aboutsummaryrefslogtreecommitdiff
path: root/gdb/x86-64-tdep.c
blob: b4d590e34acf75c7a1519d34588d745fae55c99d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/* Target-dependent code for the x86-64 for GDB, the GNU debugger.

   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
   Contributed by Jiri Smid, SuSE Labs.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "arch-utils.h"
#include "block.h"
#include "dummy-frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "regcache.h"
#include "regset.h"
#include "symfile.h"

#include "gdb_assert.h"

#include "x86-64-tdep.h"
#include "i387-tdep.h"

/* Register information.  */

struct x86_64_register_info
{
  char *name;
  struct type **type;
};

static struct x86_64_register_info x86_64_register_info[] =
{
  { "rax", &builtin_type_int64 },
  { "rbx", &builtin_type_int64 },
  { "rcx", &builtin_type_int64 },
  { "rdx", &builtin_type_int64 },
  { "rsi", &builtin_type_int64 },
  { "rdi", &builtin_type_int64 },
  { "rbp", &builtin_type_void_data_ptr },
  { "rsp", &builtin_type_void_data_ptr },

  /* %r8 is indeed register number 8.  */
  { "r8", &builtin_type_int64 },
  { "r9", &builtin_type_int64 },
  { "r10", &builtin_type_int64 },
  { "r11", &builtin_type_int64 },
  { "r12", &builtin_type_int64 },
  { "r13", &builtin_type_int64 },
  { "r14", &builtin_type_int64 },
  { "r15", &builtin_type_int64 },
  { "rip", &builtin_type_void_func_ptr },
  { "eflags", &builtin_type_int32 },
  { "ds", &builtin_type_int32 },
  { "es", &builtin_type_int32 },
  { "fs", &builtin_type_int32 },
  { "gs", &builtin_type_int32 },

  /* %st0 is register number 22.  */
  { "st0", &builtin_type_i387_ext },
  { "st1", &builtin_type_i387_ext },
  { "st2", &builtin_type_i387_ext },
  { "st3", &builtin_type_i387_ext },
  { "st4", &builtin_type_i387_ext },
  { "st5", &builtin_type_i387_ext },
  { "st6", &builtin_type_i387_ext },
  { "st7", &builtin_type_i387_ext },
  { "fctrl", &builtin_type_int32 },
  { "fstat", &builtin_type_int32 },
  { "ftag", &builtin_type_int32 },
  { "fiseg", &builtin_type_int32 },
  { "fioff", &builtin_type_int32 },
  { "foseg", &builtin_type_int32 },
  { "fooff", &builtin_type_int32 },
  { "fop", &builtin_type_int32 },

  /* %xmm0 is register number 38.  */
  { "xmm0", &builtin_type_v4sf },
  { "xmm1", &builtin_type_v4sf },
  { "xmm2", &builtin_type_v4sf },
  { "xmm3", &builtin_type_v4sf },
  { "xmm4", &builtin_type_v4sf },
  { "xmm5", &builtin_type_v4sf },
  { "xmm6", &builtin_type_v4sf },
  { "xmm7", &builtin_type_v4sf },
  { "xmm8", &builtin_type_v4sf },
  { "xmm9", &builtin_type_v4sf },
  { "xmm10", &builtin_type_v4sf },
  { "xmm11", &builtin_type_v4sf },
  { "xmm12", &builtin_type_v4sf },
  { "xmm13", &builtin_type_v4sf },
  { "xmm14", &builtin_type_v4sf },
  { "xmm15", &builtin_type_v4sf },
  { "mxcsr", &builtin_type_int32 }
};

/* Total number of registers.  */
#define X86_64_NUM_REGS \
  (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0]))

/* Return the name of register REGNUM.  */

static const char *
x86_64_register_name (int regnum)
{
  if (regnum >= 0 && regnum < X86_64_NUM_REGS)
    return x86_64_register_info[regnum].name;

  return NULL;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM. */

static struct type *
x86_64_register_type (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS);

  return *x86_64_register_info[regnum].type;
}

/* DWARF Register Number Mapping as defined in the System V psABI,
   section 3.6.  */

static int x86_64_dwarf_regmap[] =
{
  /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI.  */
  X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1,
  4, X86_64_RDI_REGNUM,

  /* Frame Pointer Register RBP.  */
  X86_64_RBP_REGNUM,

  /* Stack Pointer Register RSP.  */
  X86_64_RSP_REGNUM,

  /* Extended Integer Registers 8 - 15.  */
  8, 9, 10, 11, 12, 13, 14, 15,

  /* Return Address RA.  Not mapped.  */
  -1,

  /* SSE Registers 0 - 7.  */
  X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
  X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
  X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
  X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,

  /* Extended SSE Registers 8 - 15.  */
  X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
  X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
  X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
  X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,

  /* Floating Point Registers 0-7.  */
  X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
  X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
  X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
  X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
};

static const int x86_64_dwarf_regmap_len =
  (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0]));

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */

static int
x86_64_dwarf_reg_to_regnum (int reg)
{
  int regnum = -1;

  if (reg >= 0 || reg < x86_64_dwarf_regmap_len)
    regnum = x86_64_dwarf_regmap[reg];

  if (regnum == -1)
    warning ("Unmapped DWARF Register #%d encountered\n", reg);

  return regnum;
}

/* Return nonzero if a value of type TYPE stored in register REGNUM
   needs any special handling.  */

static int
x86_64_convert_register_p (int regnum, struct type *type)
{
  return i386_fp_regnum_p (regnum);
}


/* Register classes as defined in the psABI.  */

enum amd64_reg_class
{
  AMD64_INTEGER,
  AMD64_SSE,
  AMD64_SSEUP,
  AMD64_X87,
  AMD64_X87UP,
  AMD64_COMPLEX_X87,
  AMD64_NO_CLASS,
  AMD64_MEMORY
};

/* Return the union class of CLASS1 and CLASS2.  See the psABI for
   details.  */

static enum amd64_reg_class
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
{
  /* Rule (a): If both classes are equal, this is the resulting class.  */
  if (class1 == class2)
    return class1;

  /* Rule (b): If one of the classes is NO_CLASS, the resulting class
     is the other class.  */
  if (class1 == AMD64_NO_CLASS)
    return class2;
  if (class2 == AMD64_NO_CLASS)
    return class1;

  /* Rule (c): If one of the classes is MEMORY, the result is MEMORY.  */
  if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
    return AMD64_MEMORY;

  /* Rule (d): If one of the classes is INTEGER, the result is INTEGER.  */
  if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
    return AMD64_INTEGER;

  /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
     MEMORY is used as class.  */
  if (class1 == AMD64_X87 || class1 == AMD64_X87UP
      || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
      || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
    return AMD64_MEMORY;

  /* Rule (f): Otherwise class SSE is used.  */
  return AMD64_SSE;
}

static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);

/* Classify TYPE according to the rules for aggregate (structures and
   arrays) and union types, and store the result in CLASS.  */

static void
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
{
  int len = TYPE_LENGTH (type);

  /* 1. If the size of an object is larger than two eightbytes, or in
        C++, is a non-POD structure or union type, or contains
        unaligned fields, it has class memory.  */
  if (len > 16)
    {
      class[0] = class[1] = AMD64_MEMORY;
      return;
    }

  /* 2. Both eightbytes get initialized to class NO_CLASS.  */
  class[0] = class[1] = AMD64_NO_CLASS;

  /* 3. Each field of an object is classified recursively so that
        always two fields are considered. The resulting class is
        calculated according to the classes of the fields in the
        eightbyte: */

  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));

      /* All fields in an array have the same type.  */
      amd64_classify (subtype, class);
      if (len > 8 && class[1] == AMD64_NO_CLASS)
	class[1] = class[0];
    }
  else
    {
      int i;

      /* Structure or union.  */
      gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
		  || TYPE_CODE (type) == TYPE_CODE_UNION);

      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
	  int pos = TYPE_FIELD_BITPOS (type, i) / 64;
	  enum amd64_reg_class subclass[2];

	  gdb_assert (pos == 0 || pos == 1);

	  amd64_classify (subtype, subclass);
	  class[pos] = amd64_merge_classes (class[pos], subclass[0]);
	  if (pos == 0)
	    class[1] = amd64_merge_classes (class[1], subclass[1]);
	}
    }

  /* 4. Then a post merger cleanup is done:  */

  /* Rule (a): If one of the classes is MEMORY, the whole argument is
     passed in memory.  */
  if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
    class[0] = class[1] = AMD64_MEMORY;

  /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
     SSE.  */
  if (class[0] == AMD64_SSEUP)
    class[0] = AMD64_SSE;
  if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
    class[1] = AMD64_SSE;
}

/* Classify TYPE, and store the result in CLASS.  */

static void
amd64_classify (struct type *type, enum amd64_reg_class class[2])
{
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);

  class[0] = class[1] = AMD64_NO_CLASS;

  /* Arguments of types (signed and unsigned) _Bool, char, short, int,
     long, long long, and pointers are in the INTEGER class.  */
  if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
       || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
      && (len == 1 || len == 2 || len == 4 || len == 8))
    class[0] = AMD64_INTEGER;

  /* Arguments of types float, double and __m64 are in class SSE.  */
  else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
    /* FIXME: __m64 .  */
    class[0] = AMD64_SSE;

  /* Arguments of types __float128 and __m128 are split into two
     halves.  The least significant ones belong to class SSE, the most
     significant one to class SSEUP.  */
  /* FIXME: __float128, __m128.  */

  /* The 64-bit mantissa of arguments of type long double belongs to
     class X87, the 16-bit exponent plus 6 bytes of padding belongs to
     class X87UP.  */
  else if (code == TYPE_CODE_FLT && len == 16)
    /* Class X87 and X87UP.  */
    class[0] = AMD64_X87, class[1] = AMD64_X87UP;

  /* Aggregates.  */
  else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
	   || code == TYPE_CODE_UNION)
    amd64_classify_aggregate (type, class);
}

static enum return_value_convention
amd64_return_value (struct gdbarch *gdbarch, struct type *type,
		    struct regcache *regcache,
		    void *readbuf, const void *writebuf)
{
  enum amd64_reg_class class[2];
  int len = TYPE_LENGTH (type);
  static int integer_regnum[] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
  static int sse_regnum[] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
  int integer_reg = 0;
  int sse_reg = 0;
  int i;

  gdb_assert (!(readbuf && writebuf));

  /* 1. Classify the return type with the classification algorithm.  */
  amd64_classify (type, class);

  /* 2. If the type has class MEMORY, then the caller provides space
        for the return value and passes the address of this storage in
        %rdi as if it were the first argument to the function. In
        effect, this address becomes a hidden first argument.  */
  if (class[0] == AMD64_MEMORY)
    return RETURN_VALUE_STRUCT_CONVENTION;

  gdb_assert (class[1] != AMD64_MEMORY);
  gdb_assert (len <= 16);

  for (i = 0; len > 0; i++, len -= 8)
    {
      int regnum = -1;
      int offset = 0;

      switch (class[i])
	{
	case AMD64_INTEGER:
	  /* 3. If the class is INTEGER, the next available register
	     of the sequence %rax, %rdx is used.  */
	  regnum = integer_regnum[integer_reg++];
	  break;

	case AMD64_SSE:
	  /* 4. If the class is SSE, the next available SSE register
             of the sequence %xmm0, %xmm1 is used.  */
	  regnum = sse_regnum[sse_reg++];
	  break;

	case AMD64_SSEUP:
	  /* 5. If the class is SSEUP, the eightbyte is passed in the
	     upper half of the last used SSE register.  */
	  gdb_assert (sse_reg > 0);
	  regnum = sse_regnum[sse_reg - 1];
	  offset = 8;
	  break;

	case AMD64_X87:
	  /* 6. If the class is X87, the value is returned on the X87
             stack in %st0 as 80-bit x87 number.  */
	  regnum = X86_64_ST0_REGNUM;
	  if (writebuf)
	    i387_return_value (gdbarch, regcache);
	  break;

	case AMD64_X87UP:
	  /* 7. If the class is X87UP, the value is returned together
             with the previous X87 value in %st0.  */
	  gdb_assert (i > 0 && class[0] == AMD64_X87);
	  regnum = X86_64_ST0_REGNUM;
	  offset = 8;
	  len = 2;
	  break;

	case AMD64_NO_CLASS:
	  continue;

	default:
	  gdb_assert (!"Unexpected register class.");
	}

      gdb_assert (regnum != -1);

      if (readbuf)
	regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
				(char *) readbuf + i * 8);
      if (writebuf)
	regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
				 (const char *) writebuf + i * 8);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}


static CORE_ADDR
amd64_push_arguments (struct regcache *regcache, int nargs,
		      struct value **args, CORE_ADDR sp)
{
  static int integer_regnum[] =
  {
    X86_64_RDI_REGNUM, 4,	/* %rdi, %rsi */
    X86_64_RDX_REGNUM, 2,	/* %rdx, %rcx */
    8, 9			/* %r8, %r9 */
  };
  static int sse_regnum[] =
  {
    /* %xmm0 ... %xmm7 */
    X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
    X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
    X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
    X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
  };
  struct value **stack_args = alloca (nargs * sizeof (struct value *));
  int num_stack_args = 0;
  int num_elements = 0;
  int element = 0;
  int integer_reg = 0;
  int sse_reg = 0;
  int i;

  for (i = 0; i < nargs; i++)
    {
      struct type *type = VALUE_TYPE (args[i]);
      int len = TYPE_LENGTH (type);
      enum amd64_reg_class class[2];
      int needed_integer_regs = 0;
      int needed_sse_regs = 0;
      int j;

      /* Classify argument.  */
      amd64_classify (type, class);

      /* Calculate the number of integer and SSE registers needed for
         this argument.  */
      for (j = 0; j < 2; j++)
	{
	  if (class[j] == AMD64_INTEGER)
	    needed_integer_regs++;
	  else if (class[j] == AMD64_SSE)
	    needed_sse_regs++;
	}

      /* Check whether enough registers are available, and if the
         argument should be passed in registers at all.  */
      if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
	  || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
	  || (needed_integer_regs == 0 && needed_sse_regs == 0))
	{
	  /* The argument will be passed on the stack.  */
	  num_elements += ((len + 7) / 8);
	  stack_args[num_stack_args++] = args[i];
	}
      else
	{
	  /* The argument will be passed in registers.  */
	  char *valbuf = VALUE_CONTENTS (args[i]);
	  char buf[8];

	  gdb_assert (len <= 16);

	  for (j = 0; len > 0; j++, len -= 8)
	    {
	      int regnum = -1;
	      int offset = 0;

	      switch (class[j])
		{
		case AMD64_INTEGER:
		  regnum = integer_regnum[integer_reg++];
		  break;

		case AMD64_SSE:
		  regnum = sse_regnum[sse_reg++];
		  break;

		case AMD64_SSEUP:
		  gdb_assert (sse_reg > 0);
		  regnum = sse_regnum[sse_reg - 1];
		  offset = 8;
		  break;

		default:
		  gdb_assert (!"Unexpected register class.");
		}

	      gdb_assert (regnum != -1);
	      memset (buf, 0, sizeof buf);
	      memcpy (buf, valbuf + j * 8, min (len, 8));
	      regcache_raw_write_part (regcache, regnum, offset, 8, buf);
	    }
	}
    }

  /* Allocate space for the arguments on the stack.  */
  sp -= num_elements * 8;

  /* The psABI says that "The end of the input argument area shall be
     aligned on a 16 byte boundary."  */
  sp &= ~0xf;

  /* Write out the arguments to the stack.  */
  for (i = 0; i < num_stack_args; i++)
    {
      struct type *type = VALUE_TYPE (stack_args[i]);
      char *valbuf = VALUE_CONTENTS (stack_args[i]);
      int len = TYPE_LENGTH (type);

      write_memory (sp + element * 8, valbuf, len);
      element += ((len + 7) / 8);
    }

  /* The psABI says that "For calls that may call functions that use
     varargs or stdargs (prototype-less calls or calls to functions
     containing ellipsis (...) in the declaration) %al is used as
     hidden argument to specify the number of SSE registers used.  */
  regcache_raw_write_unsigned (regcache, X86_64_RAX_REGNUM, sse_reg);
  return sp; 
}

static CORE_ADDR
x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
			struct regcache *regcache, CORE_ADDR bp_addr,
			int nargs, struct value **args,	CORE_ADDR sp,
			int struct_return, CORE_ADDR struct_addr)
{
  char buf[8];

  /* Pass arguments.  */
  sp = amd64_push_arguments (regcache, nargs, args, sp);

  /* Pass "hidden" argument".  */
  if (struct_return)
    {
      store_unsigned_integer (buf, 8, struct_addr);
      regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
    }

  /* Store return address.  */
  sp -= 8;
  store_unsigned_integer (buf, 8, bp_addr);
  write_memory (sp, buf, 8);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 8, sp);
  regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);

  return sp + 16;
}


/* The maximum number of saved registers.  This should include %rip.  */
#define X86_64_NUM_SAVED_REGS	X86_64_NUM_GREGS

struct x86_64_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS];
  CORE_ADDR saved_sp;

  /* Do we have a frame?  */
  int frameless_p;
};

/* Allocate and initialize a frame cache.  */

static struct x86_64_frame_cache *
x86_64_alloc_frame_cache (void)
{
  struct x86_64_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = -8;
  cache->pc = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %rbp is supposed to be stored).  */
  for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = -1;
  cache->saved_sp = 0;

  /* Frameless until proven otherwise.  */
  cache->frameless_p = 1;

  return cache;
}

/* Do a limited analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We will handle only functions beginning with:

      pushq %rbp        0x55
      movq %rsp, %rbp   0x48 0x89 0xe5

   Any function that doesn't start with this sequence will be assumed
   to have no prologue and thus no valid frame pointer in %rbp.  */

static CORE_ADDR
x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
			 struct x86_64_frame_cache *cache)
{
  static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
  unsigned char buf[3];
  unsigned char op;

  if (current_pc <= pc)
    return current_pc;

  op = read_memory_unsigned_integer (pc, 1);

  if (op == 0x55)		/* pushq %rbp */
    {
      /* Take into account that we've executed the `pushq %rbp' that
         starts this instruction sequence.  */
      cache->saved_regs[X86_64_RBP_REGNUM] = 0;
      cache->sp_offset += 8;

      /* If that's all, return now.  */
      if (current_pc <= pc + 1)
        return current_pc;

      /* Check for `movq %rsp, %rbp'.  */
      read_memory (pc + 1, buf, 3);
      if (memcmp (buf, proto, 3) != 0)
	return pc + 1;

      /* OK, we actually have a frame.  */
      cache->frameless_p = 0;
      return pc + 4;
    }

  return pc;
}

/* Return PC of first real instruction.  */

static CORE_ADDR
x86_64_skip_prologue (CORE_ADDR start_pc)
{
  struct x86_64_frame_cache cache;
  CORE_ADDR pc;

  pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
  if (cache.frameless_p)
    return start_pc;

  return pc;
}


/* Normal frames.  */

static struct x86_64_frame_cache *
x86_64_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct x86_64_frame_cache *cache;
  char buf[8];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = x86_64_alloc_frame_cache ();
  *this_cache = cache;

  cache->pc = frame_func_unwind (next_frame);
  if (cache->pc != 0)
    x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);

  if (cache->frameless_p)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */

      frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
    }
  else
    {
      frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 8);
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of %rsp in the calling frame.  */
  cache->saved_sp = cache->base + 16;

  /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a
     frame we find it at the same offset from the reconstructed base
     address.  */
  cache->saved_regs[X86_64_RIP_REGNUM] = 8;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;

  return cache;
}

static void
x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache,
		      struct frame_id *this_id)
{
  struct x86_64_frame_cache *cache =
    x86_64_frame_cache (next_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->base + 16, cache->pc);
}

static void
x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
			    int regnum, int *optimizedp,
			    enum lval_type *lvalp, CORE_ADDR *addrp,
			    int *realnump, void *valuep)
{
  struct x86_64_frame_cache *cache =
    x86_64_frame_cache (next_frame, this_cache);

  gdb_assert (regnum >= 0);

  if (regnum == SP_REGNUM && cache->saved_sp)
    {
      *optimizedp = 0;
      *lvalp = not_lval;
      *addrp = 0;
      *realnump = -1;
      if (valuep)
	{
	  /* Store the value.  */
	  store_unsigned_integer (valuep, 8, cache->saved_sp);
	}
      return;
    }

  if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
    {
      *optimizedp = 0;
      *lvalp = lval_memory;
      *addrp = cache->saved_regs[regnum];
      *realnump = -1;
      if (valuep)
	{
	  /* Read the value in from memory.  */
	  read_memory (*addrp, valuep,
		       register_size (current_gdbarch, regnum));
	}
      return;
    }

  frame_register_unwind (next_frame, regnum,
			 optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind x86_64_frame_unwind =
{
  NORMAL_FRAME,
  x86_64_frame_this_id,
  x86_64_frame_prev_register
};

static const struct frame_unwind *
x86_64_frame_sniffer (struct frame_info *next_frame)
{
  return &x86_64_frame_unwind;
}


/* Signal trampolines.  */

/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
   64-bit variants.  This would require using identical frame caches
   on both platforms.  */

static struct x86_64_frame_cache *
x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct x86_64_frame_cache *cache;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  CORE_ADDR addr;
  char buf[8];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = x86_64_alloc_frame_cache ();

  frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 8) - 8;

  addr = tdep->sigcontext_addr (next_frame);
  gdb_assert (tdep->sc_reg_offset);
  gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS);
  for (i = 0; i < tdep->sc_num_regs; i++)
    if (tdep->sc_reg_offset[i] != -1)
      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];

  *this_cache = cache;
  return cache;
}

static void
x86_64_sigtramp_frame_this_id (struct frame_info *next_frame,
			       void **this_cache, struct frame_id *this_id)
{
  struct x86_64_frame_cache *cache =
    x86_64_sigtramp_frame_cache (next_frame, this_cache);

  (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
}

static void
x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame,
				     void **this_cache,
				     int regnum, int *optimizedp,
				     enum lval_type *lvalp, CORE_ADDR *addrp,
				     int *realnump, void *valuep)
{
  /* Make sure we've initialized the cache.  */
  x86_64_sigtramp_frame_cache (next_frame, this_cache);

  x86_64_frame_prev_register (next_frame, this_cache, regnum,
			      optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind x86_64_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  x86_64_sigtramp_frame_this_id,
  x86_64_sigtramp_frame_prev_register
};

static const struct frame_unwind *
x86_64_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  char *name;

  find_pc_partial_function (pc, &name, NULL, NULL);
  if (PC_IN_SIGTRAMP (pc, name))
    {
      gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);

      return &x86_64_sigtramp_frame_unwind;
    }

  return NULL;
}


static CORE_ADDR
x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct x86_64_frame_cache *cache =
    x86_64_frame_cache (next_frame, this_cache);

  return cache->base;
}

static const struct frame_base x86_64_frame_base =
{
  &x86_64_frame_unwind,
  x86_64_frame_base_address,
  x86_64_frame_base_address,
  x86_64_frame_base_address
};

static struct frame_id
x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  char buf[8];
  CORE_ADDR fp;

  frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
  fp = extract_unsigned_integer (buf, 8);

  return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
}

/* 16 byte align the SP per frame requirements.  */

static CORE_ADDR
x86_64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return sp & -(CORE_ADDR)16;
}


/* Supply register REGNUM from the floating-point register set REGSET
   to register cache REGCACHE.  If REGNUM is -1, do this for all
   registers in REGSET.  */

static void
x86_64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
			int regnum, const void *fpregs, size_t len)
{
  const struct gdbarch_tdep *tdep = regset->descr;

  gdb_assert (len == tdep->sizeof_fpregset);
  x86_64_supply_fxsave (regcache, regnum, fpregs);
}

/* Return the appropriate register set for the core section identified
   by SECT_NAME and SECT_SIZE.  */

static const struct regset *
x86_64_regset_from_core_section (struct gdbarch *gdbarch,
				 const char *sect_name, size_t sect_size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
    {
      if (tdep->fpregset == NULL)
	{
	  tdep->fpregset = XMALLOC (struct regset);
	  tdep->fpregset->descr = tdep;
	  tdep->fpregset->supply_regset = x86_64_supply_fpregset;
	}

      return tdep->fpregset;
    }

  return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
}


void
x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
     floating-point registers.  */
  tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;

  /* AMD64 has an FPU and 16 SSE registers.  */
  tdep->st0_regnum = X86_64_ST0_REGNUM;
  tdep->num_xmm_regs = 16;

  /* This is what all the fuss is about.  */
  set_gdbarch_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 64);

  /* In contrast to the i386, on the x86-64 a `long double' actually
     takes up 128 bits, even though it's still based on the i387
     extended floating-point format which has only 80 significant bits.  */
  set_gdbarch_long_double_bit (gdbarch, 128);

  set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
  set_gdbarch_register_name (gdbarch, x86_64_register_name);
  set_gdbarch_register_type (gdbarch, x86_64_register_type);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
  set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
  set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */

  /* The "default" register numbering scheme for the x86-64 is
     referred to as the "DWARF Register Number Mapping" in the System
     V psABI.  The preferred debugging format for all known x86-64
     targets is actually DWARF2, and GCC doesn't seem to support DWARF
     (that is DWARF-1), but we provide the same mapping just in case.
     This mapping is also used for stabs, which GCC does support.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);

  /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
     be in use on any of the supported x86-64 targets.  */

  /* Call dummy code.  */
  set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call);
  set_gdbarch_frame_align (gdbarch, x86_64_frame_align);
  set_gdbarch_frame_red_zone_size (gdbarch, 128);

  set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
  set_gdbarch_value_to_register (gdbarch, i387_value_to_register);

  set_gdbarch_return_value (gdbarch, amd64_return_value);
  /* Override, since this is handled by x86_64_extract_return_value.  */
  set_gdbarch_extract_struct_value_address (gdbarch, NULL);

  set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);

  /* Avoid wiring in the MMX registers for now.  */
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  tdep->mm0_regnum = -1;

  set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id);

  /* FIXME: kettenis/20021026: This is ELF-specific.  Fine for now,
     since all supported x86-64 targets are ELF, but that might change
     in the future.  */
  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);

  frame_unwind_append_sniffer (gdbarch, x86_64_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, x86_64_frame_sniffer);
  frame_base_set_default (gdbarch, &x86_64_frame_base);

  /* If we have a register mapping, enable the generic core file support.  */
  if (tdep->gregset_reg_offset)
    set_gdbarch_regset_from_core_section (gdbarch,
					  x86_64_regset_from_core_section);
}


#define I387_ST0_REGNUM X86_64_ST0_REGNUM

/* The 64-bit FXSAVE format differs from the 32-bit format in the
   sense that the instruction pointer and data pointer are simply
   64-bit offsets into the code segment and the data segment instead
   of a selector offset pair.  The functions below store the upper 32
   bits of these pointers (instead of just the 16-bits of the segment
   selector).  */

/* Fill register REGNUM in REGCACHE with the appropriate
   floating-point or SSE register value from *FXSAVE.  If REGNUM is
   -1, do this for all registers.  This function masks off any of the
   reserved bits in *FXSAVE.  */

void
x86_64_supply_fxsave (struct regcache *regcache, int regnum,
		      const void *fxsave)
{
  i387_supply_fxsave (regcache, regnum, fxsave);

  if (fxsave)
    {
      const char *regs = fxsave;

      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
	regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
	regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
    }
}

/* Fill register REGNUM (if it is a floating-point or SSE register) in
   *FXSAVE with the value in GDB's register cache.  If REGNUM is -1, do
   this for all registers.  This function doesn't touch any of the
   reserved bits in *FXSAVE.  */

void
x86_64_fill_fxsave (char *fxsave, int regnum)
{
  i387_fill_fxsave (fxsave, regnum);

  if (regnum == -1 || regnum == I387_FISEG_REGNUM)
    regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
  if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
    regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
}