1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/* Target-machine dependent code for Zilog Z8000, for GDB.
Copyright (C) 1992,1993 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
Contributed by Steve Chamberlain
sac@cygnus.com
*/
#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbcmd.h"
#include "gdbtypes.h"
#include "dis-asm.h"
/* Return the saved PC from this frame.
If the frame has a memory copy of SRP_REGNUM, use that. If not,
just use the register SRP_REGNUM itself. */
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
{
return (read_memory_pointer (frame->frame + (BIG ? 4 : 2)));
}
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
/* work out how much local space is on the stack and
return the pc pointing to the first push */
static CORE_ADDR
skip_adjust (pc, size)
CORE_ADDR pc;
int *size;
{
*size = 0;
if (IS_PUSH_FP (read_memory_short (pc))
&& IS_MOV_SP_FP (read_memory_short (pc + 2)))
{
/* This is a function with an explict frame pointer */
pc += 4;
*size += 2; /* remember the frame pointer */
}
/* remember any stack adjustment */
if (IS_SUB_SP (read_memory_short (pc)))
{
*size += read_memory_short (pc + 2);
pc += 4;
}
return pc;
}
int
examine_frame (pc, regs, sp)
CORE_ADDR pc;
struct frame_saved_regs *regs;
CORE_ADDR sp;
{
int w = read_memory_short (pc);
int offset = 0;
int regno;
for (regno = 0; regno < NUM_REGS; regno++)
regs->regs[regno] = 0;
while (IS_PUSHW (w) || IS_PUSHL (w))
{
/* work out which register is being pushed to where */
if (IS_PUSHL (w))
{
regs->regs[w & 0xf] = offset;
regs->regs[(w & 0xf) + 1] = offset + 2;
offset += 4;
}
else
{
regs->regs[w & 0xf] = offset;
offset += 2;
}
pc += 2;
w = read_memory_short (pc);
}
if (IS_MOVE_FP (w))
{
/* We know the fp */
}
else if (IS_SUB_SP (w))
{
/* Subtracting a value from the sp, so were in a function
which needs stack space for locals, but has no fp. We fake up
the values as if we had an fp */
regs->regs[FP_REGNUM] = sp;
}
else
{
/* This one didn't have an fp, we'll fake it up */
regs->regs[SP_REGNUM] = sp;
}
/* stack pointer contains address of next frame */
/* regs->regs[fp_regnum()] = fp;*/
regs->regs[SP_REGNUM] = sp;
return pc;
}
CORE_ADDR
z8k_skip_prologue (start_pc)
CORE_ADDR start_pc;
{
struct frame_saved_regs dummy;
return examine_frame (start_pc, &dummy, 0);
}
CORE_ADDR
addr_bits_remove (x)
CORE_ADDR x;
{
return x & PTR_MASK;
}
read_memory_pointer (x)
CORE_ADDR x;
{
return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
}
FRAME_ADDR
frame_chain (thisframe)
FRAME thisframe;
{
if (thisframe->prev == 0)
{
/* This is the top of the stack, let's get the sp for real */
}
if (!inside_entry_file ((thisframe)->pc))
{
return read_memory_pointer ((thisframe)->frame);
}
return 0;
}
init_frame_pc ()
{
abort ();
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
void
get_frame_saved_regs (frame_info, frame_saved_regs)
struct frame_info *frame_info;
struct frame_saved_regs *frame_saved_regs;
{
CORE_ADDR pc;
int w;
bzero (frame_saved_regs, sizeof (*frame_saved_regs));
pc = get_pc_function_start (frame_info->pc);
/* wander down the instruction stream */
examine_frame (pc, frame_saved_regs, frame_info->frame);
}
void
z8k_push_dummy_frame ()
{
abort ();
}
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
disassemble_info info;
GDB_INIT_DISASSEMBLE_INFO(info, stream);
if (BIG)
{
return print_insn_z8001 ((bfd_vma) memaddr, &info);
}
else
{
return print_insn_z8002 ((bfd_vma) memaddr, &info);
}
}
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction.*/
CORE_ADDR
NEXT_PROLOGUE_INSN (addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
{
char buf[2];
if (addr < lim + 8)
{
read_memory (addr, buf, 2);
*pword1 = extract_signed_integer (buf, 2);
return addr + 2;
}
return 0;
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame.
We cache the result of doing this in the frame_cache_obstack, since
it is fairly expensive. */
void
frame_find_saved_regs (fip, fsrp)
struct frame_info *fip;
struct frame_saved_regs *fsrp;
{
int locals;
CORE_ADDR pc;
CORE_ADDR adr;
int i;
memset (fsrp, 0, sizeof *fsrp);
pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
{
adr = fip->frame - locals;
for (i = 0; i < 8; i++)
{
int word = read_memory_short (pc);
pc += 2;
if (IS_PUSHL (word))
{
fsrp->regs[word & 0xf] = adr;
fsrp->regs[(word & 0xf) + 1] = adr - 2;
adr -= 4;
}
else if (IS_PUSHW (word))
{
fsrp->regs[word & 0xf] = adr;
adr -= 2;
}
else
break;
}
}
fsrp->regs[PC_REGNUM] = fip->frame + 4;
fsrp->regs[FP_REGNUM] = fip->frame;
}
void
addr_bits_set ()
{
abort ();
}
int
saved_pc_after_call ()
{
return addr_bits_remove
(read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
}
extract_return_value(type, regbuf, valbuf)
struct type *type;
char *regbuf;
char *valbuf;
{
int b;
int len = TYPE_LENGTH(type);
for (b = 0; b < len; b += 2) {
int todo = len - b;
if (todo > 2)
todo = 2;
memcpy(valbuf + b, regbuf + b, todo);
}
}
void
write_return_value(type, valbuf)
struct type *type;
char *valbuf;
{
int reg;
int len;
for (len = 0; len < TYPE_LENGTH(type); len += 2)
{
write_register_bytes(REGISTER_BYTE(len /2 + 2), valbuf + len, 2);
}
}
void
store_struct_return(addr, sp)
CORE_ADDR addr;
CORE_ADDR sp;
{
write_register(2, addr);
}
void
print_register_hook (regno)
int regno;
{
if ((regno & 1) == 0 && regno < 16)
{
unsigned short l[2];
read_relative_register_raw_bytes (regno, (char *) (l + 0));
read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
printf ("\t");
printf ("%04x%04x", l[0], l[1]);
}
if ((regno & 3) == 0 && regno < 16)
{
unsigned short l[4];
read_relative_register_raw_bytes (regno, (char *) (l + 0));
read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
printf ("\t");
printf ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
}
if (regno == 15)
{
unsigned short rval;
int i;
read_relative_register_raw_bytes (regno, (char *) (&rval));
printf ("\n");
for (i = 0; i < 10; i += 2)
{
printf ("(sp+%d=%04x)", i, read_memory_short (rval + i));
}
}
}
void
register_convert_to_virtual (regnum, from, to)
unsigned char *from;
unsigned char *to;
{
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
}
void
register_convert_to_raw (regnum, to, from)
char *to;
char *from;
{
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
}
void
z8k_pop_frame ()
{
}
struct cmd_list_element *setmemorylist;
void
z8k_set_pointer_size (newsize)
int newsize;
{
static int oldsize = 0;
if (oldsize != newsize)
{
printf ("pointer size set to %d bits\n", newsize);
oldsize = newsize;
if (newsize == 32)
{
BIG = 1;
}
else
{
BIG = 0;
}
_initialize_gdbtypes ();
}
}
static void
segmented_command (args, from_tty)
char *args;
int from_tty;
{
z8k_set_pointer_size (32);
}
static void
unsegmented_command (args, from_tty)
char *args;
int from_tty;
{
z8k_set_pointer_size (16);
}
static void
set_memory (args, from_tty)
char *args;
int from_tty;
{
printf ("\"set memory\" must be followed by the name of a memory subcommand.\n");
help_list (setmemorylist, "set memory ", -1, stdout);
}
_initialize_z8ktdep ()
{
add_prefix_cmd ("memory", no_class, set_memory,
"set the memory model", &setmemorylist, "set memory ", 0,
&setlist);
add_cmd ("segmented", class_support, segmented_command,
"Set segmented memory model.", &setmemorylist);
add_cmd ("unsegmented", class_support, unsegmented_command,
"Set unsegmented memory model.", &setmemorylist);
}
|