflow<8>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_THM_ABS5: S + A
  static inline typename This::Status
  thm_abs5(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = (val & 0x7e0U) >> 6;
    Reltype x = psymval->value(object, addend);
    val = utils::bit_select(val, x << 6, 0x7e0U);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    return (utils::has_overflow<5>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_ABS12: S + A
  static inline typename This::Status
  abs12(unsigned char *view,
	const Sized_relobj<32, big_endian>* object,
	const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Reltype addend = val & 0x0fffU;
    Reltype x = psymval->value(object, addend);
    val = utils::bit_select(val, x, 0x0fffU);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return (utils::has_overflow<12>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_ABS16: S + A
  static inline typename This::Status
  abs16(unsigned char *view,
	const Sized_relobj<32, big_endian>* object,
	const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<16>(val);
    Reltype x = psymval->value(object, addend);
    val = utils::bit_select(val, x, 0xffffU);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    return (utils::has_signed_unsigned_overflow<16>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_ABS32: (S + A) | T
  static inline typename This::Status
  abs32(unsigned char *view,
	const Sized_relobj<32, big_endian>* object,
	const Symbol_value<32>* psymval,
	Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = psymval->value(object, addend) | thumb_bit;
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    return This::STATUS_OKAY;
  }

  // R_ARM_REL32: (S + A) | T - P
  static inline typename This::Status
  rel32(unsigned char *view,
	const Sized_relobj<32, big_endian>* object,
	const Symbol_value<32>* psymval,
	Arm_address address,
	Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    return This::STATUS_OKAY;
  }

  // R_ARM_THM_CALL: (S + A) | T - P
  static inline typename This::Status
  thm_call(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
	   const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
	   unsigned int r_sym, const Symbol_value<32>* psymval,
	   Arm_address address, Arm_address thumb_bit,
	   bool is_weakly_undefined_without_plt)
  {
    return thumb_branch_common(elfcpp::R_ARM_THM_CALL, relinfo, view, gsym,
			       object, r_sym, psymval, address, thumb_bit,
			       is_weakly_undefined_without_plt);
  }

  // R_ARM_THM_JUMP24: (S + A) | T - P
  static inline typename This::Status
  thm_jump24(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
	     const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
	     unsigned int r_sym, const Symbol_value<32>* psymval,
	     Arm_address address, Arm_address thumb_bit,
	     bool is_weakly_undefined_without_plt)
  {
    return thumb_branch_common(elfcpp::R_ARM_THM_JUMP24, relinfo, view, gsym,
			       object, r_sym, psymval, address, thumb_bit,
			       is_weakly_undefined_without_plt);
  }

  // R_ARM_THM_JUMP24: (S + A) | T - P
  static typename This::Status
  thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
	     const Symbol_value<32>* psymval, Arm_address address,
	     Arm_address thumb_bit);

  // R_ARM_THM_XPC22: (S + A) | T - P
  static inline typename This::Status
  thm_xpc22(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
	    const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
	    unsigned int r_sym, const Symbol_value<32>* psymval,
	    Arm_address address, Arm_address thumb_bit,
	    bool is_weakly_undefined_without_plt)
  {
    return thumb_branch_common(elfcpp::R_ARM_THM_XPC22, relinfo, view, gsym,
			       object, r_sym, psymval, address, thumb_bit,
			       is_weakly_undefined_without_plt);
  }

  // R_ARM_THM_JUMP6: S + A – P
  static inline typename This::Status
  thm_jump6(unsigned char *view,
	    const Sized_relobj<32, big_endian>* object,
	    const Symbol_value<32>* psymval,
	    Arm_address address)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
    Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
    Reltype x = (psymval->value(object, addend) - address);
    val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    // CZB does only forward jumps.
    return ((x > 0x007e)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_THM_JUMP8: S + A – P
  static inline typename This::Status
  thm_jump8(unsigned char *view,
	    const Sized_relobj<32, big_endian>* object,
	    const Symbol_value<32>* psymval,
	    Arm_address address)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
    Reltype x = (psymval->value(object, addend) - address);
    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
    return (utils::has_overflow<8>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_THM_JUMP11: S + A – P
  static inline typename This::Status
  thm_jump11(unsigned char *view,
	    const Sized_relobj<32, big_endian>* object,
	    const Symbol_value<32>* psymval,
	    Arm_address address)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
    Reltype x = (psymval->value(object, addend) - address);
    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
    return (utils::has_overflow<11>(x)
	    ? This::STATUS_OVERFLOW
	    : This::STATUS_OKAY);
  }

  // R_ARM_BASE_PREL: B(S) + A - P
  static inline typename This::Status
  base_prel(unsigned char* view,
	    Arm_address origin,
	    Arm_address address)
  {
    Base::rel32(view, origin - address);
    return STATUS_OKAY;
  }

  // R_ARM_BASE_ABS: B(S) + A
  static inline typename This::Status
  base_abs(unsigned char* view,
	   Arm_address origin)
  {
    Base::rel32(view, origin);
    return STATUS_OKAY;
  }

  // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
  static inline typename This::Status
  got_brel(unsigned char* view,
	   typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
  {
    Base::rel32(view, got_offset);
    return This::STATUS_OKAY;
  }

  // R_ARM_GOT_PREL: GOT(S) + A - P
  static inline typename This::Status
  got_prel(unsigned char *view,
	   Arm_address got_entry,
	   Arm_address address)
  {
    Base::rel32(view, got_entry - address);
    return This::STATUS_OKAY;
  }

  // R_ARM_PLT32: (S + A) | T - P
  static inline typename This::Status
  plt32(const Relocate_info<32, big_endian>* relinfo,
	unsigned char *view,
	const Sized_symbol<32>* gsym,
	const Arm_relobj<big_endian>* object,
	unsigned int r_sym,
	const Symbol_value<32>* psymval,
	Arm_address address,
	Arm_address thumb_bit,
	bool is_weakly_undefined_without_plt)
  {
    return arm_branch_common(elfcpp::R_ARM_PLT32, relinfo, view, gsym,
			     object, r_sym, psymval, address, thumb_bit,
			     is_weakly_undefined_without_plt);
  }

  // R_ARM_XPC25: (S + A) | T - P
  static inline typename This::Status
  xpc25(const Relocate_info<32, big_endian>* relinfo,
	unsigned char *view,
	const Sized_symbol<32>* gsym,
	const Arm_relobj<big_endian>* object,
	unsigned int r_sym,
	const Symbol_value<32>* psymval,
	Arm_address address,
	Arm_address thumb_bit,
	bool is_weakly_undefined_without_plt)
  {
    return arm_branch_common(elfcpp::R_ARM_XPC25, relinfo, view, gsym,
			     object, r_sym, psymval, address, thumb_bit,
			     is_weakly_undefined_without_plt);
  }

  // R_ARM_CALL: (S + A) | T - P
  static inline typename This::Status
  call(const Relocate_info<32, big_endian>* relinfo,
       unsigned char *view,
       const Sized_symbol<32>* gsym,
       const Arm_relobj<big_endian>* object,
       unsigned int r_sym,
       const Symbol_value<32>* psymval,
       Arm_address address,
       Arm_address thumb_bit,
       bool is_weakly_undefined_without_plt)
  {
    return arm_branch_common(elfcpp::R_ARM_CALL, relinfo, view, gsym,
			     object, r_sym, psymval, address, thumb_bit,
			     is_weakly_undefined_without_plt);
  }

  // R_ARM_JUMP24: (S + A) | T - P
  static inline typename This::Status
  jump24(const Relocate_info<32, big_endian>* relinfo,
	 unsigned char *view,
	 const Sized_symbol<32>* gsym,
	 const Arm_relobj<big_endian>* object,
	 unsigned int r_sym,
	 const Symbol_value<32>* psymval,
	 Arm_address address,
	 Arm_address thumb_bit,
	 bool is_weakly_undefined_without_plt)
  {
    return arm_branch_common(elfcpp::R_ARM_JUMP24, relinfo, view, gsym,
			     object, r_sym, psymval, address, thumb_bit,
			     is_weakly_undefined_without_plt);
  }

  // R_ARM_PREL: (S + A) | T - P
  static inline typename This::Status
  prel31(unsigned char *view,
	 const Sized_relobj<32, big_endian>* object,
	 const Symbol_value<32>* psymval,
	 Arm_address address,
	 Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = utils::sign_extend<31>(val);
    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
    val = utils::bit_select(val, x, 0x7fffffffU);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return (utils::has_overflow<31>(x) ?
	    This::STATUS_OVERFLOW : This::STATUS_OKAY);
  }

  // R_ARM_MOVW_ABS_NC: (S + A) | T
  static inline typename This::Status 
  movw_abs_nc(unsigned char *view,
	      const Sized_relobj<32, big_endian>* object,
	      const Symbol_value<32>* psymval,
	      Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend =  This::extract_arm_movw_movt_addend(val);
    Valtype x = psymval->value(object, addend) | thumb_bit;
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
  }

  // R_ARM_MOVT_ABS: S + A
  static inline typename This::Status
  movt_abs(unsigned char *view,
	   const Sized_relobj<32, big_endian>* object,
           const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = psymval->value(object, addend) >> 16;
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
  }

  //  R_ARM_THM_MOVW_ABS_NC: S + A | T
  static inline typename This::Status 
  thm_movw_abs_nc(unsigned char *view,
	          const Sized_relobj<32, big_endian>* object,
	          const Symbol_value<32>* psymval,
	          Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
		   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
    Reltype addend = extract_thumb_movw_movt_addend(val);
    Reltype x = psymval->value(object, addend) | thumb_bit;
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
  }

  //  R_ARM_THM_MOVT_ABS: S + A
  static inline typename This::Status 
  thm_movt_abs(unsigned char *view,
	       const Sized_relobj<32, big_endian>* object,
	       const Symbol_value<32>* psymval)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
		   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = psymval->value(object, addend) >> 16;
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
  }

  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
  static inline typename This::Status
  movw_prel_nc(unsigned char *view,
	       const Sized_relobj<32, big_endian>* object,
	       const Symbol_value<32>* psymval,
	       Arm_address address,
	       Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
  }

  // R_ARM_MOVT_PREL: S + A - P
  static inline typename This::Status
  movt_prel(unsigned char *view,
	    const Sized_relobj<32, big_endian>* object,
	    const Symbol_value<32>* psymval,
            Arm_address address)
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = (psymval->value(object, addend) - address) >> 16;
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
  }

  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
  static inline typename This::Status
  thm_movw_prel_nc(unsigned char *view,
	           const Sized_relobj<32, big_endian>* object,
	           const Symbol_value<32>* psymval,
	           Arm_address address,
	           Arm_address thumb_bit)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
		  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = (psymval->value(object, addend) | thumb_bit) - address;
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
  }

  // R_ARM_THM_MOVT_PREL: S + A - P
  static inline typename This::Status
  thm_movt_prel(unsigned char *view,
	        const Sized_relobj<32, big_endian>* object,
	        const Symbol_value<32>* psymval,
	        Arm_address address)
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
		  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = (psymval->value(object, addend) - address) >> 16;
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
  }

  // R_ARM_V4BX
  static inline typename This::Status
  v4bx(const Relocate_info<32, big_endian>* relinfo,
       unsigned char *view,
       const Arm_relobj<big_endian>* object,
       const Arm_address address,
       const bool is_interworking)
  {

    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);

    // Ensure that we have a BX instruction.
    gold_assert((val & 0x0ffffff0) == 0x012fff10);
    const uint32_t reg = (val & 0xf);
    if (is_interworking && reg != 0xf)
      {
	Stub_table<big_endian>* stub_table =
	    object->stub_table(relinfo->data_shndx);
	gold_assert(stub_table != NULL);

	Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
	gold_assert(stub != NULL);

	int32_t veneer_address =
	    stub_table->address() + stub->offset() - 8 - address;
	gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
		    && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
	// Replace with a branch to veneer (B <addr>)
	val = (val & 0xf0000000) | 0x0a000000
	      | ((veneer_address >> 2) & 0x00ffffff);
      }
    else
      {
	// Preserve Rm (lowest four bits) and the condition code
	// (highest four bits). Other bits encode MOV PC,Rm.
	val = (val & 0xf000000f) | 0x01a0f000;
      }
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
  }
};

// Relocate ARM long branches.  This handles relocation types
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::arm_branch_common(
    unsigned int r_type,
    const Relocate_info<32, big_endian>* relinfo,
    unsigned char *view,
    const Sized_symbol<32>* gsym,
    const Arm_relobj<big_endian>* object,
    unsigned int r_sym,
    const Symbol_value<32>* psymval,
    Arm_address address,
    Arm_address thumb_bit,
    bool is_weakly_undefined_without_plt)
{
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
  Valtype* wv = reinterpret_cast<Valtype*>(view);
  Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
     
  bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
	            && ((val & 0x0f000000UL) == 0x0a000000UL);
  bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
  bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
			  && ((val & 0x0f000000UL) == 0x0b000000UL);
  bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
  bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;

  // Check that the instruction is valid.
  if (r_type == elfcpp::R_ARM_CALL)
    {
      if (!insn_is_uncond_bl && !insn_is_blx)
	return This::STATUS_BAD_RELOC;
    }
  else if (r_type == elfcpp::R_ARM_JUMP24)
    {
      if (!insn_is_b && !insn_is_cond_bl)
	return This::STATUS_BAD_RELOC;
    }
  else if (r_type == elfcpp::R_ARM_PLT32)
    {
      if (!insn_is_any_branch)
	return This::STATUS_BAD_RELOC;
    }
  else if (r_type == elfcpp::R_ARM_XPC25)
    {
      // FIXME: AAELF document IH0044C does not say much about it other
      // than it being obsolete.
      if (!insn_is_any_branch)
	return This::STATUS_BAD_RELOC;
    }
  else
    gold_unreachable();

  // A branch to an undefined weak symbol is turned into a jump to
  // the next instruction unless a PLT entry will be created.
  // Do the same for local undefined symbols.
  // The jump to the next instruction is optimized as a NOP depending
  // on the architecture.
  const Target_arm<big_endian>* arm_target =
    Target_arm<big_endian>::default_target();
  if (is_weakly_undefined_without_plt)
    {
      Valtype cond = val & 0xf0000000U;
      if (arm_target->may_use_arm_nop())
	val = cond | 0x0320f000;
      else
	val = cond | 0x01a00000;	// Using pre-UAL nop: mov r0, r0.
      elfcpp::Swap<32, big_endian>::writeval(wv, val);
      return This::STATUS_OKAY;
    }
 
  Valtype addend = utils::sign_extend<26>(val << 2);
  Valtype branch_target = psymval->value(object, addend);
  int32_t branch_offset = branch_target - address;

  // We need a stub if the branch offset is too large or if we need
  // to switch mode.
  bool may_use_blx = arm_target->may_use_blx();
  Reloc_stub* stub = NULL;
  if ((branch_offset > ARM_MAX_FWD_BRANCH_OFFSET)
      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
      || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
    {
      Stub_type stub_type =
	Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
					(thumb_bit != 0));
      if (stub_type != arm_stub_none)
	{
	  Stub_table<big_endian>* stub_table =
	    object->stub_table(relinfo->data_shndx);
	  gold_assert(stub_table != NULL);

	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
	  stub = stub_table->find_reloc_stub(stub_key);
	  gold_assert(stub != NULL);
	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
	  branch_target = stub_table->address() + stub->offset() + addend;
	  branch_offset = branch_target - address;
	  gold_assert((branch_offset <= ARM_MAX_FWD_BRANCH_OFFSET)
		      && (branch_offset >= ARM_MAX_BWD_BRANCH_OFFSET));
	}
    }

  // At this point, if we still need to switch mode, the instruction
  // must either be a BLX or a BL that can be converted to a BLX.
  if (thumb_bit != 0)
    {
      // Turn BL to BLX.
      gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
      val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
    }

  val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
  elfcpp::Swap<32, big_endian>::writeval(wv, val);
  return (utils::has_overflow<26>(branch_offset)
	  ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
}

// Relocate THUMB long branches.  This handles relocation types
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thumb_branch_common(
    unsigned int r_type,
    const Relocate_info<32, big_endian>* relinfo,
    unsigned char *view,
    const Sized_symbol<32>* gsym,
    const Arm_relobj<big_endian>* object,
    unsigned int r_sym,
    const Symbol_value<32>* psymval,
    Arm_address address,
    Arm_address thumb_bit,
    bool is_weakly_undefined_without_plt)
{
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
  Valtype* wv = reinterpret_cast<Valtype*>(view);
  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);

  // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
  // into account.
  bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
  bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
     
  // Check that the instruction is valid.
  if (r_type == elfcpp::R_ARM_THM_CALL)
    {
      if (!is_bl_insn && !is_blx_insn)
	return This::STATUS_BAD_RELOC;
    }
  else if (r_type == elfcpp::R_ARM_THM_JUMP24)
    {
      // This cannot be a BLX.
      if (!is_bl_insn)
	return This::STATUS_BAD_RELOC;
    }
  else if (r_type == elfcpp::R_ARM_THM_XPC22)
    {
      // Check for Thumb to Thumb call.
      if (!is_blx_insn)
	return This::STATUS_BAD_RELOC;
      if (thumb_bit != 0)
	{
	  gold_warning(_("%s: Thumb BLX instruction targets "
			 "thumb function '%s'."),
			 object->name().c_str(),
			 (gsym ? gsym->name() : "(local)")); 
	  // Convert BLX to BL.
	  lower_insn |= 0x1000U;
	}
    }
  else
    gold_unreachable();

  // A branch to an undefined weak symbol is turned into a jump to
  // the next instruction unless a PLT entry will be created.
  // The jump to the next instruction is optimized as a NOP.W for
  // Thumb-2 enabled architectures.
  const Target_arm<big_endian>* arm_target =
    Target_arm<big_endian>::default_target();
  if (is_weakly_undefined_without_plt)
    {
      if (arm_target->may_use_thumb2_nop())
	{
	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
	}
      else
	{
	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
	}
      return This::STATUS_OKAY;
    }
 
  int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
  Arm_address branch_target = psymval->value(object, addend);
  int32_t branch_offset = branch_target - address;

  // We need a stub if the branch offset is too large or if we need
  // to switch mode.
  bool may_use_blx = arm_target->may_use_blx();
  bool thumb2 = arm_target->using_thumb2();
  if ((!thumb2
       && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
	   || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
      || (thumb2
	  && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
	      || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
      || ((thumb_bit == 0)
          && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
	      || r_type == elfcpp::R_ARM_THM_JUMP24)))
    {
      Stub_type stub_type =
	Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
					(thumb_bit != 0));
      if (stub_type != arm_stub_none)
	{
	  Stub_table<big_endian>* stub_table =
	    object->stub_table(relinfo->data_shndx);
	  gold_assert(stub_table != NULL);

	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
	  Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
	  gold_assert(stub != NULL);
	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
	  branch_target = stub_table->address() + stub->offset() + addend;
	  branch_offset = branch_target - address;
	}
    }

  // At this point, if we still need to switch mode, the instruction
  // must either be a BLX or a BL that can be converted to a BLX.
  if (thumb_bit == 0)
    {
      gold_assert(may_use_blx
		  && (r_type == elfcpp::R_ARM_THM_CALL
		      || r_type == elfcpp::R_ARM_THM_XPC22));
      // Make sure this is a BLX.
      lower_insn &= ~0x1000U;
    }
  else
    {
      // Make sure this is a BL.
      lower_insn |= 0x1000U;
    }

  if ((lower_insn & 0x5000U) == 0x4000U)
    // For a BLX instruction, make sure that the relocation is rounded up
    // to a word boundary.  This follows the semantics of the instruction
    // which specifies that bit 1 of the target address will come from bit
    // 1 of the base address.
    branch_offset = (branch_offset + 2) & ~3;

  // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
  // We use the Thumb-2 encoding, which is safe even if dealing with
  // a Thumb-1 instruction by virtue of our overflow check above.  */
  upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
  lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);

  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);

  return ((thumb2
	   ? utils::has_overflow<25>(branch_offset)
	   : utils::has_overflow<23>(branch_offset))
	  ? This::STATUS_OVERFLOW
	  : This::STATUS_OKAY);
}

// Relocate THUMB-2 long conditional branches.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thm_jump19(
    unsigned char *view,
    const Arm_relobj<big_endian>* object,
    const Symbol_value<32>* psymval,
    Arm_address address,
    Arm_address thumb_bit)
{
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
  Valtype* wv = reinterpret_cast<Valtype*>(view);
  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
  int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);

  Arm_address branch_target = psymval->value(object, addend);
  int32_t branch_offset = branch_target - address;

  // ??? Should handle interworking?  GCC might someday try to
  // use this for tail calls.
  // FIXME: We do support thumb entry to PLT yet.
  if (thumb_bit == 0)
    {
      gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
      return This::STATUS_BAD_RELOC;
    }

  // Put RELOCATION back into the insn.
  upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
  lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);

  // Put the relocated value back in the object file:
  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);

  return (utils::has_overflow<21>(branch_offset)
	  ? This::STATUS_OVERFLOW
	  : This::STATUS_OKAY);
}

// Get the GOT section, creating it if necessary.

template<bool big_endian>
Output_data_got<32, big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
  if (this->got_ == NULL)
    {
      gold_assert(symtab != NULL && layout != NULL);

      this->got_ = new Output_data_got<32, big_endian>();

      Output_section* os;
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
					   (elfcpp::SHF_ALLOC
					    | elfcpp::SHF_WRITE),
					   this->got_, false, true, true,
					   false);

      // The old GNU linker creates a .got.plt section.  We just
      // create another set of data in the .got section.  Note that we
      // always create a PLT if we create a GOT, although the PLT
      // might be empty.
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
					   (elfcpp::SHF_ALLOC
					    | elfcpp::SHF_WRITE),
					   this->got_plt_, false, false,
					   false, true);

      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 4);

      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
				    Symbol_table::PREDEFINED,
				    this->got_plt_,
				    0, 0, elfcpp::STT_OBJECT,
				    elfcpp::STB_LOCAL,
				    elfcpp::STV_HIDDEN, 0,
				    false, false);
    }
  return this->got_;
}

// Get the dynamic reloc section, creating it if necessary.

template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
{
  if (this->rel_dyn_ == NULL)
    {
      gold_assert(layout != NULL);
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
				      elfcpp::SHF_ALLOC, this->rel_dyn_, true,
				      false, false, false);
    }
  return this->rel_dyn_;
}

// Insn_template methods.

// Return byte size of an instruction template.

size_t
Insn_template::size() const
{
  switch (this->type())
    {
    case THUMB16_TYPE:
    case THUMB16_SPECIAL_TYPE:
      return 2;
    case ARM_TYPE:
    case THUMB32_TYPE:
    case DATA_TYPE:
      return 4;
    default:
      gold_unreachable();
    }
}

// Return alignment of an instruction template.

unsigned
Insn_template::alignment() const
{
  switch (this->type())
    {
    case THUMB16_TYPE:
    case THUMB16_SPECIAL_TYPE:
    case THUMB32_TYPE:
      return 2;
    case ARM_TYPE:
    case DATA_TYPE:
      return 4;
    default:
      gold_unreachable();
    }
}

// Stub_template methods.

Stub_template::Stub_template(
    Stub_type type, const Insn_template* insns,
     size_t insn_count)
  : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
    entry_in_thumb_mode_(false), relocs_()
{
  off_t offset = 0;

  // Compute byte size and alignment of stub template.
  for (size_t i = 0; i < insn_count; i++)
    {
      unsigned insn_alignment = insns[i].alignment();
      size_t insn_size = insns[i].size();
      gold_assert((offset & (insn_alignment - 1)) == 0);
      this->alignment_ = std::max(this->alignment_, insn_alignment);
      switch (insns[i].type())
	{
	case Insn_template::THUMB16_TYPE:
	case Insn_template::THUMB16_SPECIAL_TYPE:
	  if (i == 0)
	    this->entry_in_thumb_mode_ = true;
	  break;

	case Insn_template::THUMB32_TYPE:
          if (insns[i].r_type() != elfcpp::R_ARM_NONE)
	    this->relocs_.push_back(Reloc(i, offset));
	  if (i == 0)
	    this->entry_in_thumb_mode_ = true;
          break;

	case Insn_template::ARM_TYPE:
	  // Handle cases where the target is encoded within the
	  // instruction.
	  if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
	    this->relocs_.push_back(Reloc(i, offset));
	  break;

	case Insn_template::DATA_TYPE:
	  // Entry point cannot be data.
	  gold_assert(i != 0);
	  this->relocs_.push_back(Reloc(i, offset));
	  break;

	default:
	  gold_unreachable();
	}
      offset += insn_size; 
    }
  this->size_ = offset;
}

// Stub methods.

// Template to implement do_write for a specific target endianity.

template<bool big_endian>
void inline
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
{
  const Stub_template* stub_template = this->stub_template();
  const Insn_template* insns = stub_template->insns();

  // FIXME:  We do not handle BE8 encoding yet.
  unsigned char* pov = view;
  for (size_t i = 0; i < stub_template->insn_count(); i++)
    {
      switch (insns[i].type())
	{
	case Insn_template::THUMB16_TYPE:
	  elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
	  break;
	case Insn_template::THUMB16_SPECIAL_TYPE:
	  elfcpp::Swap<16, big_endian>::writeval(
	      pov,
	      this->thumb16_special(i));
	  break;
	case Insn_template::THUMB32_TYPE:
	  {
	    uint32_t hi = (insns[i].data() >> 16) & 0xffff;
	    uint32_t lo = insns[i].data() & 0xffff;
	    elfcpp::Swap<16, big_endian>::writeval(pov, hi);
	    elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
	  }
          break;
	case Insn_template::ARM_TYPE:
	case Insn_template::DATA_TYPE:
	  elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
	  break;
	default:
	  gold_unreachable();
	}
      pov += insns[i].size();
    }
  gold_assert(static_cast<section_size_type>(pov - view) == view_size);
} 

// Reloc_stub::Key methods.

// Dump a Key as a string for debugging.

std::string
Reloc_stub::Key::name() const
{
  if (this->r_sym_ == invalid_index)
    {
      // Global symbol key name
      // <stub-type>:<symbol name>:<addend>.
      const std::string sym_name = this->u_.symbol->name();
      // We need to print two hex number and two colons.  So just add 100 bytes
      // to the symbol name size.
      size_t len = sym_name.size() + 100;
      char* buffer = new char[len];
      int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
		       sym_name.c_str(), this->addend_);
      gold_assert(c > 0 && c < static_cast<int>(len));
      delete[] buffer;
      return std::string(buffer);
    }
  else
    {
      // local symbol key name
      // <stub-type>:<object>:<r_sym>:<addend>.
      const size_t len = 200;
      char buffer[len];
      int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
		       this->u_.relobj, this->r_sym_, this->addend_);
      gold_assert(c > 0 && c < static_cast<int>(len));
      return std::string(buffer);
    }
}

// Reloc_stub methods.

// Determine the type of stub needed, if any, for a relocation of R_TYPE at
// LOCATION to DESTINATION.
// This code is based on the arm_type_of_stub function in
// bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
// class simple.

Stub_type
Reloc_stub::stub_type_for_reloc(
   unsigned int r_type,
   Arm_address location,
   Arm_address destination,
   bool target_is_thumb)
{
  Stub_type stub_type = arm_stub_none;

  // This is a bit ugly but we want to avoid using a templated class for
  // big and little endianities.
  bool may_use_blx;
  bool should_force_pic_veneer;
  bool thumb2;
  bool thumb_only;
  if (parameters->target().is_big_endian())
    {
      const Target_arm<true>* big_endian_target =
	Target_arm<true>::default_target();
      may_use_blx = big_endian_target->may_use_blx();
      should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
      thumb2 = big_endian_target->using_thumb2();
      thumb_only = big_endian_target->using_thumb_only();
    }
  else
    {
      const Target_arm<false>* little_endian_target =
	Target_arm<false>::default_target();
      may_use_blx = little_endian_target->may_use_blx();
      should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
      thumb2 = little_endian_target->using_thumb2();
      thumb_only = little_endian_target->using_thumb_only();
    }

  int64_t branch_offset = (int64_t)destination - location;

  if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
    {
      // Handle cases where:
      // - this call goes too far (different Thumb/Thumb2 max
      //   distance)
      // - it's a Thumb->Arm call and blx is not available, or it's a
      //   Thumb->Arm branch (not bl). A stub is needed in this case.
      if ((!thumb2
	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
	  || (thumb2
	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
	  || ((!target_is_thumb)
	      && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
		  || (r_type == elfcpp::R_ARM_THM_JUMP24))))
	{
	  if (target_is_thumb)
	    {
	      // Thumb to thumb.
	      if (!thumb_only)
		{
		  stub_type = (parameters->options().shared()
			       || should_force_pic_veneer)
		    // PIC stubs.
		    ? ((may_use_blx
			&& (r_type == elfcpp::R_ARM_THM_CALL))
		       // V5T and above. Stub starts with ARM code, so
		       // we must be able to switch mode before
		       // reaching it, which is only possible for 'bl'
		       // (ie R_ARM_THM_CALL relocation).
		       ? arm_stub_long_branch_any_thumb_pic
		       // On V4T, use Thumb code only.
		       : arm_stub_long_branch_v4t_thumb_thumb_pic)

		    // non-PIC stubs.
		    : ((may_use_blx
			&& (r_type == elfcpp::R_ARM_THM_CALL))
		       ? arm_stub_long_branch_any_any // V5T and above.
		       : arm_stub_long_branch_v4t_thumb_thumb);	// V4T.
		}
	      else
		{
		  stub_type = (parameters->options().shared()
			       || should_force_pic_veneer)
		    ? arm_stub_long_branch_thumb_only_pic	// PIC stub.
		    : arm_stub_long_branch_thumb_only;	// non-PIC stub.
		}
	    }
	  else
	    {
	      // Thumb to arm.
	     
	      // FIXME: We should check that the input section is from an
	      // object that has interwork enabled.

	      stub_type = (parameters->options().shared()
			   || should_force_pic_veneer)
		// PIC stubs.
		? ((may_use_blx
		    && (r_type == elfcpp::R_ARM_THM_CALL))
		   ? arm_stub_long_branch_any_arm_pic	// V5T and above.
		   : arm_stub_long_branch_v4t_thumb_arm_pic)	// V4T.

		// non-PIC stubs.
		: ((may_use_blx
		    && (r_type == elfcpp::R_ARM_THM_CALL))
		   ? arm_stub_long_branch_any_any	// V5T and above.
		   : arm_stub_long_branch_v4t_thumb_arm);	// V4T.

	      // Handle v4t short branches.
	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
		stub_type = arm_stub_short_branch_v4t_thumb_arm;
	    }
	}
    }
  else if (r_type == elfcpp::R_ARM_CALL
	   || r_type == elfcpp::R_ARM_JUMP24
	   || r_type == elfcpp::R_ARM_PLT32)
    {
      if (target_is_thumb)
	{
	  // Arm to thumb.

	  // FIXME: We should check that the input section is from an
	  // object that has interwork enabled.

	  // We have an extra 2-bytes reach because of
	  // the mode change (bit 24 (H) of BLX encoding).
	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
	      || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
	      || (r_type == elfcpp::R_ARM_JUMP24)
	      || (r_type == elfcpp::R_ARM_PLT32))
	    {
	      stub_type = (parameters->options().shared()
			   || should_force_pic_veneer)
		// PIC stubs.
		? (may_use_blx
		   ? arm_stub_long_branch_any_thumb_pic// V5T and above.
		   : arm_stub_long_branch_v4t_arm_thumb_pic)	// V4T stub.

		// non-PIC stubs.
		: (may_use_blx
		   ? arm_stub_long_branch_any_any	// V5T and above.
		   : arm_stub_long_branch_v4t_arm_thumb);	// V4T.
	    }
	}
      else
	{
	  // Arm to arm.
	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
	    {
	      stub_type = (parameters->options().shared()
			   || should_force_pic_veneer)
		? arm_stub_long_branch_any_arm_pic	// PIC stubs.
		: arm_stub_long_branch_any_any;		/// non-PIC.
	    }
	}
    }

  return stub_type;
}

// Cortex_a8_stub methods.

// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
// I is the position of the instruction template in the stub template.

uint16_t
Cortex_a8_stub::do_thumb16_special(size_t i)
{
  // The only use of this is to copy condition code from a conditional
  // branch being worked around to the corresponding conditional branch in
  // to the stub.
  gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
	      && i == 0);
  uint16_t data = this->stub_template()->insns()[i].data();
  gold_assert((data & 0xff00U) == 0xd000U);
  data |= ((this->original_insn_ >> 22) & 0xf) << 8;
  return data;
}

// Stub_factory methods.

Stub_factory::Stub_factory()
{
  // The instruction template sequences are declared as static
  // objects and initialized first time the constructor runs.
 
  // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
  // to reach the stub if necessary.
  static const Insn_template elf32_arm_stub_long_branch_any_any[] =
    {
      Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4]
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
  						// dcd   R_ARM_ABS32(X)
    };
  
  // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
  // available.
  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
    {
      Insn_template::arm_insn(0xe59fc000),	// ldr   ip, [pc, #0]
      Insn_template::arm_insn(0xe12fff1c),	// bx    ip
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
  						// dcd   R_ARM_ABS32(X)
    };
  
  // Thumb -> Thumb long branch stub. Used on M-profile architectures.
  static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
    {
      Insn_template::thumb16_insn(0xb401),	// push {r0}
      Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8]
      Insn_template::thumb16_insn(0x4684),	// mov  ip, r0
      Insn_template::thumb16_insn(0xbc01),	// pop  {r0}
      Insn_template::thumb16_insn(0x4760),	// bx   ip
      Insn_template::thumb16_insn(0xbf00),	// nop
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
  						// dcd  R_ARM_ABS32(X)
    };
  
  // V4T Thumb -> Thumb long branch stub. Using the stack is not
  // allowed.
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
    {
      Insn_template::thumb16_insn(0x4778),	// bx   pc
      Insn_template::thumb16_insn(0x46c0),	// nop
      Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0]
      Insn_template::arm_insn(0xe12fff1c),	// bx   ip
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
  						// dcd  R_ARM_ABS32(X)
    };
  
  // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
  // available.
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
    {
      Insn_template::thumb16_insn(0x4778),	// bx   pc
      Insn_template::thumb16_insn(0x46c0),	// nop
      Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4]
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
  						// dcd   R_ARM_ABS32(X)
    };
  
  // V4T Thumb -> ARM short branch stub. Shorter variant of the above
  // one, when the destination is close enough.
  static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
    {
      Insn_template::thumb16_insn(0x4778),		// bx   pc
      Insn_template::thumb16_insn(0x46c0),		// nop
      Insn_template::arm_rel_insn(0xea000000, -8),	// b    (X-8)
    };
  
  // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
  // blx to reach the stub if necessary.
  static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
    {
      Insn_template::arm_insn(0xe59fc000),	// ldr   r12, [pc]
      Insn_template::arm_insn(0xe08ff00c),	// add   pc, pc, ip
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
  						// dcd   R_ARM_REL32(X-4)
    };
  
  // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
  // blx to reach the stub if necessary.  We can not add into pc;
  // it is not guaranteed to mode switch (different in ARMv6 and
  // ARMv7).
  static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
    {
      Insn_template::arm_insn(0xe59fc004),	// ldr   r12, [pc, #4]
      Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
      Insn_template::arm_insn(0xe12fff1c),	// bx    ip
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
  						// dcd   R_ARM_REL32(X)
    };
  
  // V4T ARM -> ARM long branch stub, PIC.
  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
    {
      Insn_template::arm_insn(0xe59fc004),	// ldr   ip, [pc, #4]
      Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
      Insn_template::arm_insn(0xe12fff1c),	// bx    ip
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
  						// dcd   R_ARM_REL32(X)
    };
  
  // V4T Thumb -> ARM long branch stub, PIC.
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
    {
      Insn_template::thumb16_insn(0x4778),	// bx   pc
      Insn_template::thumb16_insn(0x46c0),	// nop
      Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0]
      Insn_template::arm_insn(0xe08cf00f),	// add  pc, ip, pc
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
  						// dcd  R_ARM_REL32(X)
    };
  
  // Thumb -> Thumb long branch stub, PIC. Used on M-profile
  // architectures.
  static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
    {
      Insn_template::thumb16_insn(0xb401),	// push {r0}
      Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8]
      Insn_template::thumb16_insn(0x46fc),	// mov  ip, pc
      Insn_template::thumb16_insn(0x4484),	// add  ip, r0
      Insn_template::thumb16_insn(0xbc01),	// pop  {r0}
      Insn_template::thumb16_insn(0x4760),	// bx   ip
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
  						// dcd  R_ARM_REL32(X)
    };
  
  // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
  // allowed.
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
    {
      Insn_template::thumb16_insn(0x4778),	// bx   pc
      Insn_template::thumb16_insn(0x46c0),	// nop
      Insn_template::arm_insn(0xe59fc004),	// ldr  ip, [pc, #4]
      Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip
      Insn_template::arm_insn(0xe12fff1c),	// bx   ip
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
  						// dcd  R_ARM_REL32(X)
    };
  
  // Cortex-A8 erratum-workaround stubs.
  
  // Stub used for conditional branches (which may be beyond +/-1MB away,
  // so we can't use a conditional branch to reach this stub).
  
  // original code:
  //
  // 	b<cond> X
  // after:
  //
  static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
    {
      Insn_template::thumb16_bcond_insn(0xd001),	//	b<cond>.n true
      Insn_template::thumb32_b_insn(0xf000b800, -4),	//	b.w after
      Insn_template::thumb32_b_insn(0xf000b800, -4)	// true:
  							//	b.w X
    };
  
  // Stub used for b.w and bl.w instructions.
  
  static const Insn_template elf32_arm_stub_a8_veneer_b[] =
    {
      Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest
    };
  
  static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
    {
      Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest
    };
  
  // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
  // instruction (which switches to ARM mode) to point to this stub.  Jump to
  // the real destination using an ARM-mode branch.
  static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
    {
      Insn_template::arm_rel_insn(0xea000000, -8)	// b dest
    };

  // Stub used to provide an interworking for R_ARM_V4BX relocation
  // (bx r[n] instruction).
  static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
    {
      Insn_template::arm_insn(0xe3100001),		// tst   r<n>, #1
      Insn_template::arm_insn(0x01a0f000),		// moveq pc, r<n>
      Insn_template::arm_insn(0xe12fff10)		// bx    r<n>
    };

  // Fill in the stub template look-up table.  Stub templates are constructed
  // per instance of Stub_factory for fast look-up without locking
  // in a thread-enabled environment.

  this->stub_templates_[arm_stub_none] =
    new Stub_template(arm_stub_none, NULL, 0);

#define DEF_STUB(x)	\
  do \
    { \
      size_t array_size \
	= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
      Stub_type type = arm_stub_##x; \
      this->stub_templates_[type] = \
	new Stub_template(type, elf32_arm_stub_##x, array_size); \
    } \
  while (0);

  DEF_STUBS
#undef DEF_STUB
}

// Stub_table methods.

// Removel all Cortex-A8 stub.

template<bool big_endian>
void
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
{
  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
       p != this->cortex_a8_stubs_.end();
       ++p)
    delete p->second;
  this->cortex_a8_stubs_.clear();
}

// Relocate one stub.  This is a helper for Stub_table::relocate_stubs().

template<bool big_endian>
void
Stub_table<big_endian>::relocate_stub(
    Stub* stub,
    const Relocate_info<32, big_endian>* relinfo,
    Target_arm<big_endian>* arm_target,
    Output_section* output_section,
    unsigned char* view,
    Arm_address address,
    section_size_type view_size)
{
  const Stub_template* stub_template = stub->stub_template();
  if (stub_template->reloc_count() != 0)
    {
      // Adjust view to cover the stub only.
      section_size_type offset = stub->offset();
      section_size_type stub_size = stub_template->size();
      gold_assert(offset + stub_size <= view_size);

      arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
				address + offset, stub_size);
    }
}

// Relocate all stubs in this stub table.

template<bool big_endian>
void
Stub_table<big_endian>::relocate_stubs(
    const Relocate_info<32, big_endian>* relinfo,
    Target_arm<big_endian>* arm_target,
    Output_section* output_section,
    unsigned char* view,
    Arm_address address,
    section_size_type view_size)
{
  // If we are passed a view bigger than the stub table's.  we need to
  // adjust the view.
  gold_assert(address == this->address()
	      && (view_size
		  == static_cast<section_size_type>(this->data_size())));

  // Relocate all relocation stubs.
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
      p != this->reloc_stubs_.end();
      ++p)
    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
			address, view_size);

  // Relocate all Cortex-A8 stubs.
  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
       p != this->cortex_a8_stubs_.end();
       ++p)
    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
			address, view_size);

  // Relocate all ARM V4BX stubs.
  for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
       p != this->arm_v4bx_stubs_.end();
       ++p)
    {
      if (*p != NULL)
	this->relocate_stub(*p, relinfo, arm_target, output_section, view,
			    address, view_size);
    }
}

// Write out the stubs to file.

template<bool big_endian>
void
Stub_table<big_endian>::do_write(Output_file* of)
{
  off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  // Write relocation stubs.
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
      p != this->reloc_stubs_.end();
      ++p)
    {
      Reloc_stub* stub = p->second;
      Arm_address address = this->address() + stub->offset();
      gold_assert(address
		  == align_address(address,
				   stub->stub_template()->alignment()));
      stub->write(oview + stub->offset(), stub->stub_template()->size(),
		  big_endian);
    }

  // Write Cortex-A8 stubs.
  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
       p != this->cortex_a8_stubs_.end();
       ++p)
    {
      Cortex_a8_stub* stub = p->second;
      Arm_address address = this->address() + stub->offset();
      gold_assert(address
		  == align_address(address,
				   stub->stub_template()->alignment()));
      stub->write(oview + stub->offset(), stub->stub_template()->size(),
		  big_endian);
    }

  // Write ARM V4BX relocation stubs.
  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
       p != this->arm_v4bx_stubs_.end();
       ++p)
    {
      if (*p == NULL)
	continue;

      Arm_address address = this->address() + (*p)->offset();
      gold_assert(address
		  == align_address(address,
				   (*p)->stub_template()->alignment()));
      (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
		  big_endian);
    }

  of->write_output_view(this->offset(), oview_size, oview);
}

// Update the data size and address alignment of the stub table at the end
// of a relaxation pass.   Return true if either the data size or the
// alignment changed in this relaxation pass.

template<bool big_endian>
bool
Stub_table<big_endian>::update_data_size_and_addralign()
{
  off_t size = 0;
  unsigned addralign = 1;

  // Go over all stubs in table to compute data size and address alignment.
  
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
      p != this->reloc_stubs_.end();
      ++p)
    {
      const Stub_template* stub_template = p->second->stub_template();
      addralign = std::max(addralign, stub_template->alignment());
      size = (align_address(size, stub_template->alignment())
	      + stub_template->size());
    }

  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
       p != this->cortex_a8_stubs_.end();
       ++p)
    {
      const Stub_template* stub_template = p->second->stub_template();
      addralign = std::max(addralign, stub_template->alignment());
      size = (align_address(size, stub_template->alignment())
	      + stub_template->size());
    }

  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
       p != this->arm_v4bx_stubs_.end();
       ++p)
    {
      if (*p == NULL)
	continue;

      const Stub_template* stub_template = (*p)->stub_template();
      addralign = std::max(addralign, stub_template->alignment());
      size = (align_address(size, stub_template->alignment())
	      + stub_template->size());
    }

  // Check if either data size or alignment changed in this pass.
  // Update prev_data_size_ and prev_addralign_.  These will be used
  // as the current data size and address alignment for the next pass.
  bool changed = size != this->prev_data_size_;
  this->prev_data_size_ = size; 

  if (addralign != this->prev_addralign_)
    changed = true;
  this->prev_addralign_ = addralign;

  return changed;
}

// Finalize the stubs.  This sets the offsets of the stubs within the stub
// table.  It also marks all input sections needing Cortex-A8 workaround.

template<bool big_endian>
void
Stub_table<big_endian>::finalize_stubs()
{
  off_t off = 0;
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
      p != this->reloc_stubs_.end();
      ++p)
    {
      Reloc_stub* stub = p->second;
      const Stub_template* stub_template = stub->stub_template();
      uint64_t stub_addralign = stub_template->alignment();
      off = align_address(off, stub_addralign);
      stub->set_offset(off);
      off += stub_template->size();
    }

  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
       p != this->cortex_a8_stubs_.end();
       ++p)
    {
      Cortex_a8_stub* stub = p->second;
      const Stub_template* stub_template = stub->stub_template();
      uint64_t stub_addralign = stub_template->alignment();
      off = align_address(off, stub_addralign);
      stub->set_offset(off);
      off += stub_template->size();

      // Mark input section so that we can determine later if a code section
      // needs the Cortex-A8 workaround quickly.
      Arm_relobj<big_endian>* arm_relobj =
	Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
      arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
    }

  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
      p != this->arm_v4bx_stubs_.end();
      ++p)
    {
      if (*p == NULL)
	continue;

      const Stub_template* stub_template = (*p)->stub_template();
      uint64_t stub_addralign = stub_template->alignment();
      off = align_address(off, stub_addralign);
      (*p)->set_offset(off);
      off += stub_template->size();
    }

  gold_assert(off <= this->prev_data_size_);
}

// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
// and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
// of the address range seen by the linker.

template<bool big_endian>
void
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
    Target_arm<big_endian>* arm_target,
    unsigned char* view,
    Arm_address view_address,
    section_size_type view_size)
{
  // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
  for (Cortex_a8_stub_list::const_iterator p =
	 this->cortex_a8_stubs_.lower_bound(view_address);
       ((p != this->cortex_a8_stubs_.end())
	&& (p->first < (view_address + view_size)));
       ++p)
    {
      // We do not store the THUMB bit in the LSB of either the branch address
      // or the stub offset.  There is no need to strip the LSB.
      Arm_address branch_address = p->first;
      const Cortex_a8_stub* stub = p->second;
      Arm_address stub_address = this->address() + stub->offset();

      // Offset of the branch instruction relative to this view.
      section_size_type offset =
	convert_to_section_size_type(branch_address - view_address);
      gold_assert((offset + 4) <= view_size);

      arm_target->apply_cortex_a8_workaround(stub, stub_address,
					     view + offset, branch_address);
    }
}

// Arm_input_section methods.

// Initialize an Arm_input_section.

template<bool big_endian>
void
Arm_input_section<big_endian>::init()
{
  Relobj* relobj = this->relobj();
  unsigned int shndx = this->shndx();

  // Cache these to speed up size and alignment queries.  It is too slow
  // to call section_addraglin and section_size every time.
  this->original_addralign_ = relobj->section_addralign(shndx);
  this->original_size_ = relobj->section_size(shndx);

  // We want to make this look like the original input section after
  // output sections are finalized.
  Output_section* os = relobj->output_section(shndx);
  off_t offset = relobj->output_section_offset(shndx);
  gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
  this->set_address(os->address() + offset);
  this->set_file_offset(os->offset() + offset);

  this->set_current_data_size(this->original_size_);
  this->finalize_data_size();
}

template<bool big_endian>
void
Arm_input_section<big_endian>::do_write(Output_file* of)
{
  // We have to write out the original section content.
  section_size_type section_size;
  const unsigned char* section_contents =
    this->relobj()->section_contents(this->shndx(), &section_size, false); 
  of->write(this->offset(), section_contents, section_size); 

  // If this owns a stub table and it is not empty, write it.
  if (this->is_stub_table_owner() && !this->stub_table_->empty())
    this->stub_table_->write(of);
}

// Finalize data size.

template<bool big_endian>
void
Arm_input_section<big_endian>::set_final_data_size()
{
  // If this owns a stub table, finalize its data size as well.
  if (this->is_stub_table_owner())
    {
      uint64_t address = this->address();

      // The stub table comes after the original section contents.
      address += this->original_size_;
      address = align_address(address, this->stub_table_->addralign());
      off_t offset = this->offset() + (address - this->address());
      this->stub_table_->set_address_and_file_offset(address, offset);
      address += this->stub_table_->data_size();
      gold_assert(address == this->address() + this->current_data_size());
    }

  this->set_data_size(this->current_data_size());
}

// Reset address and file offset.

template<bool big_endian>
void
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
{
  // Size of the original input section contents.
  off_t off = convert_types<off_t, uint64_t>(this->original_size_);

  // If this is a stub table owner, account for the stub table size.
  if (this->is_stub_table_owner())
    {
      Stub_table<big_endian>* stub_table = this->stub_table_;

      // Reset the stub table's address and file offset.  The
      // current data size for child will be updated after that.
      stub_table_->reset_address_and_file_offset();
      off = align_address(off, stub_table_->addralign());
      off += stub_table->current_data_size();
    }

  this->set_current_data_size(off);
}

// Arm_exidx_cantunwind methods.

// Write this to Output file OF for a fixed endianity.

template<bool big_endian>
void
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
{
  off_t offset = this->offset();
  const section_size_type oview_size = 8;
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
  Valtype* wv = reinterpret_cast<Valtype*>(oview);

  Output_section* os = this->relobj_->output_section(this->shndx_);
  gold_assert(os != NULL);

  Arm_relobj<big_endian>* arm_relobj =
    Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
  Arm_address output_offset =
    arm_relobj->get_output_section_offset(this->shndx_);
  Arm_address section_start;
  if(output_offset != Arm_relobj<big_endian>::invalid_address)
    section_start = os->address() + output_offset;
  else
    {
      // Currently this only happens for a relaxed section.
      const Output_relaxed_input_section* poris =
	os->find_relaxed_input_section(this->relobj_, this->shndx_);
      gold_assert(poris != NULL);
      section_start = poris->address();
    }

  // We always append this to the end of an EXIDX section.
  Arm_address output_address =
    section_start + this->relobj_->section_size(this->shndx_);

  // Write out the entry.  The first word either points to the beginning
  // or after the end of a text section.  The second word is the special
  // EXIDX_CANTUNWIND value.
  elfcpp::Swap<32, big_endian>::writeval(wv, output_address);
  elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);

  of->write_output_view(this->offset(), oview_size, oview);
}

// Arm_exidx_merged_section methods.

// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output.  DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.

Arm_exidx_merged_section::Arm_exidx_merged_section(
    const Arm_exidx_input_section& exidx_input_section,
    const Arm_exidx_section_offset_map& section_offset_map,
    uint32_t deleted_bytes)
  : Output_relaxed_input_section(exidx_input_section.relobj(),
				 exidx_input_section.shndx(),
				 exidx_input_section.addralign()),
    exidx_input_section_(exidx_input_section),
    section_offset_map_(section_offset_map)
{
  // Fix size here so that we do not need to implement set_final_data_size.
  this->set_data_size(exidx_input_section.size() - deleted_bytes);
  this->fix_data_size();
}

// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known.  If this function returns true, it
// sets *POUTPUT to the output offset.  The value -1 indicates that
// this input offset is being discarded.

bool
Arm_exidx_merged_section::do_output_offset(
    const Relobj* relobj,
    unsigned int shndx,
    section_offset_type offset,
    section_offset_type* poutput) const
{
  // We only handle offsets for the original EXIDX input section.
  if (relobj != this->exidx_input_section_.relobj()
      || shndx != this->exidx_input_section_.shndx())
    return false;

  if (offset < 0 || offset >= this->exidx_input_section_.size())
    // Input offset is out of valid range.
    *poutput = -1;
  else
    {
      // We need to look up the section offset map to determine the output
      // offset.  Find the reference point in map that is first offset
      // bigger than or equal to this offset.
      Arm_exidx_section_offset_map::const_iterator p =
	this->section_offset_map_.lower_bound(offset);

      // The section offset maps are build such that this should not happen if
      // input offset is in the valid range.
      gold_assert(p != this->section_offset_map_.end());

      // We need to check if this is dropped.
     section_offset_type ref = p->first;
     section_offset_type mapped_ref = p->second;

      if (mapped_ref != Arm_exidx_input_section::invalid_offset)
	// Offset is present in output.
	*poutput = mapped_ref + (offset - ref);
      else
	// Offset is discarded owing to EXIDX entry merging.
	*poutput = -1;
    }
  
  return true;
}

// Write this to output file OF.

void
Arm_exidx_merged_section::do_write(Output_file* of)
{
  // If we retain or discard the whole EXIDX input section,  we would
  // not be here.
  gold_assert(this->data_size() != this->exidx_input_section_.size()
	      && this->data_size() != 0);

  off_t offset = this->offset();
  const section_size_type oview_size = this->data_size();
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  
  Output_section* os = this->relobj()->output_section(this->shndx());
  gold_assert(os != NULL);

  // Get contents of EXIDX input section.
  section_size_type section_size;
  const unsigned char* section_contents =
    this->relobj()->section_contents(this->shndx(), &section_size, false); 
  gold_assert(section_size == this->exidx_input_section_.size());

  // Go over spans of input offsets and write only those that are not
  // discarded.
  section_offset_type in_start = 0;
  section_offset_type out_start = 0;
  for(Arm_exidx_section_offset_map::const_iterator p =
        this->section_offset_map_.begin();
      p != this->section_offset_map_.end();
      ++p)
    {
      section_offset_type in_end = p->first;
      gold_assert(in_end >= in_start);
      section_offset_type out_end = p->second;
      size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
      if (out_end != -1)
	{
	  size_t out_chunk_size =
	    convert_types<size_t>(out_end - out_start + 1);
	  gold_assert(out_chunk_size == in_chunk_size);
	  memcpy(oview + out_start, section_contents + in_start,
		 out_chunk_size);
	  out_start += out_chunk_size;
	}
      in_start += in_chunk_size;
    }

  gold_assert(convert_to_section_size_type(out_start) == oview_size);
  of->write_output_view(this->offset(), oview_size, oview);
}

// Arm_exidx_fixup methods.

// Append an EXIDX_CANTUNWIND in the current output section if the last entry
// is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
// points to the end of the last seen EXIDX section.

void
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
{
  if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
      && this->last_input_section_ != NULL)
    {
      Relobj* relobj = this->last_input_section_->relobj();
      unsigned int shndx = this->last_input_section_->shndx();
      Arm_exidx_cantunwind* cantunwind =
	new Arm_exidx_cantunwind(relobj, shndx);
      this->exidx_output_section_->add_output_section_data(cantunwind);
      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
    }
}

// Process an EXIDX section entry in input.  Return whether this entry
// can be deleted in the output.  SECOND_WORD in the second word of the
// EXIDX entry.

bool
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
{
  bool delete_entry;
  if (second_word == elfcpp::EXIDX_CANTUNWIND)
    {
      // Merge if previous entry is also an EXIDX_CANTUNWIND.
      delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
    }
  else if ((second_word & 0x80000000) != 0)
    {
      // Inlined unwinding data.  Merge if equal to previous.
      delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
		      && this->last_inlined_entry_ == second_word);
      this->last_unwind_type_ = UT_INLINED_ENTRY;
      this->last_inlined_entry_ = second_word;
    }
  else
    {
      // Normal table entry.  In theory we could merge these too,
      // but duplicate entries are likely to be much less common.
      delete_entry = false;
      this->last_unwind_type_ = UT_NORMAL_ENTRY;
    }
  return delete_entry;
}

// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one.  INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far.  If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.

void
Arm_exidx_fixup::update_offset_map(
    section_offset_type input_offset,
    section_size_type deleted_bytes,
    bool delete_entry)
{
  if (this->section_offset_map_ == NULL)
    this->section_offset_map_ = new Arm_exidx_section_offset_map();
  section_offset_type output_offset = (delete_entry
				       ? -1
				       : input_offset - deleted_bytes);
  (*this->section_offset_map_)[input_offset] = output_offset;
}

// Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
// bytes deleted.  If some entries are merged, also store a pointer to a newly
// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
// caller owns the map and is responsible for releasing it after use.

template<bool big_endian>
uint32_t
Arm_exidx_fixup::process_exidx_section(
    const Arm_exidx_input_section* exidx_input_section,
    Arm_exidx_section_offset_map** psection_offset_map)
{
  Relobj* relobj = exidx_input_section->relobj();
  unsigned shndx = exidx_input_section->shndx();
  section_size_type section_size;
  const unsigned char* section_contents =
    relobj->section_contents(shndx, &section_size, false);

  if ((section_size % 8) != 0)
    {
      // Something is wrong with this section.  Better not touch it.
      gold_error(_("uneven .ARM.exidx section size in %s section %u"),
		 relobj->name().c_str(), shndx);
      this->last_input_section_ = exidx_input_section;
      this->last_unwind_type_ = UT_NONE;
      return 0;
    }
  
  uint32_t deleted_bytes = 0;
  bool prev_delete_entry = false;
  gold_assert(this->section_offset_map_ == NULL);

  for (section_size_type i = 0; i < section_size; i += 8)
    {
      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
      const Valtype* wv =
	  reinterpret_cast<const Valtype*>(section_contents + i + 4);
      uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);

      bool delete_entry = this->process_exidx_entry(second_word);

      // Entry deletion causes changes in output offsets.  We use a std::map
      // to record these.  And entry (x, y) means input offset x
      // is mapped to output offset y.  If y is invalid_offset, then x is
      // dropped in the output.  Because of the way std::map::lower_bound
      // works, we record the last offset in a region w.r.t to keeping or
      // dropping.  If there is no entry (x0, y0) for an input offset x0,
      // the output offset y0 of it is determined by the output offset y1 of
      // the smallest input offset x1 > x0 that there is an (x1, y1) entry
      // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
      // y0 is also -1.
      if (delete_entry != prev_delete_entry && i != 0)
	this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);

      // Update total deleted bytes for this entry.
      if (delete_entry)
	deleted_bytes += 8;

      prev_delete_entry = delete_entry;
    }
  
  // If section offset map is not NULL, make an entry for the end of
  // section.
  if (this->section_offset_map_ != NULL)
    update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);

  *psection_offset_map = this->section_offset_map_;
  this->section_offset_map_ = NULL;
  this->last_input_section_ = exidx_input_section;
  
  return deleted_bytes;
}

// Arm_output_section methods.

// Create a stub group for input sections from BEGIN to END.  OWNER
// points to the input section to be the owner a new stub table.

template<bool big_endian>
void
Arm_output_section<big_endian>::create_stub_group(
  Input_section_list::const_iterator begin,
  Input_section_list::const_iterator end,
  Input_section_list::const_iterator owner,
  Target_arm<big_endian>* target,
  std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
{
  // Currently we convert ordinary input sections into relaxed sections only
  // at this point but we may want to support creating relaxed input section
  // very early.  So we check here to see if owner is already a relaxed
  // section.
  
  Arm_input_section<big_endian>* arm_input_section;
  if (owner->is_relaxed_input_section())
    {
      arm_input_section =
	Arm_input_section<big_endian>::as_arm_input_section(
	  owner->relaxed_input_section());
    }
  else
    {
      gold_assert(owner->is_input_section());
      // Create a new relaxed input section.
      arm_input_section =
	target->new_arm_input_section(owner->relobj(), owner->shndx());
      new_relaxed_sections->push_back(arm_input_section);
    }

  // Create a stub table.
  Stub_table<big_endian>* stub_table =
    target->new_stub_table(arm_input_section);

  arm_input_section->set_stub_table(stub_table);
  
  Input_section_list::const_iterator p = begin;
  Input_section_list::const_iterator prev_p;

  // Look for input sections or relaxed input sections in [begin ... end].
  do
    {
      if (p->is_input_section() || p->is_relaxed_input_section())
	{
	  // The stub table information for input sections live
	  // in their objects.
	  Arm_relobj<big_endian>* arm_relobj =
	    Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
	  arm_relobj->set_stub_table(p->shndx(), stub_table);
	}
      prev_p = p++;
    }
  while (prev_p != end);
}

// Group input sections for stub generation.  GROUP_SIZE is roughly the limit
// of stub groups.  We grow a stub group by adding input section until the
// size is just below GROUP_SIZE.  The last input section will be converted
// into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
// input section after the stub table, effectively double the group size.
// 
// This is similar to the group_sections() function in elf32-arm.c but is
// implemented differently.

template<bool big_endian>
void
Arm_output_section<big_endian>::group_sections(
    section_size_type group_size,
    bool stubs_always_after_branch,
    Target_arm<big_endian>* target)
{
  // We only care about sections containing code.
  if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
    return;

  // States for grouping.
  typedef enum
  {
    // No group is being built.
    NO_GROUP,
    // A group is being built but the stub table is not found yet.
    // We keep group a stub group until the size is just under GROUP_SIZE.
    // The last input section in the group will be used as the stub table.
    FINDING_STUB_SECTION,
    // A group is being built and we have already found a stub table.
    // We enter this state to grow a stub group by adding input section
    // after the stub table.  This effectively doubles the group size.
    HAS_STUB_SECTION
  } State;

  // Any newly created relaxed sections are stored here.
  std::vector<Output_relaxed_input_section*> new_relaxed_sections;

  State state = NO_GROUP;
  section_size_type off = 0;
  section_size_type group_begin_offset = 0;
  section_size_type group_end_offset = 0;
  section_size_type stub_table_end_offset = 0;
  Input_section_list::const_iterator group_begin =
    this->input_sections().end();
  Input_section_list::const_iterator stub_table =
    this->input_sections().end();
  Input_section_list::const_iterator group_end = this->input_sections().end();
  for (Input_section_list::const_iterator p = this->input_sections().begin();
       p != this->input_sections().end();
       ++p)
    {
      section_size_type section_begin_offset =
	align_address(off, p->addralign());
      section_size_type section_end_offset =
	section_begin_offset + p->data_size(); 
      
      // Check to see if we should group the previously seens sections.
      switch (state)
	{
	case NO_GROUP:
	  break;

	case FINDING_STUB_SECTION:
	  // Adding this section makes the group larger than GROUP_SIZE.
	  if (section_end_offset - group_begin_offset >= group_size)
	    {
	      if (stubs_always_after_branch)
		{	
		  gold_assert(group_end != this->input_sections().end());
		  this->create_stub_group(group_begin, group_end, group_end,
					  target, &new_relaxed_sections);
		  state = NO_GROUP;
		}
	      else
		{
		  // But wait, there's more!  Input sections up to
		  // stub_group_size bytes after the stub table can be
		  // handled by it too.
		  state = HAS_STUB_SECTION;
		  stub_table = group_end;
		  stub_table_end_offset = group_end_offset;
		}
	    }
	    break;

	case HAS_STUB_SECTION:
	  // Adding this section makes the post stub-section group larger
	  // than GROUP_SIZE.
	  if (section_end_offset - stub_table_end_offset >= group_size)
	   {
	     gold_assert(group_end != this->input_sections().end());
	     this->create_stub_group(group_begin, group_end, stub_table,
				     target, &new_relaxed_sections);
	     state = NO_GROUP;
	   }
	   break;

	  default:
	    gold_unreachable();
	}	

      // If we see an input section and currently there is no group, start
      // a new one.  Skip any empty sections.
      if ((p->is_input_section() || p->is_relaxed_input_section())
	  && (p->relobj()->section_size(p->shndx()) != 0))
	{
	  if (state == NO_GROUP)
	    {
	      state = FINDING_STUB_SECTION;
	      group_begin = p;
	      group_begin_offset = section_begin_offset;
	    }

	  // Keep track of the last input section seen.
	  group_end = p;
	  group_end_offset = section_end_offset;
	}

      off = section_end_offset;
    }

  // Create a stub group for any ungrouped sections.
  if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
    {
      gold_assert(group_end != this->input_sections().end());
      this->create_stub_group(group_begin, group_end,
			      (state == FINDING_STUB_SECTION
			       ? group_end
			       : stub_table),
			       target, &new_relaxed_sections);
    }

  // Convert input section into relaxed input section in a batch.
  if (!new_relaxed_sections.empty())
    this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);

  // Update the section offsets
  for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
    {
      Arm_relobj<big_endian>* arm_relobj =
	Arm_relobj<big_endian>::as_arm_relobj(
	  new_relaxed_sections[i]->relobj());
      unsigned int shndx = new_relaxed_sections[i]->shndx();
      // Tell Arm_relobj that this input section is converted.
      arm_relobj->convert_input_section_to_relaxed_section(shndx);
    }
}

// Arm_relobj methods.

// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.

template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
    const elfcpp::Shdr<32, big_endian>& shdr,
    const Relobj::Output_sections& out_sections,
    const Symbol_table *symtab)
{
  unsigned int sh_type = shdr.get_sh_type();
  if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
    return false;

  // Ignore empty section.
  off_t sh_size = shdr.get_sh_size();
  if (sh_size == 0)
    return false;

  // Ignore reloc section with bad info.  This error will be
  // reported in the final link.
  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
  if (index >= this->shnum())
    return false;

  // This relocation section is against a section which we
  // discarded or if the section is folded into another
  // section due to ICF.
  if (out_sections[index] == NULL || symtab->is_section_folded(this, index))
    return false;

  // Ignore reloc section with unexpected symbol table.  The
  // error will be reported in the final link.
  if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
    return false;

  unsigned int reloc_size;
  if (sh_type == elfcpp::SHT_REL)
    reloc_size = elfcpp::Elf_sizes<32>::rel_size;
  else
    reloc_size = elfcpp::Elf_sizes<32>::rela_size;

  // Ignore reloc section with unexpected entsize or uneven size.
  // The error will be reported in the final link.
  if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
    return false;

  return true;
}

// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.

template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
    const elfcpp::Shdr<32, big_endian>& shdr,
    unsigned int shndx,
    Output_section* os,
    const Symbol_table* symtab)
{
  // We only scan non-empty code sections.
  if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0
      || shdr.get_sh_size() == 0)
    return false;

  // Ignore discarded or ICF'ed sections.
  if (os == NULL || symtab->is_section_folded(this, shndx))
    return false;
  
  // Find output address of section.
  Arm_address address = os->output_address(this, shndx, 0);

  // If the section does not cross any 4K-boundaries, it does not need to
  // be scanned.
  if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
    return false;

  return true;
}

// Scan a section for Cortex-A8 workaround.

template<bool big_endian>
void
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
    const elfcpp::Shdr<32, big_endian>& shdr,
    unsigned int shndx,
    Output_section* os,
    Target_arm<big_endian>* arm_target)
{
  Arm_address output_address = os->output_address(this, shndx, 0);

  // Get the section contents.
  section_size_type input_view_size = 0;
  const unsigned char* input_view =
    this->section_contents(shndx, &input_view_size, false);

  // We need to go through the mapping symbols to determine what to
  // scan.  There are two reasons.  First, we should look at THUMB code and
  // THUMB code only.  Second, we only want to look at the 4K-page boundary
  // to speed up the scanning.
  
  // Look for the first mapping symbol in this section.  It should be
  // at (shndx, 0).
  Mapping_symbol_position section_start(shndx, 0);
  typename Mapping_symbols_info::const_iterator p =
    this->mapping_symbols_info_.lower_bound(section_start);

  if (p == this->mapping_symbols_info_.end()
      || p->first != section_start)
    {
      gold_warning(_("Cortex-A8 erratum scanning failed because there "
		     "is no mapping symbols for section %u of %s"),
		   shndx, this->name().c_str());
      return;
    }
 
  while (p != this->mapping_symbols_info_.end()
	&& p->first.first == shndx)
    {
      typename Mapping_symbols_info::const_iterator next =
	this->mapping_symbols_info_.upper_bound(p->first);

      // Only scan part of a section with THUMB code.
      if (p->second == 't')
	{
	  // Determine the end of this range.
	  section_size_type span_start =
	    convert_to_section_size_type(p->first.second);
	  section_size_type span_end;
	  if (next != this->mapping_symbols_info_.end()
	      && next->first.first == shndx)
	    span_end = convert_to_section_size_type(next->first.second);
	  else
	    span_end = convert_to_section_size_type(shdr.get_sh_size());
	  
	  if (((span_start + output_address) & ~0xfffUL)
	      != ((span_end + output_address - 1) & ~0xfffUL))
	    {
	      arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
							  span_start, span_end,
							  input_view,
							  output_address);
	    }
	}

      p = next; 
    }
}

// Scan relocations for stub generation.

template<bool big_endian>
void
Arm_relobj<big_endian>::scan_sections_for_stubs(
    Target_arm<big_endian>* arm_target,
    const Symbol_table* symtab,
    const Layout* layout)
{
  unsigned int shnum = this->shnum();
  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;

  // Read the section headers.
  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
					       shnum * shdr_size,
					       true, true);

  // To speed up processing, we set up hash tables for fast lookup of
  // input offsets to output addresses.
  this->initialize_input_to_output_maps();

  const Relobj::Output_sections& out_sections(this->output_sections());

  Relocate_info<32, big_endian> relinfo;
  relinfo.symtab = symtab;
  relinfo.layout = layout;
  relinfo.object = this;

  // Do relocation stubs scanning.
  const unsigned char* p = pshdrs + shdr_size;
  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
    {
      const elfcpp::Shdr<32, big_endian> shdr(p);
      if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab))
	{
	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
	  Arm_address output_offset = this->get_output_section_offset(index);
	  Arm_address output_address;
	  if(output_offset != invalid_address)
	    output_address = out_sections[index]->address() + output_offset;
	  else
	    {
	      // Currently this only happens for a relaxed section.
	      const Output_relaxed_input_section* poris =
	      out_sections[index]->find_relaxed_input_section(this, index);
	      gold_assert(poris != NULL);
	      output_address = poris->address();
	    }

	  // Get the relocations.
	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
							shdr.get_sh_size(),
							true, false);

	  // Get the section contents.  This does work for the case in which
	  // we modify the contents of an input section.  We need to pass the
	  // output view under such circumstances.
	  section_size_type input_view_size = 0;
	  const unsigned char* input_view =
	    this->section_contents(index, &input_view_size, false);

	  relinfo.reloc_shndx = i;
	  relinfo.data_shndx = index;
	  unsigned int sh_type = shdr.get_sh_type();
	  unsigned int reloc_size;
	  if (sh_type == elfcpp::SHT_REL)
	    reloc_size = elfcpp::Elf_sizes<32>::rel_size;
	  else
	    reloc_size = elfcpp::Elf_sizes<32>::rela_size;

	  Output_section* os = out_sections[index];
	  arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
					     shdr.get_sh_size() / reloc_size,
					     os,
					     output_offset == invalid_address,
					     input_view, output_address,
					     input_view_size);
	}
    }

  // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
  // after its relocation section, if there is one, is processed for
  // relocation stubs.  Merging this loop with the one above would have been
  // complicated since we would have had to make sure that relocation stub
  // scanning is done first.
  if (arm_target->fix_cortex_a8())
    {
      const unsigned char* p = pshdrs + shdr_size;
      for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
	{
	  const elfcpp::Shdr<32, big_endian> shdr(p);
	  if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
							  out_sections[i],
							  symtab))
	    this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
						     arm_target);
	}
    }

  // After we've done the relocations, we release the hash tables,
  // since we no longer need them.
  this->free_input_to_output_maps();
}

// Count the local symbols.  The ARM backend needs to know if a symbol
// is a THUMB function or not.  For global symbols, it is easy because
// the Symbol object keeps the ELF symbol type.  For local symbol it is
// harder because we cannot access this information.   So we override the
// do_count_local_symbol in parent and scan local symbols to mark
// THUMB functions.  This is not the most efficient way but I do not want to
// slow down other ports by calling a per symbol targer hook inside
// Sized_relobj<size, big_endian>::do_count_local_symbols. 

template<bool big_endian>
void
Arm_relobj<big_endian>::do_count_local_symbols(
    Stringpool_template<char>* pool,
    Stringpool_template<char>* dynpool)
{
  // We need to fix-up the values of any local symbols whose type are
  // STT_ARM_TFUNC.
  
  // Ask parent to count the local symbols.
  Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
  const unsigned int loccount = this->local_symbol_count();
  if (loccount == 0)
    return;

  // Intialize the thumb function bit-vector.
  std::vector<bool> empty_vector(loccount, false);
  this->local_symbol_is_thumb_function_.swap(empty_vector);

  // Read the symbol table section header.
  const unsigned int symtab_shndx = this->symtab_shndx();
  elfcpp::Shdr<32, big_endian>
      symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

  // Read the local symbols.
  const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
  gold_assert(loccount == symtabshdr.get_sh_info());
  off_t locsize = loccount * sym_size;
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
					      locsize, true, true);

  // For mapping symbol processing, we need to read the symbol names.
  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
  if (strtab_shndx >= this->shnum())
    {
      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
      return;
    }

  elfcpp::Shdr<32, big_endian>
    strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
    {
      this->error(_("symbol table name section has wrong type: %u"),
	          static_cast<unsigned int>(strtabshdr.get_sh_type()));
      return;
    }
  const char* pnames =
    reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
						 strtabshdr.get_sh_size(),
						 false, false));

  // Loop over the local symbols and mark any local symbols pointing
  // to THUMB functions.

  // Skip the first dummy symbol.
  psyms += sym_size;
  typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
    this->local_values();
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
    {
      elfcpp::Sym<32, big_endian> sym(psyms);
      elfcpp::STT st_type = sym.get_st_type();
      Symbol_value<32>& lv((*plocal_values)[i]);
      Arm_address input_value = lv.input_value();

      // Check to see if this is a mapping symbol.
      const char* sym_name = pnames + sym.get_st_name();
      if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
	{
	  unsigned int input_shndx = sym.get_st_shndx();  

	  // Strip of LSB in case this is a THUMB symbol.
	  Mapping_symbol_position msp(input_shndx, input_value & ~1U);
	  this->mapping_symbols_info_[msp] = sym_name[1];
	}

      if (st_type == elfcpp::STT_ARM_TFUNC
	  || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
	{
	  // This is a THUMB function.  Mark this and canonicalize the
	  // symbol value by setting LSB.
	  this->local_symbol_is_thumb_function_[i] = true;
	  if ((input_value & 1) == 0)
	    lv.set_input_value(input_value | 1);
	}
    }
}

// Relocate sections.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_relocate_sections(
    const Symbol_table* symtab,
    const Layout* layout,
    const unsigned char* pshdrs,
    typename Sized_relobj<32, big_endian>::Views* pviews)
{
  // Call parent to relocate sections.
  Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
						     pviews); 

  // We do not generate stubs if doing a relocatable link.
  if (parameters->options().relocatable())
    return;

  // Relocate stub tables.
  unsigned int shnum = this->shnum();

  Target_arm<big_endian>* arm_target =
    Target_arm<big_endian>::default_target();

  Relocate_info<32, big_endian> relinfo;
  relinfo.symtab = symtab;
  relinfo.layout = layout;
  relinfo.object = this;

  for (unsigned int i = 1; i < shnum; ++i)
    {
      Arm_input_section<big_endian>* arm_input_section =
	arm_target->find_arm_input_section(this, i);

      if (arm_input_section != NULL
	  && arm_input_section->is_stub_table_owner()
	  && !arm_input_section->stub_table()->empty())
	{
	  // We cannot discard a section if it owns a stub table.
	  Output_section* os = this->output_section(i);
	  gold_assert(os != NULL);

	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
	  relinfo.reloc_shdr = NULL;
	  relinfo.data_shndx = i;
	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;

	  gold_assert((*pviews)[i].view != NULL);

	  // We are passed the output section view.  Adjust it to cover the
	  // stub table only.
	  Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
	  gold_assert((stub_table->address() >= (*pviews)[i].address)
		      && ((stub_table->address() + stub_table->data_size())
			  <= (*pviews)[i].address + (*pviews)[i].view_size));

	  off_t offset = stub_table->address() - (*pviews)[i].address;
	  unsigned char* view = (*pviews)[i].view + offset;
	  Arm_address address = stub_table->address();
	  section_size_type view_size = stub_table->data_size();
 
	  stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
				     view_size);
	}

      // Apply Cortex A8 workaround if applicable.
      if (this->section_has_cortex_a8_workaround(i))
	{
	  unsigned char* view = (*pviews)[i].view;
	  Arm_address view_address = (*pviews)[i].address;
	  section_size_type view_size = (*pviews)[i].view_size;
	  Stub_table<big_endian>* stub_table = this->stub_tables_[i];

	  // Adjust view to cover section.
	  Output_section* os = this->output_section(i);
	  gold_assert(os != NULL);
	  Arm_address section_address = os->output_address(this, i, 0);
	  uint64_t section_size = this->section_size(i);

	  gold_assert(section_address >= view_address
		      && ((section_address + section_size)
			  <= (view_address + view_size)));

	  unsigned char* section_view = view + (section_address - view_address);

	  // Apply the Cortex-A8 workaround to the output address range
	  // corresponding to this input section.
	  stub_table->apply_cortex_a8_workaround_to_address_range(
	      arm_target,
	      section_view,
	      section_address,
	      section_size);
	}
    }
}

// Create a new EXIDX input section object for EXIDX section SHNDX with
// header SHDR.

template<bool big_endian>
void
Arm_relobj<big_endian>::make_exidx_input_section(
    unsigned int shndx,
    const elfcpp::Shdr<32, big_endian>& shdr)
{
  // Link .text section to its .ARM.exidx section in the same object.
  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());

  // Issue an error and ignore this EXIDX section if it does not point
  // to any text section.
  if (text_shndx == elfcpp::SHN_UNDEF)
    {
      gold_error(_("EXIDX section %u in %s has no linked text section"),
		 shndx, this->name().c_str());
      return;
    }
  
  // Issue an error and ignore this EXIDX section if it points to a text
  // section already has an EXIDX section.
  if (this->exidx_section_map_[text_shndx] != NULL)
    {
      gold_error(_("EXIDX sections %u and %u both link to text section %u "
		   "in %s"),
		 shndx, this->exidx_section_map_[text_shndx]->shndx(),
		 text_shndx, this->name().c_str());
      return;
    }

  // Create an Arm_exidx_input_section object for this EXIDX section.
  Arm_exidx_input_section* exidx_input_section =
    new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
				shdr.get_sh_addralign());
  this->exidx_section_map_[text_shndx] = exidx_input_section;

  // Also map the EXIDX section index to this.
  gold_assert(this->exidx_section_map_[shndx] == NULL);
  this->exidx_section_map_[shndx] = exidx_input_section;
}

// Read the symbol information.

template<bool big_endian>
void
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
  // Call parent class to read symbol information.
  Sized_relobj<32, big_endian>::do_read_symbols(sd);

  // Read processor-specific flags in ELF file header.
  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
					      elfcpp::Elf_sizes<32>::ehdr_size,
					      true, false);
  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
  this->processor_specific_flags_ = ehdr.get_e_flags();

  // Go over the section headers and look for .ARM.attributes and .ARM.exidx
  // sections.
  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
  const unsigned char *ps =
    sd->section_headers->data() + shdr_size;
  for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
    {
      elfcpp::Shdr<32, big_endian> shdr(ps);
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
	{
     	  gold_assert(this->attributes_section_data_ == NULL);
	  section_offset_type section_offset = shdr.get_sh_offset();
	  section_size_type section_size =
	    convert_to_section_size_type(shdr.get_sh_size());
	  File_view* view = this->get_lasting_view(section_offset,
						   section_size, true, false);
	  this->attributes_section_data_ =
	    new Attributes_section_data(view->data(), section_size);
	}
      else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
	this->make_exidx_input_section(i, shdr);
    }
}

// Process relocations for garbage collection.  The ARM target uses .ARM.exidx
// sections for unwinding.  These sections are referenced implicitly by 
// text sections linked in the section headers.  If we ignore these implict
// references, the .ARM.exidx sections and any .ARM.extab sections they use
// will be garbage-collected incorrectly.  Hence we override the same function
// in the base class to handle these implicit references.

template<bool big_endian>
void
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
					     Layout* layout,
					     Read_relocs_data* rd)
{
  // First, call base class method to process relocations in this object.
  Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);

  unsigned int shnum = this->shnum();
  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
					       shnum * shdr_size,
					       true, true);

  // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
  // to these from the linked text sections.
  const unsigned char* ps = pshdrs + shdr_size;
  for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
    {
      elfcpp::Shdr<32, big_endian> shdr(ps);
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
	{
	  // Found an .ARM.exidx section, add it to the set of reachable
	  // sections from its linked text section.
	  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
	  symtab->gc()->add_reference(this, text_shndx, this, i);
	}
    }
}

// Arm_dynobj methods.

// Read the symbol information.

template<bool big_endian>
void
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
  // Call parent class to read symbol information.
  Sized_dynobj<32, big_endian>::do_read_symbols(sd);

  // Read processor-specific flags in ELF file header.
  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
					      elfcpp::Elf_sizes<32>::ehdr_size,
					      true, false);
  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
  this->processor_specific_flags_ = ehdr.get_e_flags();

  // Read the attributes section if there is one.
  // We read from the end because gas seems to put it near the end of
  // the section headers.
  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
  const unsigned char *ps =
    sd->section_headers->data() + shdr_size * (this->shnum() - 1);
  for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
    {
      elfcpp::Shdr<32, big_endian> shdr(ps);
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
	{
	  section_offset_type section_offset = shdr.get_sh_offset();
	  section_size_type section_size =
	    convert_to_section_size_type(shdr.get_sh_size());
	  File_view* view = this->get_lasting_view(section_offset,
						   section_size, true, false);
	  this->attributes_section_data_ =
	    new Attributes_section_data(view->data(), section_size);
	  break;
	}
    }
}

// Stub_addend_reader methods.

// Read the addend of a REL relocation of type R_TYPE at VIEW.

template<bool big_endian>
elfcpp::Elf_types<32>::Elf_Swxword
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
    unsigned int r_type,
    const unsigned char* view,
    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
{
  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
  
  switch (r_type)
    {
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_PLT32:
      {
	typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
	Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
	return utils::sign_extend<26>(val << 2);
      }

    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_JUMP24:
    case elfcpp::R_ARM_THM_XPC22:
      {
	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
	return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
      }

    case elfcpp::R_ARM_THM_JUMP19:
      {
	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
	const Valtype* wv = reinterpret_cast<const Valtype*>(view);
	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
	return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
      }

    default:
      gold_unreachable();
    }
}

// A class to handle the PLT data.

template<bool big_endian>
class Output_data_plt_arm : public Output_section_data
{
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
    Reloc_section;

  Output_data_plt_arm(Layout*, Output_data_space*);

  // Add an entry to the PLT.
  void
  add_entry(Symbol* gsym);

  // Return the .rel.plt section data.
  const Reloc_section*
  rel_plt() const
  { return this->rel_; }

 protected:
  void
  do_adjust_output_section(Output_section* os);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }

 private:
  // Template for the first PLT entry.
  static const uint32_t first_plt_entry[5];

  // Template for subsequent PLT entries. 
  static const uint32_t plt_entry[3];

  // Set the final size.
  void
  set_final_data_size()
  {
    this->set_data_size(sizeof(first_plt_entry)
			+ this->count_ * sizeof(plt_entry));
  }

  // Write out the PLT data.
  void
  do_write(Output_file*);

  // The reloc section.
  Reloc_section* rel_;
  // The .got.plt section.
  Output_data_space* got_plt_;
  // The number of PLT entries.
  unsigned int count_;
};

// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.  We also create our own .got
// section just for PLT entries.

template<bool big_endian>
Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
						     Output_data_space* got_plt)
  : Output_section_data(4), got_plt_(got_plt), count_(0)
{
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
				  elfcpp::SHF_ALLOC, this->rel_, true, false,
				  false, false);
}

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
{
  os->set_entsize(0);
}

// Add an entry to the PLT.

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
{
  gold_assert(!gsym->has_plt_offset());

  // Note that when setting the PLT offset we skip the initial
  // reserved PLT entry.
  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
		       + sizeof(first_plt_entry));

  ++this->count_;

  section_offset_type got_offset = this->got_plt_->current_data_size();

  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry (this will be changed by the dynamic linker, normally
  // lazily when the function is called).
  this->got_plt_->set_current_data_size(got_offset + 4);

  // Every PLT entry needs a reloc.
  gsym->set_needs_dynsym_entry();
  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
			 got_offset);

  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
}

// ARM PLTs.
// FIXME:  This is not very flexible.  Right now this has only been tested
// on armv5te.  If we are to support additional architecture features like
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.

// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
{
  0xe52de004,	// str   lr, [sp, #-4]!
  0xe59fe004,   // ldr   lr, [pc, #4]
  0xe08fe00e,	// add   lr, pc, lr 
  0xe5bef008,	// ldr   pc, [lr, #8]!
  0x00000000,	// &GOT[0] - .
};

// Subsequent entries in the PLT.

template<bool big_endian>
const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
{
  0xe28fc600,	// add   ip, pc, #0xNN00000
  0xe28cca00,	// add   ip, ip, #0xNN000
  0xe5bcf000,	// ldr   pc, [ip, #0xNNN]!
};

// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is all specified by the arm ELF
// Processor Supplement.

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  const off_t got_file_offset = this->got_plt_->offset();
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
						      got_size);
  unsigned char* pov = oview;

  Arm_address plt_address = this->address();
  Arm_address got_address = this->got_plt_->address();

  // Write first PLT entry.  All but the last word are constants.
  const size_t num_first_plt_words = (sizeof(first_plt_entry)
				      / sizeof(plt_entry[0]));
  for (size_t i = 0; i < num_first_plt_words - 1; i++)
    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
  // Last word in first PLT entry is &GOT[0] - .
  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
					 got_address - (plt_address + 16));
  pov += sizeof(first_plt_entry);

  unsigned char* got_pov = got_view;

  memset(got_pov, 0, 12);
  got_pov += 12;

  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
  unsigned int plt_offset = sizeof(first_plt_entry);
  unsigned int plt_rel_offset = 0;
  unsigned int got_offset = 12;
  const unsigned int count = this->count_;
  for (unsigned int i = 0;
       i < count;
       ++i,
	 pov += sizeof(plt_entry),
	 got_pov += 4,
	 plt_offset += sizeof(plt_entry),
	 plt_rel_offset += rel_size,
	 got_offset += 4)
    {
      // Set and adjust the PLT entry itself.
      int32_t offset = ((got_address + got_offset)
			 - (plt_address + plt_offset + 8));

      gold_assert(offset >= 0 && offset < 0x0fffffff);
      uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
      uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
      uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);

      // Set the entry in the GOT.
      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
    }

  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
}

// Create a PLT entry for a global symbol.

template<bool big_endian>
void
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
				       Symbol* gsym)
{
  if (gsym->has_plt_offset())
    return;

  if (this->plt_ == NULL)
    {
      // Create the GOT sections first.
      this->got_section(symtab, layout);

      this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_EXECINSTR),
				      this->plt_, false, false, false, false);
    }
  this->plt_->add_entry(gsym);
}

// Report an unsupported relocation against a local symbol.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_local(
    Sized_relobj<32, big_endian>* object,
    unsigned int r_type)
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
	     object->name().c_str(), r_type);
}

// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
					    unsigned int r_type)
{
  switch (r_type)
    {
    // These are the relocation types supported by glibc for ARM.
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_PC24:
    // FIXME: The following 3 types are not supported by Android's dynamic
    // linker.
    case elfcpp::R_ARM_TLS_DTPMOD32:
    case elfcpp::R_ARM_TLS_DTPOFF32:
    case elfcpp::R_ARM_TLS_TPOFF32:
      return;

    default:
      // This prevents us from issuing more than one error per reloc
      // section.  But we can still wind up issuing more than one
      // error per object file.
      if (this->issued_non_pic_error_)
	return;
      object->error(_("requires unsupported dynamic reloc; "
		      "recompile with -fPIC"));
      this->issued_non_pic_error_ = true;
      return;

    case elfcpp::R_ARM_NONE:
      gold_unreachable();
    }
}

// Scan a relocation for a local symbol.
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.

template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
				    Layout* layout,
				    Target_arm* target,
				    Sized_relobj<32, big_endian>* object,
				    unsigned int data_shndx,
				    Output_section* output_section,
				    const elfcpp::Rel<32, big_endian>& reloc,
				    unsigned int r_type,
				    const elfcpp::Sym<32, big_endian>&)
{
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
    {
    case elfcpp::R_ARM_NONE:
      break;

    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // this location. The relocation applied at link time will
      // apply the link-time value, so we flag the location with
      // an R_ARM_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
	{
	  Reloc_section* rel_dyn = target->rel_dyn_section(layout);
	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
   	  // If we are to add more other reloc types than R_ARM_ABS32,
   	  // we need to add check_non_pic(object, r_type) here.
	  rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
				      output_section, data_shndx,
				      reloc.get_r_offset());
	}
      break;

    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP19:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_JUMP6:
    case elfcpp::R_ARM_THM_JUMP8:
    case elfcpp::R_ARM_THM_JUMP11:
    case elfcpp::R_ARM_V4BX:
      break;

    case elfcpp::R_ARM_GOTOFF32:
      // We need a GOT section:
      target->got_section(symtab, layout);
      break;

    case elfcpp::R_ARM_BASE_PREL:
      // FIXME: What about this?
      break;

    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
      {
	// The symbol requires a GOT entry.
	Output_data_got<32, big_endian>* got =
	  target->got_section(symtab, layout);
	unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
	if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
	  {
	    // If we are generating a shared object, we need to add a
	    // dynamic RELATIVE relocation for this symbol's GOT entry.
	    if (parameters->options().output_is_position_independent())
	      {
		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
		rel_dyn->add_local_relative(
		    object, r_sym, elfcpp::R_ARM_RELATIVE, got,
		    object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
	      }
	  }
      }
      break;

    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;

    default:
      unsupported_reloc_local(object, r_type);
      break;
    }
}

// Report an unsupported relocation against a global symbol.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_global(
    Sized_relobj<32, big_endian>* object,
    unsigned int r_type,
    Symbol* gsym)
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

// Scan a relocation for a global symbol.
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.

template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
				     Layout* layout,
				     Target_arm* target,
				     Sized_relobj<32, big_endian>* object,
				     unsigned int data_shndx,
				     Output_section* output_section,
				     const elfcpp::Rel<32, big_endian>& reloc,
				     unsigned int r_type,
				     Symbol* gsym)
{
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
    {
    case elfcpp::R_ARM_NONE:
      break;

    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
      {
	// Make a dynamic relocation if necessary.
	if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
	  {
	    if (target->may_need_copy_reloc(gsym))
	      {
		target->copy_reloc(symtab, layout, object,
				   data_shndx, output_section, gsym, reloc);
	      }
	    else if (gsym->can_use_relative_reloc(false))
	      {
   		// If we are to add more other reloc types than R_ARM_ABS32,
   		// we need to add check_non_pic(object, r_type) here.
		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
		rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
					     output_section, object,
					     data_shndx, reloc.get_r_offset());
	      }
	    else
	      {
   		// If we are to add more other reloc types than R_ARM_ABS32,
   		// we need to add check_non_pic(object, r_type) here.
		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
		rel_dyn->add_global(gsym, r_type, output_section, object,
				    data_shndx, reloc.get_r_offset());
	      }
	  }
      }
      break;

    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_JUMP6:
    case elfcpp::R_ARM_THM_JUMP8:
    case elfcpp::R_ARM_THM_JUMP11:
    case elfcpp::R_ARM_V4BX:
      break;

    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_BASE_ABS:
      {
	// No dynamic relocs of this kinds.
	// Report the error in case of PIC.
	int flags = Symbol::NON_PIC_REF;
	if (gsym->type() == elfcpp::STT_FUNC
	    || gsym->type() == elfcpp::STT_ARM_TFUNC)
	  flags |= Symbol::FUNCTION_CALL;
	if (gsym->needs_dynamic_reloc(flags))
	  check_non_pic(object, r_type);
      }
      break;

    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_PREL31:
      {
	// Make a dynamic relocation if necessary.
	int flags = Symbol::NON_PIC_REF;
	if (gsym->needs_dynamic_reloc(flags))
	  {
	    if (target->may_need_copy_reloc(gsym))
	      {
		target->copy_reloc(symtab, layout, object,
				   data_shndx, output_section, gsym, reloc);
	      }
	    else
	      {
		check_non_pic(object, r_type);
		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
		rel_dyn->add_global(gsym, r_type, output_section, object,
				    data_shndx, reloc.get_r_offset());
	      }
	  }
      }
      break;

    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP19:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_THM_CALL:

      if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
	target->make_plt_entry(symtab, layout, gsym);
      else
	{
	   // Check to see if this is a function that would need a PLT
	   // but does not get one because the function symbol is untyped.
	   // This happens in assembly code missing a proper .type directive.
	  if ((!gsym->is_undefined() || parameters->options().shared())
	      && !parameters->doing_static_link()
	      && gsym->type() == elfcpp::STT_NOTYPE
	      && (gsym->is_from_dynobj()
		  || gsym->is_undefined()
		  || gsym->is_preemptible()))
	    gold_error(_("%s is not a function."),
		       gsym->demangled_name().c_str());
	}
      break;

    case elfcpp::R_ARM_PLT32:
      // If the symbol is fully resolved, this is just a relative
      // local reloc.  Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
	break;
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // or hidden.
      if (gsym->is_defined()
	  && !gsym->is_from_dynobj()
	  && !gsym->is_preemptible())
	break;
      target->make_plt_entry(symtab, layout, gsym);
      break;

    case elfcpp::R_ARM_GOTOFF32:
      // We need a GOT section.
      target->got_section(symtab, layout);
      break;

    case elfcpp::R_ARM_BASE_PREL:
      // FIXME: What about this?
      break;
      
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
      {
	// The symbol requires a GOT entry.
	Output_data_got<32, big_endian>* got =
	  target->got_section(symtab, layout);
	if (gsym->final_value_is_known())
	  got->add_global(gsym, GOT_TYPE_STANDARD);
	else
	  {
	    // If this symbol is not fully resolved, we need to add a
	    // GOT entry with a dynamic relocation.
	    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
	    if (gsym->is_from_dynobj()
		|| gsym->is_undefined()
		|| gsym->is_preemptible())
	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
				       rel_dyn, elfcpp::R_ARM_GLOB_DAT);
	    else
	      {
		if (got->add_global(gsym, GOT_TYPE_STANDARD))
		  rel_dyn->add_global_relative(
		      gsym, elfcpp::R_ARM_RELATIVE, got,
		      gsym->got_offset(GOT_TYPE_STANDARD));
	      }
	  }
      }
      break;

    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;

    default:
      unsupported_reloc_global(object, r_type, gsym);
      break;
    }
}

// Process relocations for gc.

template<bool big_endian>
void
Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
					  Layout* layout,
					  Sized_relobj<32, big_endian>* object,
					  unsigned int data_shndx,
					  unsigned int,
					  const unsigned char* prelocs,
					  size_t reloc_count,
					  Output_section* output_section,
					  bool needs_special_offset_handling,
					  size_t local_symbol_count,
					  const unsigned char* plocal_symbols)
{
  typedef Target_arm<big_endian> Arm;
  typedef typename Target_arm<big_endian>::Scan Scan;

  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
    symtab,
    layout,
    this,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols);
}

// Scan relocations for a section.

template<bool big_endian>
void
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
				    Layout* layout,
				    Sized_relobj<32, big_endian>* object,
				    unsigned int data_shndx,
				    unsigned int sh_type,
				    const unsigned char* prelocs,
				    size_t reloc_count,
				    Output_section* output_section,
				    bool needs_special_offset_handling,
				    size_t local_symbol_count,
				    const unsigned char* plocal_symbols)
{
  typedef typename Target_arm<big_endian>::Scan Scan;
  if (sh_type == elfcpp::SHT_RELA)
    {
      gold_error(_("%s: unsupported RELA reloc section"),
		 object->name().c_str());
      return;
    }

  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
    symtab,
    layout,
    this,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols);
}

// Finalize the sections.

template<bool big_endian>
void
Target_arm<big_endian>::do_finalize_sections(
    Layout* layout,
    const Input_objects* input_objects,
    Symbol_table* symtab)
{
  // Merge processor-specific flags.
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
       p != input_objects->relobj_end();
       ++p)
    {
      Arm_relobj<big_endian>* arm_relobj =
	Arm_relobj<big_endian>::as_arm_relobj(*p);
      this->merge_processor_specific_flags(
	  arm_relobj->name(),
	  arm_relobj->processor_specific_flags());
      this->merge_object_attributes(arm_relobj->name().c_str(),
				    arm_relobj->attributes_section_data());

    } 

  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
       p != input_objects->dynobj_end();
       ++p)
    {
      Arm_dynobj<big_endian>* arm_dynobj =
	Arm_dynobj<big_endian>::as_arm_dynobj(*p);
      this->merge_processor_specific_flags(
	  arm_dynobj->name(),
	  arm_dynobj->processor_specific_flags());
      this->merge_object_attributes(arm_dynobj->name().c_str(),
				    arm_dynobj->attributes_section_data());
    }

  // Check BLX use.
  const Object_attribute* cpu_arch_attr =
    this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
  if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
    this->set_may_use_blx(true);
 
  // Check if we need to use Cortex-A8 workaround.
  if (parameters->options().user_set_fix_cortex_a8())
    this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
  else
    {
      // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
      // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
      // profile.  
      const Object_attribute* cpu_arch_profile_attr =
	this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
      this->fix_cortex_a8_ =
	(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
         && (cpu_arch_profile_attr->int_value() == 'A'
             || cpu_arch_profile_attr->int_value() == 0));
    }
  
  // Check if we can use V4BX interworking.
  // The V4BX interworking stub contains BX instruction,
  // which is not specified for some profiles.
  if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
      && !this->may_use_blx())
    gold_error(_("unable to provide V4BX reloc interworking fix up; "
	         "the target profile does not support BX instruction"));

  // Fill in some more dynamic tags.
  const Reloc_section* rel_plt = (this->plt_ == NULL
				  ? NULL
				  : this->plt_->rel_plt());
  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
				  this->rel_dyn_, true);

  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rel_dyn_section(layout));

  // Handle the .ARM.exidx section.
  Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
  if (exidx_section != NULL
      && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
      && !parameters->options().relocatable())
    {
      // Create __exidx_start and __exdix_end symbols.
      symtab->define_in_output_data("__exidx_start", NULL,
				    Symbol_table::PREDEFINED,
				    exidx_section, 0, 0, elfcpp::STT_OBJECT,
				    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
				    false, true);
      symtab->define_in_output_data("__exidx_end", NULL,
				    Symbol_table::PREDEFINED,
				    exidx_section, 0, 0, elfcpp::STT_OBJECT,
				    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
				    true, true);

      // For the ARM target, we need to add a PT_ARM_EXIDX segment for
      // the .ARM.exidx section.
      if (!layout->script_options()->saw_phdrs_clause())
	{
	  gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
		      == NULL);
	  Output_segment*  exidx_segment =
	    layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
	  exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
					    false);
	}
    }

  // Create an .ARM.attributes section if there is not one already.
  Output_attributes_section_data* attributes_section =
    new Output_attributes_section_data(*this->attributes_section_data_);
  layout->add_output_section_data(".ARM.attributes",
				  elfcpp::SHT_ARM_ATTRIBUTES, 0,
				  attributes_section, false, false, false,
				  false);
}

// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// apply the static relocation.

template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
    const Sized_symbol<32>* gsym,
    int ref_flags,
    bool is_32bit,
    Output_section* output_section)
{
  // If the output section is not allocated, then we didn't call
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // the reloc here.
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
      return true;

  // For local symbols, we will have created a non-RELATIVE dynamic
  // relocation only if (a) the output is position independent,
  // (b) the relocation is absolute (not pc- or segment-relative), and
  // (c) the relocation is not 32 bits wide.
  if (gsym == NULL)
    return !(parameters->options().output_is_position_independent()
	     && (ref_flags & Symbol::ABSOLUTE_REF)
	     && !is_32bit);

  // For global symbols, we use the same helper routines used in the
  // scan pass.  If we did not create a dynamic relocation, or if we
  // created a RELATIVE dynamic relocation, we should apply the static
  // relocation.
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
		 && gsym->can_use_relative_reloc(ref_flags
						 & Symbol::FUNCTION_CALL);
  return !has_dyn || is_rel;
}

// Perform a relocation.

template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::relocate(
    const Relocate_info<32, big_endian>* relinfo,
    Target_arm* target,
    Output_section *output_section,
    size_t relnum,
    const elfcpp::Rel<32, big_endian>& rel,
    unsigned int r_type,
    const Sized_symbol<32>* gsym,
    const Symbol_value<32>* psymval,
    unsigned char* view,
    Arm_address address,
    section_size_type /* view_size */ )
{
  typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;

  r_type = get_real_reloc_type(r_type);

  const Arm_relobj<big_endian>* object =
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);

  // If the final branch target of a relocation is THUMB instruction, this
  // is 1.  Otherwise it is 0.
  Arm_address thumb_bit = 0;
  Symbol_value<32> symval;
  bool is_weakly_undefined_without_plt = false;
  if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
    {
      if (gsym != NULL)
	{
	  // This is a global symbol.  Determine if we use PLT and if the
	  // final target is THUMB.
	  if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
	    {
	      // This uses a PLT, change the symbol value.
	      symval.set_output_value(target->plt_section()->address()
				      + gsym->plt_offset());
	      psymval = &symval;
	    }
	  else if (gsym->is_weak_undefined())
	    {
	      // This is a weakly undefined symbol and we do not use PLT
	      // for this relocation.  A branch targeting this symbol will
	      // be converted into an NOP.
	      is_weakly_undefined_without_plt = true;
	    }
	  else
	    {
	      // Set thumb bit if symbol:
	      // -Has type STT_ARM_TFUNC or
	      // -Has type STT_FUNC, is defined and with LSB in value set.
	      thumb_bit =
		(((gsym->type() == elfcpp::STT_ARM_TFUNC)
		 || (gsym->type() == elfcpp::STT_FUNC
		     && !gsym->is_undefined()
		     && ((psymval->value(object, 0) & 1) != 0)))
		? 1
		: 0);
	    }
	}
      else
	{
          // This is a local symbol.  Determine if the final target is THUMB.
          // We saved this information when all the local symbols were read.
	  elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
	  unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
	  thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
	}
    }
  else
    {
      // This is a fake relocation synthesized for a stub.  It does not have
      // a real symbol.  We just look at the LSB of the symbol value to
      // determine if the target is THUMB or not.
      thumb_bit = ((psymval->value(object, 0) & 1) != 0);
    }

  // Strip LSB if this points to a THUMB target.
  if (thumb_bit != 0
      && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type) 
      && ((psymval->value(object, 0) & 1) != 0))
    {
      Arm_address stripped_value =
	psymval->value(object, 0) & ~static_cast<Arm_address>(1);
      symval.set_output_value(stripped_value);
      psymval = &symval;
    } 

  // Get the GOT offset if needed.
  // The GOT pointer points to the end of the GOT section.
  // We need to subtract the size of the GOT section to get
  // the actual offset to use in the relocation.
  bool have_got_offset = false;
  unsigned int got_offset = 0;
  switch (r_type)
    {
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
      if (gsym != NULL)
	{
	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
	  got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
			- target->got_size());
	}
      else
	{
	  unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
			- target->got_size());
	}
      have_got_offset = true;
      break;

    default:
      break;
    }

  // To look up relocation stubs, we need to pass the symbol table index of
  // a local symbol.
  unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());

  typename Arm_relocate_functions::Status reloc_status =
	Arm_relocate_functions::STATUS_OKAY;
  switch (r_type)
    {
    case elfcpp::R_ARM_NONE:
      break;

    case elfcpp::R_ARM_ABS8:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
				    output_section))
	reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
      break;

    case elfcpp::R_ARM_ABS12:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
				    output_section))
	reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
      break;

    case elfcpp::R_ARM_ABS16:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
				    output_section))
	reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
      break;

    case elfcpp::R_ARM_ABS32:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
						     thumb_bit);
      break;

    case elfcpp::R_ARM_ABS32_NOI:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	// No thumb bit for this relocation: (S + A)
	reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
						     0);
      break;

    case elfcpp::R_ARM_MOVW_ABS_NC:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
							   psymval,
       						           thumb_bit);
      else
	gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
		     "a shared object; recompile with -fPIC"));
      break;

    case elfcpp::R_ARM_MOVT_ABS:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
      else
	gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
		     "a shared object; recompile with -fPIC"));
      break;

    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
							       psymval,
       						               thumb_bit);
      else
	gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
		     "making a shared object; recompile with -fPIC"));
      break;

    case elfcpp::R_ARM_THM_MOVT_ABS:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				    output_section))
	reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
							    psymval);
      else
	gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
		     "making a shared object; recompile with -fPIC"));
      break;

    case elfcpp::R_ARM_MOVW_PREL_NC:
      reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
							  psymval, address,
							  thumb_bit);
      break;

    case elfcpp::R_ARM_MOVT_PREL:
      reloc_status = Arm_relocate_functions::movt_prel(view, object,
                                                       psymval, address);
      break;

    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
      reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
							      psymval, address,
							      thumb_bit);
      break;

    case elfcpp::R_ARM_THM_MOVT_PREL:
      reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
							   psymval, address);
      break;
	
    case elfcpp::R_ARM_REL32:
      reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
						   address, thumb_bit);
      break;

    case elfcpp::R_ARM_THM_ABS5:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
				    output_section))
	reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
      break;

    case elfcpp::R_ARM_THM_CALL:
      reloc_status =
	Arm_relocate_functions::thm_call(relinfo, view, gsym, object, r_sym,
					 psymval, address, thumb_bit,
					 is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_XPC25:
      reloc_status =
	Arm_relocate_functions::xpc25(relinfo, view, gsym, object, r_sym,
				      psymval, address, thumb_bit,
				      is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_THM_XPC22:
      reloc_status =
	Arm_relocate_functions::thm_xpc22(relinfo, view, gsym, object, r_sym,
					  psymval, address, thumb_bit,
					  is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_GOTOFF32:
      {
	Arm_address got_origin;
	got_origin = target->got_plt_section()->address();
	reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
						     got_origin, thumb_bit);
      }
      break;

    case elfcpp::R_ARM_BASE_PREL:
      {
	uint32_t origin;
	// Get the addressing origin of the output segment defining the 
	// symbol gsym (AAELF 4.6.1.2 Relocation types)
	gold_assert(gsym != NULL); 
	if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
	  origin = gsym->output_segment()->vaddr();
	else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
	  origin = gsym->output_data()->address();
	else
	  {
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
				   _("cannot find origin of R_ARM_BASE_PREL"));
	    return true;
	  }
	reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
      }
      break;

    case elfcpp::R_ARM_BASE_ABS:
      {
	if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
				      output_section))
	  break;

	uint32_t origin;
	// Get the addressing origin of the output segment defining
	// the symbol gsym (AAELF 4.6.1.2 Relocation types).
	if (gsym == NULL)
	  // R_ARM_BASE_ABS with the NULL symbol will give the
	  // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
	  // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
	  origin = target->got_plt_section()->address();
	else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
	  origin = gsym->output_segment()->vaddr();
	else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
	  origin = gsym->output_data()->address();
	else
	  {
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
				   _("cannot find origin of R_ARM_BASE_ABS"));
	    return true;
	  }

	reloc_status = Arm_relocate_functions::base_abs(view, origin);
      }
      break;

    case elfcpp::R_ARM_GOT_BREL:
      gold_assert(have_got_offset);
      reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
      break;

    case elfcpp::R_ARM_GOT_PREL:
      gold_assert(have_got_offset);
      // Get the address origin for GOT PLT, which is allocated right
      // after the GOT section, to calculate an absolute address of
      // the symbol GOT entry (got_origin + got_offset).
      Arm_address got_origin;
      got_origin = target->got_plt_section()->address();
      reloc_status = Arm_relocate_functions::got_prel(view,
						      got_origin + got_offset,
						      address);
      break;

    case elfcpp::R_ARM_PLT32:
      gold_assert(gsym == NULL
		  || gsym->has_plt_offset()
		  || gsym->final_value_is_known()
		  || (gsym->is_defined()
		      && !gsym->is_from_dynobj()
		      && !gsym->is_preemptible()));
      reloc_status =
	Arm_relocate_functions::plt32(relinfo, view, gsym, object, r_sym,
				      psymval, address, thumb_bit,
				      is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_CALL:
      reloc_status =
	Arm_relocate_functions::call(relinfo, view, gsym, object, r_sym,
				     psymval, address, thumb_bit,
				     is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_JUMP24:
      reloc_status =
	Arm_relocate_functions::jump24(relinfo, view, gsym, object, r_sym,
				       psymval, address, thumb_bit,
				       is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_THM_JUMP24:
      reloc_status =
	Arm_relocate_functions::thm_jump24(relinfo, view, gsym, object, r_sym,
					   psymval, address, thumb_bit,
					   is_weakly_undefined_without_plt);
      break;

    case elfcpp::R_ARM_THM_JUMP19:
      reloc_status =
	Arm_relocate_functions::thm_jump19(view, object, psymval, address,
					   thumb_bit);
      break;

    case elfcpp::R_ARM_THM_JUMP6:
      reloc_status =
	Arm_relocate_functions::thm_jump6(view, object, psymval, address);
      break;

    case elfcpp::R_ARM_THM_JUMP8:
      reloc_status =
	Arm_relocate_functions::thm_jump8(view, object, psymval, address);
      break;

    case elfcpp::R_ARM_THM_JUMP11:
      reloc_status =
	Arm_relocate_functions::thm_jump11(view, object, psymval, address);
      break;

    case elfcpp::R_ARM_PREL31:
      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
						    address, thumb_bit);
      break;

    case elfcpp::R_ARM_V4BX:
      if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
	{
	  const bool is_v4bx_interworking =
	      (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
	  reloc_status =
	    Arm_relocate_functions::v4bx(relinfo, view, object, address,
					 is_v4bx_interworking);
	}
      break;

    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
			     _("unexpected reloc %u in object file"),
			     r_type);
      break;

    default:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
    }

  // Report any errors.
  switch (reloc_status)
    {
    case Arm_relocate_functions::STATUS_OKAY:
      break;
    case Arm_relocate_functions::STATUS_OVERFLOW:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
			     _("relocation overflow in relocation %u"),
			     r_type);
      break;
    case Arm_relocate_functions::STATUS_BAD_RELOC:
      gold_error_at_location(
	relinfo,
	relnum,
	rel.get_r_offset(),
	_("unexpected opcode while processing relocation %u"),
	r_type);
      break;
    default:
      gold_unreachable();
    }

  return true;
}

// Relocate section data.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_section(
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    unsigned char* view,
    Arm_address address,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
{
  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
  gold_assert(sh_type == elfcpp::SHT_REL);

  Arm_input_section<big_endian>* arm_input_section =
    this->find_arm_input_section(relinfo->object, relinfo->data_shndx);

  // This is an ARM input section and the view covers the whole output
  // section.
  if (arm_input_section != NULL)
    {
      gold_assert(needs_special_offset_handling);
      Arm_address section_address = arm_input_section->address();
      section_size_type section_size = arm_input_section->data_size();

      gold_assert((arm_input_section->address() >= address)
		  && ((arm_input_section->address()
		       + arm_input_section->data_size())
		      <= (address + view_size)));

      off_t offset = section_address - address;
      view += offset;
      address += offset;
      view_size = section_size;
    }

  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
			 Arm_relocate>(
    relinfo,
    this,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    view,
    address,
    view_size,
    reloc_symbol_changes);
}

// Return the size of a relocation while scanning during a relocatable
// link.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
    unsigned int r_type,
    Relobj* object)
{
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
    {
    case elfcpp::R_ARM_NONE:
      return 0;

    case elfcpp::R_ARM_ABS8:
      return 1;

    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_THM_JUMP6:
    case elfcpp::R_ARM_THM_JUMP8:
    case elfcpp::R_ARM_THM_JUMP11:
      return 2;

    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_V4BX:
      return 4;

    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      return 0;

    default:
      object->error(_("unsupported reloc %u in object file"), r_type);
      return 0;
    }
}

// Scan the relocs during a relocatable link.

template<bool big_endian>
void
Target_arm<big_endian>::scan_relocatable_relocs(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj<32, big_endian>* object,
    unsigned int data_shndx,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_symbols,
    Relocatable_relocs* rr)
{
  gold_assert(sh_type == elfcpp::SHT_REL);

  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
    Relocatable_size_for_reloc> Scan_relocatable_relocs;

  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
      Scan_relocatable_relocs>(
    symtab,
    layout,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols,
    rr);
}

// Relocate a section during a relocatable link.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_for_relocatable(
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    off_t offset_in_output_section,
    const Relocatable_relocs* rr,
    unsigned char* view,
    Arm_address view_address,
    section_size_type view_size,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
{
  gold_assert(sh_type == elfcpp::SHT_REL);

  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
    relinfo,
    prelocs,
    reloc_count,
    output_section,
    offset_in_output_section,
    rr,
    view,
    view_address,
    view_size,
    reloc_view,
    reloc_view_size);
}

// Return the value to use for a dynamic symbol which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<bool big_endian>
uint64_t
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_section()->address() + gsym->plt_offset();
}

// Map platform-specific relocs to real relocs
//
template<bool big_endian>
unsigned int
Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_ARM_TARGET1:
      // This is either R_ARM_ABS32 or R_ARM_REL32;
      return elfcpp::R_ARM_ABS32;

    case elfcpp::R_ARM_TARGET2:
      // This can be any reloc type but ususally is R_ARM_GOT_PREL
      return elfcpp::R_ARM_GOT_PREL;

    default:
      return r_type;
    }
}

// Whether if two EABI versions V1 and V2 are compatible.

template<bool big_endian>
bool
Target_arm<big_endian>::are_eabi_versions_compatible(
    elfcpp::Elf_Word v1,
    elfcpp::Elf_Word v2)
{
  // v4 and v5 are the same spec before and after it was released,
  // so allow mixing them.
  if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
      || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
    return true;

  return v1 == v2;
}

// Combine FLAGS from an input object called NAME and the processor-specific
// flags in the ELF header of the output.  Much of this is adapted from the
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
// in bfd/elf32-arm.c.

template<bool big_endian>
void
Target_arm<big_endian>::merge_processor_specific_flags(
    const std::string& name,
    elfcpp::Elf_Word flags)
{
  if (this->are_processor_specific_flags_set())
    {
      elfcpp::Elf_Word out_flags = this->processor_specific_flags();

      // Nothing to merge if flags equal to those in output.
      if (flags == out_flags)
	return;

      // Complain about various flag mismatches.
      elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
      elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
      if (!this->are_eabi_versions_compatible(version1, version2))
	gold_error(_("Source object %s has EABI version %d but output has "
		     "EABI version %d."),
		   name.c_str(),
		   (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
		   (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
    }
  else
    {
      // If the input is the default architecture and had the default
      // flags then do not bother setting the flags for the output
      // architecture, instead allow future merges to do this.  If no
      // future merges ever set these flags then they will retain their
      // uninitialised values, which surprise surprise, correspond
      // to the default values.
      if (flags == 0)
	return;

      // This is the first time, just copy the flags.
      // We only copy the EABI version for now.
      this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
    }
}

// Adjust ELF file header.
template<bool big_endian>
void
Target_arm<big_endian>::do_adjust_elf_header(
    unsigned char* view,
    int len) const
{
  gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);

  elfcpp::Ehdr<32, big_endian> ehdr(view);
  unsigned char e_ident[elfcpp::EI_NIDENT];
  memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);

  if (elfcpp::arm_eabi_version(this->processor_specific_flags())
      == elfcpp::EF_ARM_EABI_UNKNOWN)
    e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
  else
    e_ident[elfcpp::EI_OSABI] = 0;
  e_ident[elfcpp::EI_ABIVERSION] = 0;

  // FIXME: Do EF_ARM_BE8 adjustment.

  elfcpp::Ehdr_write<32, big_endian> oehdr(view);
  oehdr.put_e_ident(e_ident);
}

// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
// to store ARM specific information.  Hence we need to have our own
// ELF object creation.

template<bool big_endian>
Object*
Target_arm<big_endian>::do_make_elf_object(
    const std::string& name,
    Input_file* input_file,
    off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
{
  int et = ehdr.get_e_type();
  if (et == elfcpp::ET_REL)
    {
      Arm_relobj<big_endian>* obj =
        new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
      obj->setup();
      return obj;
    }
  else if (et == elfcpp::ET_DYN)
    {
      Sized_dynobj<32, big_endian>* obj =
        new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
      obj->setup();
      return obj;
    }
  else
    {
      gold_error(_("%s: unsupported ELF file type %d"),
                 name.c_str(), et);
      return NULL;
    }
}

// Read the architecture from the Tag_also_compatible_with attribute, if any.
// Returns -1 if no architecture could be read.
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.

template<bool big_endian>
int
Target_arm<big_endian>::get_secondary_compatible_arch(
    const Attributes_section_data* pasd)
{
  const Object_attribute *known_attributes =
    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);

  // Note: the tag and its argument below are uleb128 values, though
  // currently-defined values fit in one byte for each.
  const std::string& sv =
    known_attributes[elfcpp::Tag_also_compatible_with].string_value();
  if (sv.size() == 2
      && sv.data()[0] == elfcpp::Tag_CPU_arch
      && (sv.data()[1] & 128) != 128)
   return sv.data()[1];

  // This tag is "safely ignorable", so don't complain if it looks funny.
  return -1;
}

// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
// The tag is removed if ARCH is -1.
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.

template<bool big_endian>
void
Target_arm<big_endian>::set_secondary_compatible_arch(
    Attributes_section_data* pasd,
    int arch)
{
  Object_attribute *known_attributes =
    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);

  if (arch == -1)
    {
      known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
      return;
    }

  // Note: the tag and its argument below are uleb128 values, though
  // currently-defined values fit in one byte for each.
  char sv[3];
  sv[0] = elfcpp::Tag_CPU_arch;
  gold_assert(arch != 0);
  sv[1] = arch;
  sv[2] = '\0';

  known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
}

// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
// into account.
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.

template<bool big_endian>
int
Target_arm<big_endian>::tag_cpu_arch_combine(
    const char* name,
    int oldtag,
    int* secondary_compat_out,
    int newtag,
    int secondary_compat)
{
#define T(X) elfcpp::TAG_CPU_ARCH_##X
  static const int v6t2[] =
    {
      T(V6T2),   // PRE_V4.
      T(V6T2),   // V4.
      T(V6T2),   // V4T.
      T(V6T2),   // V5T.
      T(V6T2),   // V5TE.
      T(V6T2),   // V5TEJ.
      T(V6T2),   // V6.
      T(V7),     // V6KZ.
      T(V6T2)    // V6T2.
    };
  static const int v6k[] =
    {
      T(V6K),    // PRE_V4.
      T(V6K),    // V4.
      T(V6K),    // V4T.
      T(V6K),    // V5T.
      T(V6K),    // V5TE.
      T(V6K),    // V5TEJ.
      T(V6K),    // V6.
      T(V6KZ),   // V6KZ.
      T(V7),     // V6T2.
      T(V6K)     // V6K.
    };
  static const int v7[] =
    {
      T(V7),     // PRE_V4.
      T(V7),     // V4.
      T(V7),     // V4T.
      T(V7),     // V5T.
      T(V7),     // V5TE.
      T(V7),     // V5TEJ.
      T(V7),     // V6.
      T(V7),     // V6KZ.
      T(V7),     // V6T2.
      T(V7),     // V6K.
      T(V7)      // V7.
    };
  static const int v6_m[] =
    {
      -1,        // PRE_V4.
      -1,        // V4.
      T(V6K),    // V4T.
      T(V6K),    // V5T.
      T(V6K),    // V5TE.
      T(V6K),    // V5TEJ.
      T(V6K),    // V6.
      T(V6KZ),   // V6KZ.
      T(V7),     // V6T2.
      T(V6K),    // V6K.
      T(V7),     // V7.
      T(V6_M)    // V6_M.
    };
  static const int v6s_m[] =
    {
      -1,        // PRE_V4.
      -1,        // V4.
      T(V6K),    // V4T.
      T(V6K),    // V5T.
      T(V6K),    // V5TE.
      T(V6K),    // V5TEJ.
      T(V6K),    // V6.
      T(V6KZ),   // V6KZ.
      T(V7),     // V6T2.
      T(V6K),    // V6K.
      T(V7),     // V7.
      T(V6S_M),  // V6_M.
      T(V6S_M)   // V6S_M.
    };
  static const int v7e_m[] =
    {
      -1,	// PRE_V4.
      -1,	// V4.
      T(V7E_M),	// V4T.
      T(V7E_M),	// V5T.
      T(V7E_M),	// V5TE.
      T(V7E_M),	// V5TEJ.
      T(V7E_M),	// V6.
      T(V7E_M),	// V6KZ.
      T(V7E_M),	// V6T2.
      T(V7E_M),	// V6K.
      T(V7E_M),	// V7.
      T(V7E_M),	// V6_M.
      T(V7E_M),	// V6S_M.
      T(V7E_M)	// V7E_M.
    };
  static const int v4t_plus_v6_m[] =
    {
      -1,		// PRE_V4.
      -1,		// V4.
      T(V4T),		// V4T.
      T(V5T),		// V5T.
      T(V5TE),		// V5TE.
      T(V5TEJ),		// V5TEJ.
      T(V6),		// V6.
      T(V6KZ),		// V6KZ.
      T(V6T2),		// V6T2.
      T(V6K),		// V6K.
      T(V7),		// V7.
      T(V6_M),		// V6_M.
      T(V6S_M),		// V6S_M.
      T(V7E_M),		// V7E_M.
      T(V4T_PLUS_V6_M)	// V4T plus V6_M.
    };
  static const int *comb[] =
    {
      v6t2,
      v6k,
      v7,
      v6_m,
      v6s_m,
      v7e_m,
      // Pseudo-architecture.
      v4t_plus_v6_m
    };

  // Check we've not got a higher architecture than we know about.

  if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
    {
      gold_error(_("%s: unknown CPU architecture"), name);
      return -1;
    }

  // Override old tag if we have a Tag_also_compatible_with on the output.

  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
    oldtag = T(V4T_PLUS_V6_M);

  // And override the new tag if we have a Tag_also_compatible_with on the
  // input.

  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
    newtag = T(V4T_PLUS_V6_M);

  // Architectures before V6KZ add features monotonically.
  int tagh = std::max(oldtag, newtag);
  if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
    return tagh;

  int tagl = std::min(oldtag, newtag);
  int result = comb[tagh - T(V6T2)][tagl];

  // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
  // as the canonical version.
  if (result == T(V4T_PLUS_V6_M))
    {
      result = T(V4T);
      *secondary_compat_out = T(V6_M);
    }
  else
    *secondary_compat_out = -1;

  if (result == -1)
    {
      gold_error(_("%s: conflicting CPU architectures %d/%d"),
		 name, oldtag, newtag);
      return -1;
    }

  return result;
#undef T
}

// Helper to print AEABI enum tag value.

template<bool big_endian>
std::string
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
{
  static const char *aeabi_enum_names[] =
    { "", "variable-size", "32-bit", "" };
  const size_t aeabi_enum_names_size =
    sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);

  if (value < aeabi_enum_names_size)
    return std::string(aeabi_enum_names[value]);
  else
    {
      char buffer[100];
      sprintf(buffer, "<unknown value %u>", value);
      return std::string(buffer);
    }
}

// Return the string value to store in TAG_CPU_name.

template<bool big_endian>
std::string
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
{
  static const char *name_table[] = {
    // These aren't real CPU names, but we can't guess
    // that from the architecture version alone.
   "Pre v4",
   "ARM v4",
   "ARM v4T",
   "ARM v5T",
   "ARM v5TE",
   "ARM v5TEJ",
   "ARM v6",
   "ARM v6KZ",
   "ARM v6T2",
   "ARM v6K",
   "ARM v7",
   "ARM v6-M",
   "ARM v6S-M",
   "ARM v7E-M"
 };
 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);

  if (value < name_table_size)
    return std::string(name_table[value]);
  else
    {
      char buffer[100];
      sprintf(buffer, "<unknown CPU value %u>", value);
      return std::string(buffer);
    } 
}

// Merge object attributes from input file called NAME with those of the
// output.  The input object attributes are in the object pointed by PASD.

template<bool big_endian>
void
Target_arm<big_endian>::merge_object_attributes(
    const char* name,
    const Attributes_section_data* pasd)
{
  // Return if there is no attributes section data.
  if (pasd == NULL)
    return;

  // If output has no object attributes, just copy.
  if (this->attributes_section_data_ == NULL)
    {
      this->attributes_section_data_ = new Attributes_section_data(*pasd);
      return;
    }

  const int vendor = Object_attribute::OBJ_ATTR_PROC;
  const Object_attribute* in_attr = pasd->known_attributes(vendor);
  Object_attribute* out_attr =
    this->attributes_section_data_->known_attributes(vendor);

  // This needs to happen before Tag_ABI_FP_number_model is merged.  */
  if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
      != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
    {
      // Ignore mismatches if the object doesn't use floating point.  */
      if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
	out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
	    in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
      else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
        gold_error(_("%s uses VFP register arguments, output does not"),
		   name);
    }

  for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
    {
      // Merge this attribute with existing attributes.
      switch (i)
	{
	case elfcpp::Tag_CPU_raw_name:
	case elfcpp::Tag_CPU_name:
	  // These are merged after Tag_CPU_arch.
	  break;

	case elfcpp::Tag_ABI_optimization_goals:
	case elfcpp::Tag_ABI_FP_optimization_goals:
	  // Use the first value seen.
	  break;

	case elfcpp::Tag_CPU_arch:
	  {
	    unsigned int saved_out_attr = out_attr->int_value();
	    // Merge Tag_CPU_arch and Tag_also_compatible_with.
	    int secondary_compat =
	      this->get_secondary_compatible_arch(pasd);
	    int secondary_compat_out =
	      this->get_secondary_compatible_arch(
		  this->attributes_section_data_);
	    out_attr[i].set_int_value(
		tag_cpu_arch_combine(name, out_attr[i].int_value(),
				     &secondary_compat_out,
				     in_attr[i].int_value(),
				     secondary_compat));
	    this->set_secondary_compatible_arch(this->attributes_section_data_,
						secondary_compat_out);

	    // Merge Tag_CPU_name and Tag_CPU_raw_name.
	    if (out_attr[i].int_value() == saved_out_attr)
	      ; // Leave the names alone.
	    else if (out_attr[i].int_value() == in_attr[i].int_value())
	      {
		// The output architecture has been changed to match the
		// input architecture.  Use the input names.
		out_attr[elfcpp::Tag_CPU_name].set_string_value(
		    in_attr[elfcpp::Tag_CPU_name].string_value());
		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
		    in_attr[elfcpp::Tag_CPU_raw_name].string_value());
	      }
	    else
	      {
		out_attr[elfcpp::Tag_CPU_name].set_string_value("");
		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
	      }

	    // If we still don't have a value for Tag_CPU_name,
	    // make one up now.  Tag_CPU_raw_name remains blank.
	    if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
	      {
		const std::string cpu_name =
		  this->tag_cpu_name_value(out_attr[i].int_value());
		// FIXME:  If we see an unknown CPU, this will be set
		// to "<unknown CPU n>", where n is the attribute value.
		// This is different from BFD, which leaves the name alone.
		out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
	      }
	  }
	  break;

	case elfcpp::Tag_ARM_ISA_use:
	case elfcpp::Tag_THUMB_ISA_use:
	case elfcpp::Tag_WMMX_arch:
	case elfcpp::Tag_Advanced_SIMD_arch:
	  // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
	case elfcpp::Tag_ABI_FP_rounding:
	case elfcpp::Tag_ABI_FP_exceptions:
	case elfcpp::Tag_ABI_FP_user_exceptions:
	case elfcpp::Tag_ABI_FP_number_model:
	case elfcpp::Tag_VFP_HP_extension:
	case elfcpp::Tag_CPU_unaligned_access:
	case elfcpp::Tag_T2EE_use:
	case elfcpp::Tag_Virtualization_use:
	case elfcpp::Tag_MPextension_use:
	  // Use the largest value specified.
	  if (in_attr[i].int_value() > out_attr[i].int_value())
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;

	case elfcpp::Tag_ABI_align8_preserved:
	case elfcpp::Tag_ABI_PCS_RO_data:
	  // Use the smallest value specified.
	  if (in_attr[i].int_value() < out_attr[i].int_value())
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;

	case elfcpp::Tag_ABI_align8_needed:
	  if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
	      && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
		  || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
		      == 0)))
	    {
	      // This error message should be enabled once all non-conformant
	      // binaries in the toolchain have had the attributes set
	      // properly.
	      // gold_error(_("output 8-byte data alignment conflicts with %s"),
	      // 	    name);
	    }
	  // Fall through.
	case elfcpp::Tag_ABI_FP_denormal:
	case elfcpp::Tag_ABI_PCS_GOT_use:
	  {
	    // These tags have 0 = don't care, 1 = strong requirement,
	    // 2 = weak requirement.
	    static const int order_021[3] = {0, 2, 1};

	    // Use the "greatest" from the sequence 0, 2, 1, or the largest
	    // value if greater than 2 (for future-proofing).
	    if ((in_attr[i].int_value() > 2
		 && in_attr[i].int_value() > out_attr[i].int_value())
		|| (in_attr[i].int_value() <= 2
		    && out_attr[i].int_value() <= 2
		    && (order_021[in_attr[i].int_value()]
			> order_021[out_attr[i].int_value()])))
	      out_attr[i].set_int_value(in_attr[i].int_value());
	  }
	  break;

	case elfcpp::Tag_CPU_arch_profile:
	  if (out_attr[i].int_value() != in_attr[i].int_value())
	    {
	      // 0 will merge with anything.
	      // 'A' and 'S' merge to 'A'.
	      // 'R' and 'S' merge to 'R'.
	      // 'M' and 'A|R|S' is an error.
	      if (out_attr[i].int_value() == 0
		  || (out_attr[i].int_value() == 'S'
		      && (in_attr[i].int_value() == 'A'
			  || in_attr[i].int_value() == 'R')))
		out_attr[i].set_int_value(in_attr[i].int_value());
	      else if (in_attr[i].int_value() == 0
		       || (in_attr[i].int_value() == 'S'
			   && (out_attr[i].int_value() == 'A'
			       || out_attr[i].int_value() == 'R')))
		; // Do nothing.
	      else
		{
		  gold_error
		    (_("conflicting architecture profiles %c/%c"),
		     in_attr[i].int_value() ? in_attr[i].int_value() : '0',
		     out_attr[i].int_value() ? out_attr[i].int_value() : '0');
		}
	    }
	  break;
	case elfcpp::Tag_VFP_arch:
	    {
	      static const struct
	      {
		  int ver;
		  int regs;
	      } vfp_versions[7] =
		{
		  {0, 0},
		  {1, 16},
		  {2, 16},
		  {3, 32},
		  {3, 16},
		  {4, 32},
		  {4, 16}
		};

	      // Values greater than 6 aren't defined, so just pick the
	      // biggest.
	      if (in_attr[i].int_value() > 6
		  && in_attr[i].int_value() > out_attr[i].int_value())
		{
		  *out_attr = *in_attr;
		  break;
		}
	      // The output uses the superset of input features
	      // (ISA version) and registers.
	      int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
				 vfp_versions[out_attr[i].int_value()].ver);
	      int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
				  vfp_versions[out_attr[i].int_value()].regs);
	      // This assumes all possible supersets are also a valid
	      // options.
	      int newval;
	      for (newval = 6; newval > 0; newval--)
		{
		  if (regs == vfp_versions[newval].regs
		      && ver == vfp_versions[newval].ver)
		    break;
		}
	      out_attr[i].set_int_value(newval);
	    }
	  break;
	case elfcpp::Tag_PCS_config:
	  if (out_attr[i].int_value() == 0)
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
	    {
	      // It's sometimes ok to mix different configs, so this is only
	      // a warning.
	      gold_warning(_("%s: conflicting platform configuration"), name);
	    }
	  break;
	case elfcpp::Tag_ABI_PCS_R9_use:
	  if (in_attr[i].int_value() != out_attr[i].int_value()
	      && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
	      && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
	    {
	      gold_error(_("%s: conflicting use of R9"), name);
	    }
	  if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;
	case elfcpp::Tag_ABI_PCS_RW_data:
	  if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
	      && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
		  != elfcpp::AEABI_R9_SB)
	      && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
		  != elfcpp::AEABI_R9_unused))
	    {
	      gold_error(_("%s: SB relative addressing conflicts with use "
			   "of R9"),
			 name);
	    }
	  // Use the smallest value specified.
	  if (in_attr[i].int_value() < out_attr[i].int_value())
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;
	case elfcpp::Tag_ABI_PCS_wchar_t:
	  // FIXME: Make it possible to turn off this warning.
	  if (out_attr[i].int_value()
	      && in_attr[i].int_value()
	      && out_attr[i].int_value() != in_attr[i].int_value())
	    {
	      gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
			     "use %u-byte wchar_t; use of wchar_t values "
			     "across objects may fail"),
			   name, in_attr[i].int_value(),
			   out_attr[i].int_value());
	    }
	  else if (in_attr[i].int_value() && !out_attr[i].int_value())
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;
	case elfcpp::Tag_ABI_enum_size:
	  if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
	    {
	      if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
		  || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
		{
		  // The existing object is compatible with anything.
		  // Use whatever requirements the new object has.
		  out_attr[i].set_int_value(in_attr[i].int_value());
		}
	      // FIXME: Make it possible to turn off this warning.
	      else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
		       && out_attr[i].int_value() != in_attr[i].int_value())
		{
		  unsigned int in_value = in_attr[i].int_value();
		  unsigned int out_value = out_attr[i].int_value();
		  gold_warning(_("%s uses %s enums yet the output is to use "
				 "%s enums; use of enum values across objects "
				 "may fail"),
			       name,
			       this->aeabi_enum_name(in_value).c_str(),
			       this->aeabi_enum_name(out_value).c_str());
		}
	    }
	  break;
	case elfcpp::Tag_ABI_VFP_args:
	  // Aready done.
	  break;
	case elfcpp::Tag_ABI_WMMX_args:
	  if (in_attr[i].int_value() != out_attr[i].int_value())
	    {
	      gold_error(_("%s uses iWMMXt register arguments, output does "
			   "not"),
			 name);
	    }
	  break;
	case Object_attribute::Tag_compatibility:
	  // Merged in target-independent code.
	  break;
	case elfcpp::Tag_ABI_HardFP_use:
	  // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
	  if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
	      || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
	    out_attr[i].set_int_value(3);
	  else if (in_attr[i].int_value() > out_attr[i].int_value())
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;
	case elfcpp::Tag_ABI_FP_16bit_format:
	  if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
	    {
	      if (in_attr[i].int_value() != out_attr[i].int_value())
		gold_error(_("fp16 format mismatch between %s and output"),
			   name);
	    }
	  if (in_attr[i].int_value() != 0)
	    out_attr[i].set_int_value(in_attr[i].int_value());
	  break;

	case elfcpp::Tag_nodefaults:
	  // This tag is set if it exists, but the value is unused (and is
	  // typically zero).  We don't actually need to do anything here -
	  // the merge happens automatically when the type flags are merged
	  // below.
	  break;
	case elfcpp::Tag_also_compatible_with:
	  // Already done in Tag_CPU_arch.
	  break;
	case elfcpp::Tag_conformance:
	  // Keep the attribute if it matches.  Throw it away otherwise.
	  // No attribute means no claim to conform.
	  if (in_attr[i].string_value() != out_attr[i].string_value())
	    out_attr[i].set_string_value("");
	  break;

	default:
	  {
	    const char* err_object = NULL;

	    // The "known_obj_attributes" table does contain some undefined
	    // attributes.  Ensure that there are unused.
	    if (out_attr[i].int_value() != 0
		|| out_attr[i].string_value() != "")
	      err_object = "output";
	    else if (in_attr[i].int_value() != 0
		     || in_attr[i].string_value() != "")
	      err_object = name;

	    if (err_object != NULL)
	      {
		// Attribute numbers >=64 (mod 128) can be safely ignored.
		if ((i & 127) < 64)
		  gold_error(_("%s: unknown mandatory EABI object attribute "
			       "%d"),
			     err_object, i);
		else
		  gold_warning(_("%s: unknown EABI object attribute %d"),
			       err_object, i);
	      }

	    // Only pass on attributes that match in both inputs.
	    if (!in_attr[i].matches(out_attr[i]))
	      {
		out_attr[i].set_int_value(0);
		out_attr[i].set_string_value("");
	      }
	  }
	}

      // If out_attr was copied from in_attr then it won't have a type yet.
      if (in_attr[i].type() && !out_attr[i].type())
	out_attr[i].set_type(in_attr[i].type());
    }

  // Merge Tag_compatibility attributes and any common GNU ones.
  this->attributes_section_data_->merge(name, pasd);

  // Check for any attributes not known on ARM.
  typedef Vendor_object_attributes::Other_attributes Other_attributes;
  const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
  Other_attributes::const_iterator in_iter = in_other_attributes->begin();
  Other_attributes* out_other_attributes =
    this->attributes_section_data_->other_attributes(vendor);
  Other_attributes::iterator out_iter = out_other_attributes->begin();

  while (in_iter != in_other_attributes->end()
	 || out_iter != out_other_attributes->end())
    {
      const char* err_object = NULL;
      int err_tag = 0;

      // The tags for each list are in numerical order.
      // If the tags are equal, then merge.
      if (out_iter != out_other_attributes->end()
	  && (in_iter == in_other_attributes->end()
	      || in_iter->first > out_iter->first))
	{
	  // This attribute only exists in output.  We can't merge, and we
	  // don't know what the tag means, so delete it.
	  err_object = "output";
	  err_tag = out_iter->first;
	  int saved_tag = out_iter->first;
	  delete out_iter->second;
	  out_other_attributes->erase(out_iter); 
	  out_iter = out_other_attributes->upper_bound(saved_tag);
	}
      else if (in_iter != in_other_attributes->end()
	       && (out_iter != out_other_attributes->end()
		   || in_iter->first < out_iter->first))
	{
	  // This attribute only exists in input. We can't merge, and we
	  // don't know what the tag means, so ignore it.
	  err_object = name;
	  err_tag = in_iter->first;
	  ++in_iter;
	}
      else // The tags are equal.
	{
	  // As present, all attributes in the list are unknown, and
	  // therefore can't be merged meaningfully.
	  err_object = "output";
	  err_tag = out_iter->first;

	  //  Only pass on attributes that match in both inputs.
	  if (!in_iter->second->matches(*(out_iter->second)))
	    {
	      // No match.  Delete the attribute.
	      int saved_tag = out_iter->first;
	      delete out_iter->second;
	      out_other_attributes->erase(out_iter);
	      out_iter = out_other_attributes->upper_bound(saved_tag);
	    }
	  else
	    {
	      // Matched.  Keep the attribute and move to the next.
	      ++out_iter;
	      ++in_iter;
	    }
	}

      if (err_object)
	{
	  // Attribute numbers >=64 (mod 128) can be safely ignored.  */
	  if ((err_tag & 127) < 64)
	    {
	      gold_error(_("%s: unknown mandatory EABI object attribute %d"),
			 err_object, err_tag);
	    }
	  else
	    {
	      gold_warning(_("%s: unknown EABI object attribute %d"),
			   err_object, err_tag);
	    }
	}
    }
}

// Return whether a relocation type used the LSB to distinguish THUMB
// addresses.
template<bool big_endian>
bool
Target_arm<big_endian>::reloc_uses_thumb_bit(unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_ARM_PC24:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_SBREL32:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP24:
    case elfcpp::R_ARM_SBREL31:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_JUMP19:
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
    case elfcpp::R_ARM_ALU_PC_G0_NC:
    case elfcpp::R_ARM_ALU_PC_G0:
    case elfcpp::R_ARM_ALU_PC_G1_NC:
    case elfcpp::R_ARM_ALU_PC_G1:
    case elfcpp::R_ARM_ALU_PC_G2:
    case elfcpp::R_ARM_ALU_SB_G0_NC:
    case elfcpp::R_ARM_ALU_SB_G0:
    case elfcpp::R_ARM_ALU_SB_G1_NC:
    case elfcpp::R_ARM_ALU_SB_G1:
    case elfcpp::R_ARM_ALU_SB_G2:
    case elfcpp::R_ARM_MOVW_BREL_NC:
    case elfcpp::R_ARM_MOVW_BREL:
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
    case elfcpp::R_ARM_THM_MOVW_BREL:
      return true;
    default:
      return false;
    }
}

// Stub-generation methods for Target_arm.

// Make a new Arm_input_section object.

template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::new_arm_input_section(
    Relobj* relobj,
    unsigned int shndx)
{
  Section_id sid(relobj, shndx);

  Arm_input_section<big_endian>* arm_input_section =
    new Arm_input_section<big_endian>(relobj, shndx);
  arm_input_section->init();

  // Register new Arm_input_section in map for look-up.
  std::pair<typename Arm_input_section_map::iterator, bool> ins =
    this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));

  // Make sure that it we have not created another Arm_input_section
  // for this input section already.
  gold_assert(ins.second);

  return arm_input_section; 
}

// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.

template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::find_arm_input_section(
    Relobj* relobj,
    unsigned int shndx) const
{
  Section_id sid(relobj, shndx);
  typename Arm_input_section_map::const_iterator p =
    this->arm_input_section_map_.find(sid);
  return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
}

// Make a new stub table.

template<bool big_endian>
Stub_table<big_endian>*
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
{
  Stub_table<big_endian>* stub_table =
    new Stub_table<big_endian>(owner);
  this->stub_tables_.push_back(stub_table);

  stub_table->set_address(owner->address() + owner->data_size());
  stub_table->set_file_offset(owner->offset() + owner->data_size());
  stub_table->finalize_data_size();

  return stub_table;
}

// Scan a relocation for stub generation.

template<bool big_endian>
void
Target_arm<big_endian>::scan_reloc_for_stub(
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int r_type,
    const Sized_symbol<32>* gsym,
    unsigned int r_sym,
    const Symbol_value<32>* psymval,
    elfcpp::Elf_types<32>::Elf_Swxword addend,
    Arm_address address)
{
  typedef typename Target_arm<big_endian>::Relocate Relocate;

  const Arm_relobj<big_endian>* arm_relobj =
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);

  if (r_type == elfcpp::R_ARM_V4BX)
    {
      const uint32_t reg = (addend & 0xf);
      if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
	  && reg < 0xf)
	{
	  // Try looking up an existing stub from a stub table.
	  Stub_table<big_endian>* stub_table =
	    arm_relobj->stub_table(relinfo->data_shndx);
	  gold_assert(stub_table != NULL);

	  if (stub_table->find_arm_v4bx_stub(reg) == NULL)
	    {
	      // create a new stub and add it to stub table.
	      Arm_v4bx_stub* stub =
		this->stub_factory().make_arm_v4bx_stub(reg);
	      gold_assert(stub != NULL);
	      stub_table->add_arm_v4bx_stub(stub);
	    }
	}

      return;
    }

  bool target_is_thumb;
  Symbol_value<32> symval;
  if (gsym != NULL)
    {
      // This is a global symbol.  Determine if we use PLT and if the
      // final target is THUMB.
      if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
	{
	  // This uses a PLT, change the symbol value.
	  symval.set_output_value(this->plt_section()->address()
				  + gsym->plt_offset());
	  psymval = &symval;
	  target_is_thumb = false;
	}
      else if (gsym->is_undefined())
	// There is no need to generate a stub symbol is undefined.
	return;
      else
	{
	  target_is_thumb =
	    ((gsym->type() == elfcpp::STT_ARM_TFUNC)
	     || (gsym->type() == elfcpp::STT_FUNC
		 && !gsym->is_undefined()
		 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
	}
    }
  else
    {
      // This is a local symbol.  Determine if the final target is THUMB.
      target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
    }

  // Strip LSB if this points to a THUMB target.
  if (target_is_thumb
      && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
      && ((psymval->value(arm_relobj, 0) & 1) != 0))
    {
      Arm_address stripped_value =
	psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
      symval.set_output_value(stripped_value);
      psymval = &symval;
    } 

  // Get the symbol value.
  Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);

  // Owing to pipelining, the PC relative branches below actually skip
  // two instructions when the branch offset is 0.
  Arm_address destination;
  switch (r_type)
    {
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_PLT32:
      // ARM branches.
      destination = value + addend + 8;
      break;
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_XPC22:
    case elfcpp::R_ARM_THM_JUMP24:
    case elfcpp::R_ARM_THM_JUMP19:
      // THUMB branches.
      destination = value + addend + 4;
      break;
    default:
      gold_unreachable();
    }

  Reloc_stub* stub = NULL;
  Stub_type stub_type =
    Reloc_stub::stub_type_for_reloc(r_type, address, destination,
				    target_is_thumb);
  if (stub_type != arm_stub_none)
    {
      // Try looking up an existing stub from a stub table.
      Stub_table<big_endian>* stub_table = 
	arm_relobj->stub_table(relinfo->data_shndx);
      gold_assert(stub_table != NULL);
   
      // Locate stub by destination.
      Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);

      // Create a stub if there is not one already
      stub = stub_table->find_reloc_stub(stub_key);
      if (stub == NULL)
	{
	  // create a new stub and add it to stub table.
	  stub = this->stub_factory().make_reloc_stub(stub_type);
	  stub_table->add_reloc_stub(stub, stub_key);
	}

      // Record the destination address.
      stub->set_destination_address(destination
				    | (target_is_thumb ? 1 : 0));
    }

  // For Cortex-A8, we need to record a relocation at 4K page boundary.
  if (this->fix_cortex_a8_
      && (r_type == elfcpp::R_ARM_THM_JUMP24
	  || r_type == elfcpp::R_ARM_THM_JUMP19
	  || r_type == elfcpp::R_ARM_THM_CALL
	  || r_type == elfcpp::R_ARM_THM_XPC22)
      && (address & 0xfffU) == 0xffeU)
    {
      // Found a candidate.  Note we haven't checked the destination is
      // within 4K here: if we do so (and don't create a record) we can't
      // tell that a branch should have been relocated when scanning later.
      this->cortex_a8_relocs_info_[address] =
	new Cortex_a8_reloc(stub, r_type,
			    destination | (target_is_thumb ? 1 : 0));
    }
}

// This function scans a relocation sections for stub generation.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.

// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
// SHT_REL or SHT_RELA.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.

// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.

template<bool big_endian>
template<int sh_type>
void inline
Target_arm<big_endian>::scan_reloc_section_for_stubs(
    const Relocate_info<32, big_endian>* relinfo,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    const unsigned char* view,
    elfcpp::Elf_types<32>::Elf_Addr view_address,
    section_size_type)
{
  typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
  const int reloc_size =
    Reloc_types<sh_type, 32, big_endian>::reloc_size;

  Arm_relobj<big_endian>* arm_object =
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
  unsigned int local_count = arm_object->local_symbol_count();

  Comdat_behavior comdat_behavior = CB_UNDETERMINED;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);

      r_type = this->get_real_reloc_type(r_type);

      // Only a few relocation types need stubs.
      if ((r_type != elfcpp::R_ARM_CALL)
         && (r_type != elfcpp::R_ARM_JUMP24)
         && (r_type != elfcpp::R_ARM_PLT32)
         && (r_type != elfcpp::R_ARM_THM_CALL)
         && (r_type != elfcpp::R_ARM_THM_XPC22)
         && (r_type != elfcpp::R_ARM_THM_JUMP24)
         && (r_type != elfcpp::R_ARM_THM_JUMP19)
         && (r_type != elfcpp::R_ARM_V4BX))
	continue;

      section_offset_type offset =
	convert_to_section_size_type(reloc.get_r_offset());

      if (needs_special_offset_handling)
	{
	  offset = output_section->output_offset(relinfo->object,
						 relinfo->data_shndx,
						 offset);
	  if (offset == -1)
	    continue;
	}

      if (r_type == elfcpp::R_ARM_V4BX)
	{
	  // Get the BX instruction.
	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
	  const Valtype* wv = reinterpret_cast<const Valtype*>(view + offset);
	  elfcpp::Elf_types<32>::Elf_Swxword insn =
	      elfcpp::Swap<32, big_endian>::readval(wv);
	  this->scan_reloc_for_stub(relinfo, r_type, NULL, 0, NULL,
				    insn, NULL);
	  continue;
	}

      // Get the addend.
      Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
      elfcpp::Elf_types<32>::Elf_Swxword addend =
	stub_addend_reader(r_type, view + offset, reloc);

      const Sized_symbol<32>* sym;

      Symbol_value<32> symval;
      const Symbol_value<32> *psymval;
      if (r_sym < local_count)
	{
	  sym = NULL;
	  psymval = arm_object->local_symbol(r_sym);

          // If the local symbol belongs to a section we are discarding,
          // and that section is a debug section, try to find the
          // corresponding kept section and map this symbol to its
          // counterpart in the kept section.  The symbol must not 
          // correspond to a section we are folding.
	  bool is_ordinary;
	  unsigned int shndx = psymval->input_shndx(&is_ordinary);
	  if (is_ordinary
	      && shndx != elfcpp::SHN_UNDEF
	      && !arm_object->is_section_included(shndx) 
              && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
	    {
	      if (comdat_behavior == CB_UNDETERMINED)
	        {
	          std::string name =
		    arm_object->section_name(relinfo->data_shndx);
	          comdat_behavior = get_comdat_behavior(name.c_str());
	        }
	      if (comdat_behavior == CB_PRETEND)
	        {
                  bool found;
	          typename elfcpp::Elf_types<32>::Elf_Addr value =
	            arm_object->map_to_kept_section(shndx, &found);
	          if (found)
	            symval.set_output_value(value + psymval->input_value());
                  else
                    symval.set_output_value(0);
	        }
	      else
	        {
                  symval.set_output_value(0);
	        }
	      symval.set_no_output_symtab_entry();
	      psymval = &symval;
	    }
	}
      else
	{
	  const Symbol* gsym = arm_object->global_symbol(r_sym);
	  gold_assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = relinfo->symtab->resolve_forwards(gsym);

	  sym = static_cast<const Sized_symbol<32>*>(gsym);
	  if (sym->has_symtab_index())
	    symval.set_output_symtab_index(sym->symtab_index());
	  else
	    symval.set_no_output_symtab_entry();

	  // We need to compute the would-be final value of this global
	  // symbol.
	  const Symbol_table* symtab = relinfo->symtab;
	  const Sized_symbol<32>* sized_symbol =
	    symtab->get_sized_symbol<32>(gsym);
	  Symbol_table::Compute_final_value_status status;
	  Arm_address value =
	    symtab->compute_final_value<32>(sized_symbol, &status);

	  // Skip this if the symbol has not output section.
	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
	    continue;

	  symval.set_output_value(value);
	  psymval = &symval;
	}

      // If symbol is a section symbol, we don't know the actual type of
      // destination.  Give up.
      if (psymval->is_section_symbol())
	continue;

      this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
				addend, view_address + offset);
    }
}

// Scan an input section for stub generation.

template<bool big_endian>
void
Target_arm<big_endian>::scan_section_for_stubs(
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    const unsigned char* view,
    Arm_address view_address,
    section_size_type view_size)
{
  if (sh_type == elfcpp::SHT_REL)
    this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
	relinfo,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	view,
	view_address,
	view_size);
  else if (sh_type == elfcpp::SHT_RELA)
    // We do not support RELA type relocations yet.  This is provided for
    // completeness.
    this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
	relinfo,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	view,
	view_address,
	view_size);
  else
    gold_unreachable();
}

// Group input sections for stub generation.
//
// We goup input sections in an output sections so that the total size,
// including any padding space due to alignment is smaller than GROUP_SIZE
// unless the only input section in group is bigger than GROUP_SIZE already.
// Then an ARM stub table is created to follow the last input section
// in group.  For each group an ARM stub table is created an is placed
// after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
// extend the group after the stub table.

template<bool big_endian>
void
Target_arm<big_endian>::group_sections(
    Layout* layout,
    section_size_type group_size,
    bool stubs_always_after_branch)
{
  // Group input sections and insert stub table
  Layout::Section_list section_list;
  layout->get_allocated_sections(&section_list);
  for (Layout::Section_list::const_iterator p = section_list.begin();
       p != section_list.end();
       ++p)
    {
      Arm_output_section<big_endian>* output_section =
	Arm_output_section<big_endian>::as_arm_output_section(*p);
      output_section->group_sections(group_size, stubs_always_after_branch,
				     this);
    }
}

// Relaxation hook.  This is where we do stub generation.

template<bool big_endian>
bool
Target_arm<big_endian>::do_relax(
    int pass,
    const Input_objects* input_objects,
    Symbol_table* symtab,
    Layout* layout)
{
  // No need to generate stubs if this is a relocatable link.
  gold_assert(!parameters->options().relocatable());

  // If this is the first pass, we need to group input sections into
  // stub groups.
  if (pass == 1)
    {
      // Determine the stub group size.  The group size is the absolute
      // value of the parameter --stub-group-size.  If --stub-group-size
      // is passed a negative value, we restict stubs to be always after
      // the stubbed branches.
      int32_t stub_group_size_param =
	parameters->options().stub_group_size();
      bool stubs_always_after_branch = stub_group_size_param < 0;
      section_size_type stub_group_size = abs(stub_group_size_param);

      // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
      // page as the first half of a 32-bit branch straddling two 4K pages.
      // This is a crude way of enforcing that.
      if (this->fix_cortex_a8_)
	stubs_always_after_branch = true;

      if (stub_group_size == 1)
	{
	  // Default value.
	  // Thumb branch range is +-4MB has to be used as the default
	  // maximum size (a given section can contain both ARM and Thumb
	  // code, so the worst case has to be taken into account).
	  //
	  // This value is 24K less than that, which allows for 2025
	  // 12-byte stubs.  If we exceed that, then we will fail to link.
	  // The user will have to relink with an explicit group size
	  // option.
	  stub_group_size = 4170000;
	}

      group_sections(layout, stub_group_size, stubs_always_after_branch);
    }

  // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
  // beginning of each relaxation pass, just blow away all the stubs.
  // Alternatively, we could selectively remove only the stubs and reloc
  // information for code sections that have moved since the last pass.
  // That would require more book-keeping.
  typedef typename Stub_table_list::iterator Stub_table_iterator;
  if (this->fix_cortex_a8_)
    {
      // Clear all Cortex-A8 reloc information.
      for (typename Cortex_a8_relocs_info::const_iterator p =
	     this->cortex_a8_relocs_info_.begin();
	   p != this->cortex_a8_relocs_info_.end();
	   ++p)
	delete p->second;
      this->cortex_a8_relocs_info_.clear();

      // Remove all Cortex-A8 stubs.
      for (Stub_table_iterator sp = this->stub_tables_.begin();
	   sp != this->stub_tables_.end();
	   ++sp)
	(*sp)->remove_all_cortex_a8_stubs();
    }
  
  // Scan relocs for relocation stubs
  for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
       op != input_objects->relobj_end();
       ++op)
    {
      Arm_relobj<big_endian>* arm_relobj =
	Arm_relobj<big_endian>::as_arm_relobj(*op);
      arm_relobj->scan_sections_for_stubs(this, symtab, layout);
    }

  // Check all stub tables to see if any of them have their data sizes
  // or addresses alignments changed.  These are the only things that
  // matter.
  bool any_stub_table_changed = false;
  for (Stub_table_iterator sp = this->stub_tables_.begin();
       (sp != this->stub_tables_.end()) && !any_stub_table_changed;
       ++sp)
    {
      if ((*sp)->update_data_size_and_addralign())
	any_stub_table_changed = true;
    }

  // Finalize the stubs in the last relaxation pass.
  if (!any_stub_table_changed)
    for (Stub_table_iterator sp = this->stub_tables_.begin();
	 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
	 ++sp)
      (*sp)->finalize_stubs();

  return any_stub_table_changed;
}

// Relocate a stub.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_stub(
    Stub* stub,
    const Relocate_info<32, big_endian>* relinfo,
    Output_section* output_section,
    unsigned char* view,
    Arm_address address,
    section_size_type view_size)
{
  Relocate relocate;
  const Stub_template* stub_template = stub->stub_template();
  for (size_t i = 0; i < stub_template->reloc_count(); i++)
    {
      size_t reloc_insn_index = stub_template->reloc_insn_index(i);
      const Insn_template* insn = &stub_template->insns()[reloc_insn_index];

      unsigned int r_type = insn->r_type();
      section_size_type reloc_offset = stub_template->reloc_offset(i);
      section_size_type reloc_size = insn->size();
      gold_assert(reloc_offset + reloc_size <= view_size);

      // This is the address of the stub destination.
      Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
      Symbol_value<32> symval;
      symval.set_output_value(target);

      // Synthesize a fake reloc just in case.  We don't have a symbol so
      // we use 0.
      unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
      memset(reloc_buffer, 0, sizeof(reloc_buffer));
      elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
      reloc_write.put_r_offset(reloc_offset);
      reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
      elfcpp::Rel<32, big_endian> rel(reloc_buffer);

      relocate.relocate(relinfo, this, output_section,
			this->fake_relnum_for_stubs, rel, r_type,
			NULL, &symval, view + reloc_offset,
			address + reloc_offset, reloc_size);
    }
}

// Determine whether an object attribute tag takes an integer, a
// string or both.

template<bool big_endian>
int
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
{
  if (tag == Object_attribute::Tag_compatibility)
    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
	    | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
  else if (tag == elfcpp::Tag_nodefaults)
    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
	    | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
  else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
    return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
  else if (tag < 32)
    return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
  else
    return ((tag & 1) != 0
	    ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
	    : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
}

// Reorder attributes.
//
// The ABI defines that Tag_conformance should be emitted first, and that
// Tag_nodefaults should be second (if either is defined).  This sets those
// two positions, and bumps up the position of all the remaining tags to
// compensate.

template<bool big_endian>
int
Target_arm<big_endian>::do_attributes_order(int num) const
{
  // Reorder the known object attributes in output.  We want to move
  // Tag_conformance to position 4 and Tag_conformance to position 5
  // and shift eveything between 4 .. Tag_conformance - 1 to make room.
  if (num == 4)
    return elfcpp::Tag_conformance;
  if (num == 5)
    return elfcpp::Tag_nodefaults;
  if ((num - 2) < elfcpp::Tag_nodefaults)
    return num - 2;
  if ((num - 1) < elfcpp::Tag_conformance)
    return num - 1;
  return num;
}

// Scan a span of THUMB code for Cortex-A8 erratum.

template<bool big_endian>
void
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
    Arm_relobj<big_endian>* arm_relobj,
    unsigned int shndx,
    section_size_type span_start,
    section_size_type span_end,
    const unsigned char* view,
    Arm_address address)
{
  // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
  //
  // The opcode is BLX.W, BL.W, B.W, Bcc.W
  // The branch target is in the same 4KB region as the
  // first half of the branch.
  // The instruction before the branch is a 32-bit
  // length non-branch instruction.
  section_size_type i = span_start;
  bool last_was_32bit = false;
  bool last_was_branch = false;
  while (i < span_end)
    {
      typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
      const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
      uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
      bool is_blx = false, is_b = false;
      bool is_bl = false, is_bcc = false;

      bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
      if (insn_32bit)
	{
	  // Load the rest of the insn (in manual-friendly order).
	  insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);

	  // Encoding T4: B<c>.W.
	  is_b = (insn & 0xf800d000U) == 0xf0009000U;
	  // Encoding T1: BL<c>.W.
      	  is_bl = (insn & 0xf800d000U) == 0xf000d000U;
       	  // Encoding T2: BLX<c>.W.
       	  is_blx = (insn & 0xf800d000U) == 0xf000c000U;
	  // Encoding T3: B<c>.W (not permitted in IT block).
	  is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
		    && (insn & 0x07f00000U) != 0x03800000U);
	}

      bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
			   
      // If this instruction is a 32-bit THUMB branch that crosses a 4K
      // page boundary and it follows 32-bit non-branch instruction,
      // we need to work around.
      if (is_32bit_branch
	  && ((address + i) & 0xfffU) == 0xffeU
	  && last_was_32bit
	  && !last_was_branch)
	{
	  // Check to see if there is a relocation stub for this branch.
	  bool force_target_arm = false;
	  bool force_target_thumb = false;
	  const Cortex_a8_reloc* cortex_a8_reloc = NULL;
	  Cortex_a8_relocs_info::const_iterator p =
	    this->cortex_a8_relocs_info_.find(address + i);

	  if (p != this->cortex_a8_relocs_info_.end())
	    {
	      cortex_a8_reloc = p->second;
	      bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;

	      if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
		  && !target_is_thumb)
		force_target_arm = true;
	      else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
		       && target_is_thumb)
		force_target_thumb = true;
	    }

	  off_t offset;
	  Stub_type stub_type = arm_stub_none;

	  // Check if we have an offending branch instruction.
	  uint16_t upper_insn = (insn >> 16) & 0xffffU;
	  uint16_t lower_insn = insn & 0xffffU;
	  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;

	  if (cortex_a8_reloc != NULL
	      && cortex_a8_reloc->reloc_stub() != NULL)
	    // We've already made a stub for this instruction, e.g.
	    // it's a long branch or a Thumb->ARM stub.  Assume that
	    // stub will suffice to work around the A8 erratum (see
	    // setting of always_after_branch above).
	    ;
	  else if (is_bcc)
	    {
	      offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
							      lower_insn);
	      stub_type = arm_stub_a8_veneer_b_cond;
	    }
	  else if (is_b || is_bl || is_blx)
	    {
	      offset = RelocFuncs::thumb32_branch_offset(upper_insn,
							 lower_insn);
	      if (is_blx)
	        offset &= ~3;

	      stub_type = (is_blx
			   ? arm_stub_a8_veneer_blx
			   : (is_bl
			      ? arm_stub_a8_veneer_bl
			      : arm_stub_a8_veneer_b));
	    }

	  if (stub_type != arm_stub_none)
	    {
	      Arm_address pc_for_insn = address + i + 4;

	      // The original instruction is a BL, but the target is
	      // an ARM instruction.  If we were not making a stub,
	      // the BL would have been converted to a BLX.  Use the
	      // BLX stub instead in that case.
	      if (this->may_use_blx() && force_target_arm
		  && stub_type == arm_stub_a8_veneer_bl)
		{
		  stub_type = arm_stub_a8_veneer_blx;
		  is_blx = true;
		  is_bl = false;
		}
	      // Conversely, if the original instruction was
	      // BLX but the target is Thumb mode, use the BL stub.
	      else if (force_target_thumb
		       && stub_type == arm_stub_a8_veneer_blx)
		{
		  stub_type = arm_stub_a8_veneer_bl;
		  is_blx = false;
		  is_bl = true;
		}

	      if (is_blx)
		pc_for_insn &= ~3;

              // If we found a relocation, use the proper destination,
	      // not the offset in the (unrelocated) instruction.
	      // Note this is always done if we switched the stub type above.
              if (cortex_a8_reloc != NULL)
                offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);

              Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);

	      // Add a new stub if destination address in in the same page.
              if (((address + i) & ~0xfffU) == (target & ~0xfffU))
                {
		  Cortex_a8_stub* stub =
		    this->stub_factory_.make_cortex_a8_stub(stub_type,
							    arm_relobj, shndx,
							    address + i,
							    target, insn);
		  Stub_table<big_endian>* stub_table =
		    arm_relobj->stub_table(shndx);
		  gold_assert(stub_table != NULL);
		  stub_table->add_cortex_a8_stub(address + i, stub);
                }
            }
        }

      i += insn_32bit ? 4 : 2;
      last_was_32bit = insn_32bit;
      last_was_branch = is_32bit_branch;
    }
}

// Apply the Cortex-A8 workaround.

template<bool big_endian>
void
Target_arm<big_endian>::apply_cortex_a8_workaround(
    const Cortex_a8_stub* stub,
    Arm_address stub_address,
    unsigned char* insn_view,
    Arm_address insn_address)
{
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
  Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
  Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
  Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
  off_t branch_offset = stub_address - (insn_address + 4);

  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
  switch (stub->stub_template()->type())
    {
    case arm_stub_a8_veneer_b_cond:
      gold_assert(!utils::has_overflow<21>(branch_offset));
      upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
							 branch_offset);
      lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
							 branch_offset);
      break;

    case arm_stub_a8_veneer_b:
    case arm_stub_a8_veneer_bl:
    case arm_stub_a8_veneer_blx:
      if ((lower_insn & 0x5000U) == 0x4000U)
	// For a BLX instruction, make sure that the relocation is
	// rounded up to a word boundary.  This follows the semantics of
	// the instruction which specifies that bit 1 of the target
	// address will come from bit 1 of the base address.
	branch_offset = (branch_offset + 2) & ~3;

      // Put BRANCH_OFFSET back into the insn.
      gold_assert(!utils::has_overflow<25>(branch_offset));
      upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
      lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
      break;

    default:
      gold_unreachable();
    }

  // Put the relocated value back in the object file:
  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
}

template<bool big_endian>
class Target_selector_arm : public Target_selector
{
 public:
  Target_selector_arm()
    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
		      (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
  { }

  Target*
  do_instantiate_target()
  { return new Target_arm<big_endian>(); }
};

Target_selector_arm<false> target_selector_arm;
Target_selector_arm<true> target_selector_armbe;

} // End anonymous namespace.