aboutsummaryrefslogtreecommitdiff
path: root/gdb/valprint.c
blob: d1d3232e10d7d7d1eb668c6ea2be0bb485b3f799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
/* Print values for GDB, the GNU debugger.

   Copyright (C) 1986-2018 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "language.h"
#include "annotate.h"
#include "valprint.h"
#include "target-float.h"
#include "extension.h"
#include "ada-lang.h"
#include "gdb_obstack.h"
#include "charset.h"
#include "typeprint.h"
#include <ctype.h>
#include <algorithm>
#include "common/byte-vector.h"

/* Maximum number of wchars returned from wchar_iterate.  */
#define MAX_WCHARS 4

/* A convenience macro to compute the size of a wchar_t buffer containing X
   characters.  */
#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))

/* Character buffer size saved while iterating over wchars.  */
#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)

/* A structure to encapsulate state information from iterated
   character conversions.  */
struct converted_character
{
  /* The number of characters converted.  */
  int num_chars;

  /* The result of the conversion.  See charset.h for more.  */
  enum wchar_iterate_result result;

  /* The (saved) converted character(s).  */
  gdb_wchar_t chars[WCHAR_BUFLEN_MAX];

  /* The first converted target byte.  */
  const gdb_byte *buf;

  /* The number of bytes converted.  */
  size_t buflen;

  /* How many times this character(s) is repeated.  */
  int repeat_count;
};

/* Command lists for set/show print raw.  */
struct cmd_list_element *setprintrawlist;
struct cmd_list_element *showprintrawlist;

/* Prototypes for local functions */

static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
				int len, int *errptr);

static void set_input_radix_1 (int, unsigned);

static void set_output_radix_1 (int, unsigned);

static void val_print_type_code_flags (struct type *type,
				       const gdb_byte *valaddr,
				       struct ui_file *stream);

#define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value.  */

struct value_print_options user_print_options =
{
  Val_prettyformat_default,	/* prettyformat */
  0,				/* prettyformat_arrays */
  0,				/* prettyformat_structs */
  0,				/* vtblprint */
  1,				/* unionprint */
  1,				/* addressprint */
  0,				/* objectprint */
  PRINT_MAX_DEFAULT,		/* print_max */
  10,				/* repeat_count_threshold */
  0,				/* output_format */
  0,				/* format */
  0,				/* stop_print_at_null */
  0,				/* print_array_indexes */
  0,				/* deref_ref */
  1,				/* static_field_print */
  1,				/* pascal_static_field_print */
  0,				/* raw */
  0,				/* summary */
  1				/* symbol_print */
};

/* Initialize *OPTS to be a copy of the user print options.  */
void
get_user_print_options (struct value_print_options *opts)
{
  *opts = user_print_options;
}

/* Initialize *OPTS to be a copy of the user print options, but with
   pretty-formatting disabled.  */
void
get_no_prettyformat_print_options (struct value_print_options *opts)
{  
  *opts = user_print_options;
  opts->prettyformat = Val_no_prettyformat;
}

/* Initialize *OPTS to be a copy of the user print options, but using
   FORMAT as the formatting option.  */
void
get_formatted_print_options (struct value_print_options *opts,
			     char format)
{
  *opts = user_print_options;
  opts->format = format;
}

static void
show_print_max (struct ui_file *file, int from_tty,
		struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Limit on string chars or array "
		      "elements to print is %s.\n"),
		    value);
}


/* Default input and output radixes, and output format letter.  */

unsigned input_radix = 10;
static void
show_input_radix (struct ui_file *file, int from_tty,
		  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Default input radix for entering numbers is %s.\n"),
		    value);
}

unsigned output_radix = 10;
static void
show_output_radix (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Default output radix for printing of values is %s.\n"),
		    value);
}

/* By default we print arrays without printing the index of each element in
   the array.  This behavior can be changed by setting PRINT_ARRAY_INDEXES.  */

static void
show_print_array_indexes (struct ui_file *file, int from_tty,
		          struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
}

/* Print repeat counts if there are more than this many repetitions of an
   element in an array.  Referenced by the low level language dependent
   print routines.  */

static void
show_repeat_count_threshold (struct ui_file *file, int from_tty,
			     struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
		    value);
}

/* If nonzero, stops printing of char arrays at first null.  */

static void
show_stop_print_at_null (struct ui_file *file, int from_tty,
			 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Printing of char arrays to stop "
		      "at first null char is %s.\n"),
		    value);
}

/* Controls pretty printing of structures.  */

static void
show_prettyformat_structs (struct ui_file *file, int from_tty,
			  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
}

/* Controls pretty printing of arrays.  */

static void
show_prettyformat_arrays (struct ui_file *file, int from_tty,
			 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
}

/* If nonzero, causes unions inside structures or other unions to be
   printed.  */

static void
show_unionprint (struct ui_file *file, int from_tty,
		 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Printing of unions interior to structures is %s.\n"),
		    value);
}

/* If nonzero, causes machine addresses to be printed in certain contexts.  */

static void
show_addressprint (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
}

static void
show_symbol_print (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Printing of symbols when printing pointers is %s.\n"),
		    value);
}



/* A helper function for val_print.  When printing in "summary" mode,
   we want to print scalar arguments, but not aggregate arguments.
   This function distinguishes between the two.  */

int
val_print_scalar_type_p (struct type *type)
{
  type = check_typedef (type);
  while (TYPE_IS_REFERENCE (type))
    {
      type = TYPE_TARGET_TYPE (type);
      type = check_typedef (type);
    }
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_SET:
    case TYPE_CODE_STRING:
      return 0;
    default:
      return 1;
    }
}

/* See its definition in value.h.  */

int
valprint_check_validity (struct ui_file *stream,
			 struct type *type,
			 LONGEST embedded_offset,
			 const struct value *val)
{
  type = check_typedef (type);

  if (type_not_associated (type))
    {
      val_print_not_associated (stream);
      return 0;
    }

  if (type_not_allocated (type))
    {
      val_print_not_allocated (stream);
      return 0;
    }

  if (TYPE_CODE (type) != TYPE_CODE_UNION
      && TYPE_CODE (type) != TYPE_CODE_STRUCT
      && TYPE_CODE (type) != TYPE_CODE_ARRAY)
    {
      if (value_bits_any_optimized_out (val,
					TARGET_CHAR_BIT * embedded_offset,
					TARGET_CHAR_BIT * TYPE_LENGTH (type)))
	{
	  val_print_optimized_out (val, stream);
	  return 0;
	}

      if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
					TARGET_CHAR_BIT * TYPE_LENGTH (type)))
	{
	  const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
	  int ref_is_addressable = 0;

	  if (is_ref)
	    {
	      const struct value *deref_val = coerce_ref_if_computed (val);

	      if (deref_val != NULL)
		ref_is_addressable = value_lval_const (deref_val) == lval_memory;
	    }

	  if (!is_ref || !ref_is_addressable)
	    fputs_filtered (_("<synthetic pointer>"), stream);

	  /* C++ references should be valid even if they're synthetic.  */
	  return is_ref;
	}

      if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
	{
	  val_print_unavailable (stream);
	  return 0;
	}
    }

  return 1;
}

void
val_print_optimized_out (const struct value *val, struct ui_file *stream)
{
  if (val != NULL && value_lval_const (val) == lval_register)
    val_print_not_saved (stream);
  else
    fprintf_filtered (stream, _("<optimized out>"));
}

void
val_print_not_saved (struct ui_file *stream)
{
  fprintf_filtered (stream, _("<not saved>"));
}

void
val_print_unavailable (struct ui_file *stream)
{
  fprintf_filtered (stream, _("<unavailable>"));
}

void
val_print_invalid_address (struct ui_file *stream)
{
  fprintf_filtered (stream, _("<invalid address>"));
}

/* Print a pointer based on the type of its target.

   Arguments to this functions are roughly the same as those in
   generic_val_print.  A difference is that ADDRESS is the address to print,
   with embedded_offset already added.  ELTTYPE represents
   the pointed type after check_typedef.  */

static void
print_unpacked_pointer (struct type *type, struct type *elttype,
			CORE_ADDR address, struct ui_file *stream,
			const struct value_print_options *options)
{
  struct gdbarch *gdbarch = get_type_arch (type);

  if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
    {
      /* Try to print what function it points to.  */
      print_function_pointer_address (options, gdbarch, address, stream);
      return;
    }

  if (options->symbol_print)
    print_address_demangle (options, gdbarch, address, stream, demangle);
  else if (options->addressprint)
    fputs_filtered (paddress (gdbarch, address), stream);
}

/* generic_val_print helper for TYPE_CODE_ARRAY.  */

static void
generic_val_print_array (struct type *type,
			 int embedded_offset, CORE_ADDR address,
			 struct ui_file *stream, int recurse,
			 struct value *original_value,
			 const struct value_print_options *options,
			 const struct
			     generic_val_print_decorations *decorations)
{
  struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
  struct type *elttype = check_typedef (unresolved_elttype);

  if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
    {
      LONGEST low_bound, high_bound;

      if (!get_array_bounds (type, &low_bound, &high_bound))
	error (_("Could not determine the array high bound"));

      if (options->prettyformat_arrays)
	{
	  print_spaces_filtered (2 + 2 * recurse, stream);
	}

      fputs_filtered (decorations->array_start, stream);
      val_print_array_elements (type, embedded_offset,
				address, stream,
				recurse, original_value, options, 0);
      fputs_filtered (decorations->array_end, stream);
    }
  else
    {
      /* Array of unspecified length: treat like pointer to first elt.  */
      print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
			      options);
    }

}

/* generic_val_print helper for TYPE_CODE_PTR.  */

static void
generic_val_print_ptr (struct type *type,
		       int embedded_offset, struct ui_file *stream,
		       struct value *original_value,
		       const struct value_print_options *options)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);

  if (options->format && options->format != 's')
    {
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, options, 0, stream);
    }
  else
    {
      struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
      struct type *elttype = check_typedef (unresolved_elttype);
      const gdb_byte *valaddr = value_contents_for_printing (original_value);
      CORE_ADDR addr = unpack_pointer (type,
				       valaddr + embedded_offset * unit_size);

      print_unpacked_pointer (type, elttype, addr, stream, options);
    }
}


/* generic_val_print helper for TYPE_CODE_MEMBERPTR.  */

static void
generic_val_print_memberptr (struct type *type,
			     int embedded_offset, struct ui_file *stream,
			     struct value *original_value,
			     const struct value_print_options *options)
{
  val_print_scalar_formatted (type, embedded_offset,
			      original_value, options, 0, stream);
}

/* Print '@' followed by the address contained in ADDRESS_BUFFER.  */

static void
print_ref_address (struct type *type, const gdb_byte *address_buffer,
		  int embedded_offset, struct ui_file *stream)
{
  struct gdbarch *gdbarch = get_type_arch (type);

  if (address_buffer != NULL)
    {
      CORE_ADDR address
	= extract_typed_address (address_buffer + embedded_offset, type);

      fprintf_filtered (stream, "@");
      fputs_filtered (paddress (gdbarch, address), stream);
    }
  /* Else: we have a non-addressable value, such as a DW_AT_const_value.  */
}

/* If VAL is addressable, return the value contents buffer of a value that
   represents a pointer to VAL.  Otherwise return NULL.  */

static const gdb_byte *
get_value_addr_contents (struct value *deref_val)
{
  gdb_assert (deref_val != NULL);

  if (value_lval_const (deref_val) == lval_memory)
    return value_contents_for_printing_const (value_addr (deref_val));
  else
    {
      /* We have a non-addressable value, such as a DW_AT_const_value.  */
      return NULL;
    }
}

/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF.  */

static void
generic_val_print_ref (struct type *type,
		       int embedded_offset, struct ui_file *stream, int recurse,
		       struct value *original_value,
		       const struct value_print_options *options)
{
  struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
  struct value *deref_val = NULL;
  const int value_is_synthetic
    = value_bits_synthetic_pointer (original_value,
				    TARGET_CHAR_BIT * embedded_offset,
				    TARGET_CHAR_BIT * TYPE_LENGTH (type));
  const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
			       || options->deref_ref);
  const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
  const gdb_byte *valaddr = value_contents_for_printing (original_value);

  if (must_coerce_ref && type_is_defined)
    {
      deref_val = coerce_ref_if_computed (original_value);

      if (deref_val != NULL)
	{
	  /* More complicated computed references are not supported.  */
	  gdb_assert (embedded_offset == 0);
	}
      else
	deref_val = value_at (TYPE_TARGET_TYPE (type),
			      unpack_pointer (type, valaddr + embedded_offset));
    }
  /* Else, original_value isn't a synthetic reference or we don't have to print
     the reference's contents.

     Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
     cause original_value to be a not_lval instead of an lval_computed,
     which will make value_bits_synthetic_pointer return false.
     This happens because if options->objectprint is true, c_value_print will
     overwrite original_value's contents with the result of coercing
     the reference through value_addr, and then set its type back to
     TYPE_CODE_REF.  In that case we don't have to coerce the reference again;
     we can simply treat it as non-synthetic and move on.  */

  if (options->addressprint)
    {
      const gdb_byte *address = (value_is_synthetic && type_is_defined
				 ? get_value_addr_contents (deref_val)
				 : valaddr);

      print_ref_address (type, address, embedded_offset, stream);

      if (options->deref_ref)
	fputs_filtered (": ", stream);
    }

  if (options->deref_ref)
    {
      if (type_is_defined)
	common_val_print (deref_val, stream, recurse, options,
			  current_language);
      else
	fputs_filtered ("???", stream);
    }
}

/* Helper function for generic_val_print_enum.
   This is also used to print enums in TYPE_CODE_FLAGS values.  */

static void
generic_val_print_enum_1 (struct type *type, LONGEST val,
			  struct ui_file *stream)
{
  unsigned int i;
  unsigned int len;

  len = TYPE_NFIELDS (type);
  for (i = 0; i < len; i++)
    {
      QUIT;
      if (val == TYPE_FIELD_ENUMVAL (type, i))
	{
	  break;
	}
    }
  if (i < len)
    {
      fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
    }
  else if (TYPE_FLAG_ENUM (type))
    {
      int first = 1;

      /* We have a "flag" enum, so we try to decompose it into
	 pieces as appropriate.  A flag enum has disjoint
	 constants by definition.  */
      fputs_filtered ("(", stream);
      for (i = 0; i < len; ++i)
	{
	  QUIT;

	  if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
	    {
	      if (!first)
		fputs_filtered (" | ", stream);
	      first = 0;

	      val &= ~TYPE_FIELD_ENUMVAL (type, i);
	      fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
	    }
	}

      if (first || val != 0)
	{
	  if (!first)
	    fputs_filtered (" | ", stream);
	  fputs_filtered ("unknown: ", stream);
	  print_longest (stream, 'd', 0, val);
	}

      fputs_filtered (")", stream);
    }
  else
    print_longest (stream, 'd', 0, val);
}

/* generic_val_print helper for TYPE_CODE_ENUM.  */

static void
generic_val_print_enum (struct type *type,
			int embedded_offset, struct ui_file *stream,
			struct value *original_value,
			const struct value_print_options *options)
{
  LONGEST val;
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);

  if (options->format)
    {
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, options, 0, stream);
    }
  else
    {
      const gdb_byte *valaddr = value_contents_for_printing (original_value);

      val = unpack_long (type, valaddr + embedded_offset * unit_size);

      generic_val_print_enum_1 (type, val, stream);
    }
}

/* generic_val_print helper for TYPE_CODE_FLAGS.  */

static void
generic_val_print_flags (struct type *type,
			 int embedded_offset, struct ui_file *stream,
			 struct value *original_value,
			 const struct value_print_options *options)

{
  if (options->format)
    val_print_scalar_formatted (type, embedded_offset, original_value,
				options, 0, stream);
  else
    {
      const gdb_byte *valaddr = value_contents_for_printing (original_value);

      val_print_type_code_flags (type, valaddr + embedded_offset, stream);
    }
}

/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD.  */

static void
generic_val_print_func (struct type *type,
			int embedded_offset, CORE_ADDR address,
			struct ui_file *stream,
			struct value *original_value,
			const struct value_print_options *options)
{
  struct gdbarch *gdbarch = get_type_arch (type);

  if (options->format)
    {
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, options, 0, stream);
    }
  else
    {
      /* FIXME, we should consider, at least for ANSI C language,
         eliminating the distinction made between FUNCs and POINTERs
         to FUNCs.  */
      fprintf_filtered (stream, "{");
      type_print (type, "", stream, -1);
      fprintf_filtered (stream, "} ");
      /* Try to print what function it points to, and its address.  */
      print_address_demangle (options, gdbarch, address, stream, demangle);
    }
}

/* generic_val_print helper for TYPE_CODE_BOOL.  */

static void
generic_val_print_bool (struct type *type,
			int embedded_offset, struct ui_file *stream,
			struct value *original_value,
			const struct value_print_options *options,
			const struct generic_val_print_decorations *decorations)
{
  LONGEST val;
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);

  if (options->format || options->output_format)
    {
      struct value_print_options opts = *options;
      opts.format = (options->format ? options->format
		     : options->output_format);
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, &opts, 0, stream);
    }
  else
    {
      const gdb_byte *valaddr = value_contents_for_printing (original_value);

      val = unpack_long (type, valaddr + embedded_offset * unit_size);
      if (val == 0)
	fputs_filtered (decorations->false_name, stream);
      else if (val == 1)
	fputs_filtered (decorations->true_name, stream);
      else
	print_longest (stream, 'd', 0, val);
    }
}

/* generic_val_print helper for TYPE_CODE_INT.  */

static void
generic_val_print_int (struct type *type,
		       int embedded_offset, struct ui_file *stream,
		       struct value *original_value,
		       const struct value_print_options *options)
{
  struct value_print_options opts = *options;

  opts.format = (options->format ? options->format
		 : options->output_format);
  val_print_scalar_formatted (type, embedded_offset,
			      original_value, &opts, 0, stream);
}

/* generic_val_print helper for TYPE_CODE_CHAR.  */

static void
generic_val_print_char (struct type *type, struct type *unresolved_type,
			int embedded_offset,
			struct ui_file *stream,
			struct value *original_value,
			const struct value_print_options *options)
{
  LONGEST val;
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);

  if (options->format || options->output_format)
    {
      struct value_print_options opts = *options;

      opts.format = (options->format ? options->format
		     : options->output_format);
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, &opts, 0, stream);
    }
  else
    {
      const gdb_byte *valaddr = value_contents_for_printing (original_value);

      val = unpack_long (type, valaddr + embedded_offset * unit_size);
      if (TYPE_UNSIGNED (type))
	fprintf_filtered (stream, "%u", (unsigned int) val);
      else
	fprintf_filtered (stream, "%d", (int) val);
      fputs_filtered (" ", stream);
      LA_PRINT_CHAR (val, unresolved_type, stream);
    }
}

/* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT.  */

static void
generic_val_print_float (struct type *type,
			 int embedded_offset, struct ui_file *stream,
			 struct value *original_value,
			 const struct value_print_options *options)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);

  if (options->format)
    {
      val_print_scalar_formatted (type, embedded_offset,
				  original_value, options, 0, stream);
    }
  else
    {
      const gdb_byte *valaddr = value_contents_for_printing (original_value);

      print_floating (valaddr + embedded_offset * unit_size, type, stream);
    }
}

/* generic_val_print helper for TYPE_CODE_COMPLEX.  */

static void
generic_val_print_complex (struct type *type,
			   int embedded_offset, struct ui_file *stream,
			   struct value *original_value,
			   const struct value_print_options *options,
			   const struct generic_val_print_decorations
			     *decorations)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
  const gdb_byte *valaddr = value_contents_for_printing (original_value);

  fprintf_filtered (stream, "%s", decorations->complex_prefix);
  if (options->format)
    val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
				embedded_offset, original_value, options, 0,
				stream);
  else
    print_floating (valaddr + embedded_offset * unit_size,
		    TYPE_TARGET_TYPE (type), stream);
  fprintf_filtered (stream, "%s", decorations->complex_infix);
  if (options->format)
    val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
				embedded_offset
				+ type_length_units (TYPE_TARGET_TYPE (type)),
				original_value, options, 0, stream);
  else
    print_floating (valaddr + embedded_offset * unit_size
		    + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
		    TYPE_TARGET_TYPE (type), stream);
  fprintf_filtered (stream, "%s", decorations->complex_suffix);
}

/* A generic val_print that is suitable for use by language
   implementations of the la_val_print method.  This function can
   handle most type codes, though not all, notably exception
   TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
   the caller.
   
   Most arguments are as to val_print.
   
   The additional DECORATIONS argument can be used to customize the
   output in some small, language-specific ways.  */

void
generic_val_print (struct type *type,
		   int embedded_offset, CORE_ADDR address,
		   struct ui_file *stream, int recurse,
		   struct value *original_value,
		   const struct value_print_options *options,
		   const struct generic_val_print_decorations *decorations)
{
  struct type *unresolved_type = type;

  type = check_typedef (type);
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
      generic_val_print_array (type, embedded_offset, address, stream,
			       recurse, original_value, options, decorations);
      break;

    case TYPE_CODE_MEMBERPTR:
      generic_val_print_memberptr (type, embedded_offset, stream,
				   original_value, options);
      break;

    case TYPE_CODE_PTR:
      generic_val_print_ptr (type, embedded_offset, stream,
			     original_value, options);
      break;

    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      generic_val_print_ref (type, embedded_offset, stream, recurse,
			     original_value, options);
      break;

    case TYPE_CODE_ENUM:
      generic_val_print_enum (type, embedded_offset, stream,
			      original_value, options);
      break;

    case TYPE_CODE_FLAGS:
      generic_val_print_flags (type, embedded_offset, stream,
			       original_value, options);
      break;

    case TYPE_CODE_FUNC:
    case TYPE_CODE_METHOD:
      generic_val_print_func (type, embedded_offset, address, stream,
			      original_value, options);
      break;

    case TYPE_CODE_BOOL:
      generic_val_print_bool (type, embedded_offset, stream,
			      original_value, options, decorations);
      break;

    case TYPE_CODE_RANGE:
      /* FIXME: create_static_range_type does not set the unsigned bit in a
         range type (I think it probably should copy it from the
         target type), so we won't print values which are too large to
         fit in a signed integer correctly.  */
      /* FIXME: Doesn't handle ranges of enums correctly.  (Can't just
         print with the target type, though, because the size of our
         type and the target type might differ).  */

      /* FALLTHROUGH */

    case TYPE_CODE_INT:
      generic_val_print_int (type, embedded_offset, stream,
			     original_value, options);
      break;

    case TYPE_CODE_CHAR:
      generic_val_print_char (type, unresolved_type, embedded_offset,
			      stream, original_value, options);
      break;

    case TYPE_CODE_FLT:
    case TYPE_CODE_DECFLOAT:
      generic_val_print_float (type, embedded_offset, stream,
			       original_value, options);
      break;

    case TYPE_CODE_VOID:
      fputs_filtered (decorations->void_name, stream);
      break;

    case TYPE_CODE_ERROR:
      fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
      break;

    case TYPE_CODE_UNDEF:
      /* This happens (without TYPE_STUB set) on systems which don't use
         dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
         and no complete type for struct foo in that file.  */
      fprintf_filtered (stream, _("<incomplete type>"));
      break;

    case TYPE_CODE_COMPLEX:
      generic_val_print_complex (type, embedded_offset, stream,
				 original_value, options, decorations);
      break;

    case TYPE_CODE_UNION:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_METHODPTR:
    default:
      error (_("Unhandled type code %d in symbol table."),
	     TYPE_CODE (type));
    }
  gdb_flush (stream);
}

/* Print using the given LANGUAGE the data of type TYPE located at
   VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
   from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
   stdio stream STREAM according to OPTIONS.  VAL is the whole object
   that came from ADDRESS.

   The language printers will pass down an adjusted EMBEDDED_OFFSET to
   further helper subroutines as subfields of TYPE are printed.  In
   such cases, VAL is passed down unadjusted, so
   that VAL can be queried for metadata about the contents data being
   printed, using EMBEDDED_OFFSET as an offset into VAL's contents
   buffer.  For example: "has this field been optimized out", or "I'm
   printing an object while inspecting a traceframe; has this
   particular piece of data been collected?".

   RECURSE indicates the amount of indentation to supply before
   continuation lines; this amount is roughly twice the value of
   RECURSE.  */

void
val_print (struct type *type, LONGEST embedded_offset,
	   CORE_ADDR address, struct ui_file *stream, int recurse,
	   struct value *val,
	   const struct value_print_options *options,
	   const struct language_defn *language)
{
  int ret = 0;
  struct value_print_options local_opts = *options;
  struct type *real_type = check_typedef (type);

  if (local_opts.prettyformat == Val_prettyformat_default)
    local_opts.prettyformat = (local_opts.prettyformat_structs
			       ? Val_prettyformat : Val_no_prettyformat);

  QUIT;

  /* Ensure that the type is complete and not just a stub.  If the type is
     only a stub and we can't find and substitute its complete type, then
     print appropriate string and return.  */

  if (TYPE_STUB (real_type))
    {
      fprintf_filtered (stream, _("<incomplete type>"));
      gdb_flush (stream);
      return;
    }

  if (!valprint_check_validity (stream, real_type, embedded_offset, val))
    return;

  if (!options->raw)
    {
      ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
					       address, stream, recurse,
					       val, options, language);
      if (ret)
	return;
    }

  /* Handle summary mode.  If the value is a scalar, print it;
     otherwise, print an ellipsis.  */
  if (options->summary && !val_print_scalar_type_p (type))
    {
      fprintf_filtered (stream, "...");
      return;
    }

  TRY
    {
      language->la_val_print (type, embedded_offset, address,
			      stream, recurse, val,
			      &local_opts);
    }
  CATCH (except, RETURN_MASK_ERROR)
    {
      fprintf_filtered (stream, _("<error reading variable>"));
    }
  END_CATCH
}

/* Check whether the value VAL is printable.  Return 1 if it is;
   return 0 and print an appropriate error message to STREAM according to
   OPTIONS if it is not.  */

static int
value_check_printable (struct value *val, struct ui_file *stream,
		       const struct value_print_options *options)
{
  if (val == 0)
    {
      fprintf_filtered (stream, _("<address of value unknown>"));
      return 0;
    }

  if (value_entirely_optimized_out (val))
    {
      if (options->summary && !val_print_scalar_type_p (value_type (val)))
	fprintf_filtered (stream, "...");
      else
	val_print_optimized_out (val, stream);
      return 0;
    }

  if (value_entirely_unavailable (val))
    {
      if (options->summary && !val_print_scalar_type_p (value_type (val)))
	fprintf_filtered (stream, "...");
      else
	val_print_unavailable (stream);
      return 0;
    }

  if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
    {
      fprintf_filtered (stream, _("<internal function %s>"),
			value_internal_function_name (val));
      return 0;
    }

  if (type_not_associated (value_type (val)))
    {
      val_print_not_associated (stream);
      return 0;
    }

  if (type_not_allocated (value_type (val)))
    {
      val_print_not_allocated (stream);
      return 0;
    }

  return 1;
}

/* Print using the given LANGUAGE the value VAL onto stream STREAM according
   to OPTIONS.

   This is a preferable interface to val_print, above, because it uses
   GDB's value mechanism.  */

void
common_val_print (struct value *val, struct ui_file *stream, int recurse,
		  const struct value_print_options *options,
		  const struct language_defn *language)
{
  if (!value_check_printable (val, stream, options))
    return;

  if (language->la_language == language_ada)
    /* The value might have a dynamic type, which would cause trouble
       below when trying to extract the value contents (since the value
       size is determined from the type size which is unknown).  So
       get a fixed representation of our value.  */
    val = ada_to_fixed_value (val);

  if (value_lazy (val))
    value_fetch_lazy (val);

  val_print (value_type (val),
	     value_embedded_offset (val), value_address (val),
	     stream, recurse,
	     val, options, language);
}

/* Print on stream STREAM the value VAL according to OPTIONS.  The value
   is printed using the current_language syntax.  */

void
value_print (struct value *val, struct ui_file *stream,
	     const struct value_print_options *options)
{
  if (!value_check_printable (val, stream, options))
    return;

  if (!options->raw)
    {
      int r
	= apply_ext_lang_val_pretty_printer (value_type (val),
					     value_embedded_offset (val),
					     value_address (val),
					     stream, 0,
					     val, options, current_language);

      if (r)
	return;
    }

  LA_VALUE_PRINT (val, stream, options);
}

static void
val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
			   struct ui_file *stream)
{
  ULONGEST val = unpack_long (type, valaddr);
  int field, nfields = TYPE_NFIELDS (type);
  struct gdbarch *gdbarch = get_type_arch (type);
  struct type *bool_type = builtin_type (gdbarch)->builtin_bool;

  fputs_filtered ("[", stream);
  for (field = 0; field < nfields; field++)
    {
      if (TYPE_FIELD_NAME (type, field)[0] != '\0')
	{
	  struct type *field_type = TYPE_FIELD_TYPE (type, field);

	  if (field_type == bool_type
	      /* We require boolean types here to be one bit wide.  This is a
		 problematic place to notify the user of an internal error
		 though.  Instead just fall through and print the field as an
		 int.  */
	      && TYPE_FIELD_BITSIZE (type, field) == 1)
	    {
	      if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
		fprintf_filtered (stream, " %s",
				  TYPE_FIELD_NAME (type, field));
	    }
	  else
	    {
	      unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
	      ULONGEST field_val
		= val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);

	      if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
		field_val &= ((ULONGEST) 1 << field_len) - 1;
	      fprintf_filtered (stream, " %s=",
				TYPE_FIELD_NAME (type, field));
	      if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
		generic_val_print_enum_1 (field_type, field_val, stream);
	      else
		print_longest (stream, 'd', 0, field_val);
	    }
	}
    }
  fputs_filtered (" ]", stream);
}

/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
   according to OPTIONS and SIZE on STREAM.  Format i is not supported
   at this level.

   This is how the elements of an array or structure are printed
   with a format.  */

void
val_print_scalar_formatted (struct type *type,
			    LONGEST embedded_offset,
			    struct value *val,
			    const struct value_print_options *options,
			    int size,
			    struct ui_file *stream)
{
  struct gdbarch *arch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  gdb_assert (val != NULL);

  /* If we get here with a string format, try again without it.  Go
     all the way back to the language printers, which may call us
     again.  */
  if (options->format == 's')
    {
      struct value_print_options opts = *options;
      opts.format = 0;
      opts.deref_ref = 0;
      val_print (type, embedded_offset, 0, stream, 0, val, &opts,
		 current_language);
      return;
    }

  /* value_contents_for_printing fetches all VAL's contents.  They are
     needed to check whether VAL is optimized-out or unavailable
     below.  */
  const gdb_byte *valaddr = value_contents_for_printing (val);

  /* A scalar object that does not have all bits available can't be
     printed, because all bits contribute to its representation.  */
  if (value_bits_any_optimized_out (val,
				    TARGET_CHAR_BIT * embedded_offset,
				    TARGET_CHAR_BIT * TYPE_LENGTH (type)))
    val_print_optimized_out (val, stream);
  else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
    val_print_unavailable (stream);
  else
    print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
			    options, size, stream);
}

/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
   The raison d'etre of this function is to consolidate printing of 
   LONG_LONG's into this one function.  The format chars b,h,w,g are 
   from print_scalar_formatted().  Numbers are printed using C
   format.

   USE_C_FORMAT means to use C format in all cases.  Without it, 
   'o' and 'x' format do not include the standard C radix prefix
   (leading 0 or 0x). 
   
   Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
   and was intended to request formating according to the current
   language and would be used for most integers that GDB prints.  The
   exceptional cases were things like protocols where the format of
   the integer is a protocol thing, not a user-visible thing).  The
   parameter remains to preserve the information of what things might
   be printed with language-specific format, should we ever resurrect
   that capability.  */

void
print_longest (struct ui_file *stream, int format, int use_c_format,
	       LONGEST val_long)
{
  const char *val;

  switch (format)
    {
    case 'd':
      val = int_string (val_long, 10, 1, 0, 1); break;
    case 'u':
      val = int_string (val_long, 10, 0, 0, 1); break;
    case 'x':
      val = int_string (val_long, 16, 0, 0, use_c_format); break;
    case 'b':
      val = int_string (val_long, 16, 0, 2, 1); break;
    case 'h':
      val = int_string (val_long, 16, 0, 4, 1); break;
    case 'w':
      val = int_string (val_long, 16, 0, 8, 1); break;
    case 'g':
      val = int_string (val_long, 16, 0, 16, 1); break;
      break;
    case 'o':
      val = int_string (val_long, 8, 0, 0, use_c_format); break;
    default:
      internal_error (__FILE__, __LINE__,
		      _("failed internal consistency check"));
    } 
  fputs_filtered (val, stream);
}

/* This used to be a macro, but I don't think it is called often enough
   to merit such treatment.  */
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
   arguments to a function, number in a value history, register number, etc.)
   where the value must not be larger than can fit in an int.  */

int
longest_to_int (LONGEST arg)
{
  /* Let the compiler do the work.  */
  int rtnval = (int) arg;

  /* Check for overflows or underflows.  */
  if (sizeof (LONGEST) > sizeof (int))
    {
      if (rtnval != arg)
	{
	  error (_("Value out of range."));
	}
    }
  return (rtnval);
}

/* Print a floating point value of floating-point type TYPE,
   pointed to in GDB by VALADDR, on STREAM.  */

void
print_floating (const gdb_byte *valaddr, struct type *type,
		struct ui_file *stream)
{
  std::string str = target_float_to_string (valaddr, type);
  fputs_filtered (str.c_str (), stream);
}

void
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
		    unsigned len, enum bfd_endian byte_order, bool zero_pad)
{
  const gdb_byte *p;
  unsigned int i;
  int b;
  bool seen_a_one = false;

  /* Declared "int" so it will be signed.
     This ensures that right shift will shift in zeros.  */

  const int mask = 0x080;

  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = valaddr;
	   p < valaddr + len;
	   p++)
	{
	  /* Every byte has 8 binary characters; peel off
	     and print from the MSB end.  */

	  for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
	    {
	      if (*p & (mask >> i))
		b = '1';
	      else
		b = '0';

	      if (zero_pad || seen_a_one || b == '1')
		fputc_filtered (b, stream);
	      if (b == '1')
		seen_a_one = true;
	    }
	}
    }
  else
    {
      for (p = valaddr + len - 1;
	   p >= valaddr;
	   p--)
	{
	  for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
	    {
	      if (*p & (mask >> i))
		b = '1';
	      else
		b = '0';

	      if (zero_pad || seen_a_one || b == '1')
		fputc_filtered (b, stream);
	      if (b == '1')
		seen_a_one = true;
	    }
	}
    }

  /* When not zero-padding, ensure that something is printed when the
     input is 0.  */
  if (!zero_pad && !seen_a_one)
    fputc_filtered ('0', stream);
}

/* A helper for print_octal_chars that emits a single octal digit,
   optionally suppressing it if is zero and updating SEEN_A_ONE.  */

static void
emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
{
  if (*seen_a_one || digit != 0)
    fprintf_filtered (stream, "%o", digit);
  if (digit != 0)
    *seen_a_one = true;
}

/* VALADDR points to an integer of LEN bytes.
   Print it in octal on stream or format it in buf.  */

void
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
		   unsigned len, enum bfd_endian byte_order)
{
  const gdb_byte *p;
  unsigned char octa1, octa2, octa3, carry;
  int cycle;

  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
   * the extra bits, which cycle every three bytes:
   *
   * Byte side:       0            1             2          3
   *                         |             |            |            |
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
   *
   * Octal side:   0   1   carry  3   4  carry ...
   *
   * Cycle number:    0             1            2
   *
   * But of course we are printing from the high side, so we have to
   * figure out where in the cycle we are so that we end up with no
   * left over bits at the end.
   */
#define BITS_IN_OCTAL 3
#define HIGH_ZERO     0340
#define LOW_ZERO      0034
#define CARRY_ZERO    0003
  static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
		 "cycle zero constants are wrong");
#define HIGH_ONE      0200
#define MID_ONE       0160
#define LOW_ONE       0016
#define CARRY_ONE     0001
  static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
		 "cycle one constants are wrong");
#define HIGH_TWO      0300
#define MID_TWO       0070
#define LOW_TWO       0007
  static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
		 "cycle two constants are wrong");

  /* For 32 we start in cycle 2, with two bits and one bit carry;
     for 64 in cycle in cycle 1, with one bit and a two bit carry.  */

  cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
  carry = 0;

  fputs_filtered ("0", stream);
  bool seen_a_one = false;
  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = valaddr;
	   p < valaddr + len;
	   p++)
	{
	  switch (cycle)
	    {
	    case 0:
	      /* No carry in, carry out two bits.  */

	      octa1 = (HIGH_ZERO & *p) >> 5;
	      octa2 = (LOW_ZERO & *p) >> 2;
	      carry = (CARRY_ZERO & *p);
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      break;

	    case 1:
	      /* Carry in two bits, carry out one bit.  */

	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
	      octa2 = (MID_ONE & *p) >> 4;
	      octa3 = (LOW_ONE & *p) >> 1;
	      carry = (CARRY_ONE & *p);
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      emit_octal_digit (stream, &seen_a_one, octa3);
	      break;

	    case 2:
	      /* Carry in one bit, no carry out.  */

	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
	      octa2 = (MID_TWO & *p) >> 3;
	      octa3 = (LOW_TWO & *p);
	      carry = 0;
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      emit_octal_digit (stream, &seen_a_one, octa3);
	      break;

	    default:
	      error (_("Internal error in octal conversion;"));
	    }

	  cycle++;
	  cycle = cycle % BITS_IN_OCTAL;
	}
    }
  else
    {
      for (p = valaddr + len - 1;
	   p >= valaddr;
	   p--)
	{
	  switch (cycle)
	    {
	    case 0:
	      /* Carry out, no carry in */

	      octa1 = (HIGH_ZERO & *p) >> 5;
	      octa2 = (LOW_ZERO & *p) >> 2;
	      carry = (CARRY_ZERO & *p);
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      break;

	    case 1:
	      /* Carry in, carry out */

	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
	      octa2 = (MID_ONE & *p) >> 4;
	      octa3 = (LOW_ONE & *p) >> 1;
	      carry = (CARRY_ONE & *p);
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      emit_octal_digit (stream, &seen_a_one, octa3);
	      break;

	    case 2:
	      /* Carry in, no carry out */

	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
	      octa2 = (MID_TWO & *p) >> 3;
	      octa3 = (LOW_TWO & *p);
	      carry = 0;
	      emit_octal_digit (stream, &seen_a_one, octa1);
	      emit_octal_digit (stream, &seen_a_one, octa2);
	      emit_octal_digit (stream, &seen_a_one, octa3);
	      break;

	    default:
	      error (_("Internal error in octal conversion;"));
	    }

	  cycle++;
	  cycle = cycle % BITS_IN_OCTAL;
	}
    }

}

/* Possibly negate the integer represented by BYTES.  It contains LEN
   bytes in the specified byte order.  If the integer is negative,
   copy it into OUT_VEC, negate it, and return true.  Otherwise, do
   nothing and return false.  */

static bool
maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
		       enum bfd_endian byte_order,
		       gdb::byte_vector *out_vec)
{
  gdb_byte sign_byte;
  if (byte_order == BFD_ENDIAN_BIG)
    sign_byte = bytes[0];
  else
    sign_byte = bytes[len - 1];
  if ((sign_byte & 0x80) == 0)
    return false;

  out_vec->resize (len);

  /* Compute -x == 1 + ~x.  */
  if (byte_order == BFD_ENDIAN_LITTLE)
    {
      unsigned carry = 1;
      for (unsigned i = 0; i < len; ++i)
	{
	  unsigned tem = (0xff & ~bytes[i]) + carry;
	  (*out_vec)[i] = tem & 0xff;
	  carry = tem / 256;
	}
    }
  else
    {
      unsigned carry = 1;
      for (unsigned i = len; i > 0; --i)
	{
	  unsigned tem = (0xff & ~bytes[i - 1]) + carry;
	  (*out_vec)[i - 1] = tem & 0xff;
	  carry = tem / 256;
	}
    }

  return true;
}

/* VALADDR points to an integer of LEN bytes.
   Print it in decimal on stream or format it in buf.  */

void
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
		     unsigned len, bool is_signed,
		     enum bfd_endian byte_order)
{
#define TEN             10
#define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
#define CARRY_LEFT( x ) ((x) % TEN)
#define SHIFT( x )      ((x) << 4)
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)

  const gdb_byte *p;
  int carry;
  int decimal_len;
  int i, j, decimal_digits;
  int dummy;
  int flip;

  gdb::byte_vector negated_bytes;
  if (is_signed
      && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
    {
      fputs_filtered ("-", stream);
      valaddr = negated_bytes.data ();
    }

  /* Base-ten number is less than twice as many digits
     as the base 16 number, which is 2 digits per byte.  */

  decimal_len = len * 2 * 2;
  std::vector<unsigned char> digits (decimal_len, 0);

  /* Ok, we have an unknown number of bytes of data to be printed in
   * decimal.
   *
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
   *
   * The trick is that "digits" holds a base-10 number, but sometimes
   * the individual digits are > 10.
   *
   * Outer loop is per nibble (hex digit) of input, from MSD end to
   * LSD end.
   */
  decimal_digits = 0;		/* Number of decimal digits so far */
  p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
  flip = 0;
  while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
    {
      /*
       * Multiply current base-ten number by 16 in place.
       * Each digit was between 0 and 9, now is between
       * 0 and 144.
       */
      for (j = 0; j < decimal_digits; j++)
	{
	  digits[j] = SHIFT (digits[j]);
	}

      /* Take the next nibble off the input and add it to what
       * we've got in the LSB position.  Bottom 'digit' is now
       * between 0 and 159.
       *
       * "flip" is used to run this loop twice for each byte.
       */
      if (flip == 0)
	{
	  /* Take top nibble.  */

	  digits[0] += HIGH_NIBBLE (*p);
	  flip = 1;
	}
      else
	{
	  /* Take low nibble and bump our pointer "p".  */

	  digits[0] += LOW_NIBBLE (*p);
          if (byte_order == BFD_ENDIAN_BIG)
	    p++;
	  else
	    p--;
	  flip = 0;
	}

      /* Re-decimalize.  We have to do this often enough
       * that we don't overflow, but once per nibble is
       * overkill.  Easier this way, though.  Note that the
       * carry is often larger than 10 (e.g. max initial
       * carry out of lowest nibble is 15, could bubble all
       * the way up greater than 10).  So we have to do
       * the carrying beyond the last current digit.
       */
      carry = 0;
      for (j = 0; j < decimal_len - 1; j++)
	{
	  digits[j] += carry;

	  /* "/" won't handle an unsigned char with
	   * a value that if signed would be negative.
	   * So extend to longword int via "dummy".
	   */
	  dummy = digits[j];
	  carry = CARRY_OUT (dummy);
	  digits[j] = CARRY_LEFT (dummy);

	  if (j >= decimal_digits && carry == 0)
	    {
	      /*
	       * All higher digits are 0 and we
	       * no longer have a carry.
	       *
	       * Note: "j" is 0-based, "decimal_digits" is
	       *       1-based.
	       */
	      decimal_digits = j + 1;
	      break;
	    }
	}
    }

  /* Ok, now "digits" is the decimal representation, with
     the "decimal_digits" actual digits.  Print!  */

  for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
    ;

  for (; i >= 0; i--)
    {
      fprintf_filtered (stream, "%1d", digits[i]);
    }
}

/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */

void
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
		 unsigned len, enum bfd_endian byte_order,
		 bool zero_pad)
{
  const gdb_byte *p;

  fputs_filtered ("0x", stream);
  if (byte_order == BFD_ENDIAN_BIG)
    {
      p = valaddr;

      if (!zero_pad)
	{
	  /* Strip leading 0 bytes, but be sure to leave at least a
	     single byte at the end.  */
	  for (; p < valaddr + len - 1 && !*p; ++p)
	    ;
	}

      const gdb_byte *first = p;
      for (;
	   p < valaddr + len;
	   p++)
	{
	  /* When not zero-padding, use a different format for the
	     very first byte printed.  */
	  if (!zero_pad && p == first)
	    fprintf_filtered (stream, "%x", *p);
	  else
	    fprintf_filtered (stream, "%02x", *p);
	}
    }
  else
    {
      p = valaddr + len - 1;

      if (!zero_pad)
	{
	  /* Strip leading 0 bytes, but be sure to leave at least a
	     single byte at the end.  */
	  for (; p >= valaddr + 1 && !*p; --p)
	    ;
	}

      const gdb_byte *first = p;
      for (;
	   p >= valaddr;
	   p--)
	{
	  /* When not zero-padding, use a different format for the
	     very first byte printed.  */
	  if (!zero_pad && p == first)
	    fprintf_filtered (stream, "%x", *p);
	  else
	    fprintf_filtered (stream, "%02x", *p);
	}
    }
}

/* VALADDR points to a char integer of LEN bytes.
   Print it out in appropriate language form on stream.
   Omit any leading zero chars.  */

void
print_char_chars (struct ui_file *stream, struct type *type,
		  const gdb_byte *valaddr,
		  unsigned len, enum bfd_endian byte_order)
{
  const gdb_byte *p;

  if (byte_order == BFD_ENDIAN_BIG)
    {
      p = valaddr;
      while (p < valaddr + len - 1 && *p == 0)
	++p;

      while (p < valaddr + len)
	{
	  LA_EMIT_CHAR (*p, type, stream, '\'');
	  ++p;
	}
    }
  else
    {
      p = valaddr + len - 1;
      while (p > valaddr && *p == 0)
	--p;

      while (p >= valaddr)
	{
	  LA_EMIT_CHAR (*p, type, stream, '\'');
	  --p;
	}
    }
}

/* Print function pointer with inferior address ADDRESS onto stdio
   stream STREAM.  */

void
print_function_pointer_address (const struct value_print_options *options,
				struct gdbarch *gdbarch,
				CORE_ADDR address,
				struct ui_file *stream)
{
  CORE_ADDR func_addr
    = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
					  current_top_target ());

  /* If the function pointer is represented by a description, print
     the address of the description.  */
  if (options->addressprint && func_addr != address)
    {
      fputs_filtered ("@", stream);
      fputs_filtered (paddress (gdbarch, address), stream);
      fputs_filtered (": ", stream);
    }
  print_address_demangle (options, gdbarch, func_addr, stream, demangle);
}


/* Print on STREAM using the given OPTIONS the index for the element
   at INDEX of an array whose index type is INDEX_TYPE.  */
    
void  
maybe_print_array_index (struct type *index_type, LONGEST index,
                         struct ui_file *stream,
			 const struct value_print_options *options)
{
  struct value *index_value;

  if (!options->print_array_indexes)
    return; 
    
  index_value = value_from_longest (index_type, index);

  LA_PRINT_ARRAY_INDEX (index_value, stream, options);
}

/*  Called by various <lang>_val_print routines to print elements of an
   array in the form "<elem1>, <elem2>, <elem3>, ...".

   (FIXME?)  Assumes array element separator is a comma, which is correct
   for all languages currently handled.
   (FIXME?)  Some languages have a notation for repeated array elements,
   perhaps we should try to use that notation when appropriate.  */

void
val_print_array_elements (struct type *type,
			  LONGEST embedded_offset,
			  CORE_ADDR address, struct ui_file *stream,
			  int recurse,
			  struct value *val,
			  const struct value_print_options *options,
			  unsigned int i)
{
  unsigned int things_printed = 0;
  unsigned len;
  struct type *elttype, *index_type, *base_index_type;
  unsigned eltlen;
  /* Position of the array element we are examining to see
     whether it is repeated.  */
  unsigned int rep1;
  /* Number of repetitions we have detected so far.  */
  unsigned int reps;
  LONGEST low_bound, high_bound;
  LONGEST low_pos, high_pos;

  elttype = TYPE_TARGET_TYPE (type);
  eltlen = type_length_units (check_typedef (elttype));
  index_type = TYPE_INDEX_TYPE (type);

  if (get_array_bounds (type, &low_bound, &high_bound))
    {
      if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
	base_index_type = TYPE_TARGET_TYPE (index_type);
      else
	base_index_type = index_type;

      /* Non-contiguous enumerations types can by used as index types
	 in some languages (e.g. Ada).  In this case, the array length
	 shall be computed from the positions of the first and last
	 literal in the enumeration type, and not from the values
	 of these literals.  */
      if (!discrete_position (base_index_type, low_bound, &low_pos)
	  || !discrete_position (base_index_type, high_bound, &high_pos))
	{
	  warning (_("unable to get positions in array, use bounds instead"));
	  low_pos = low_bound;
	  high_pos = high_bound;
	}

      /* The array length should normally be HIGH_POS - LOW_POS + 1.
         But we have to be a little extra careful, because some languages
	 such as Ada allow LOW_POS to be greater than HIGH_POS for
	 empty arrays.  In that situation, the array length is just zero,
	 not negative!  */
      if (low_pos > high_pos)
	len = 0;
      else
	len = high_pos - low_pos + 1;
    }
  else
    {
      warning (_("unable to get bounds of array, assuming null array"));
      low_bound = 0;
      len = 0;
    }

  annotate_array_section_begin (i, elttype);

  for (; i < len && things_printed < options->print_max; i++)
    {
      if (i != 0)
	{
	  if (options->prettyformat_arrays)
	    {
	      fprintf_filtered (stream, ",\n");
	      print_spaces_filtered (2 + 2 * recurse, stream);
	    }
	  else
	    {
	      fprintf_filtered (stream, ", ");
	    }
	}
      wrap_here (n_spaces (2 + 2 * recurse));
      maybe_print_array_index (index_type, i + low_bound,
                               stream, options);

      rep1 = i + 1;
      reps = 1;
      /* Only check for reps if repeat_count_threshold is not set to
	 UINT_MAX (unlimited).  */
      if (options->repeat_count_threshold < UINT_MAX)
	{
	  while (rep1 < len
		 && value_contents_eq (val,
				       embedded_offset + i * eltlen,
				       val,
				       (embedded_offset
					+ rep1 * eltlen),
				       eltlen))
	    {
	      ++reps;
	      ++rep1;
	    }
	}

      if (reps > options->repeat_count_threshold)
	{
	  val_print (elttype, embedded_offset + i * eltlen,
		     address, stream, recurse + 1, val, options,
		     current_language);
	  annotate_elt_rep (reps);
	  fprintf_filtered (stream, " <repeats %u times>", reps);
	  annotate_elt_rep_end ();

	  i = rep1 - 1;
	  things_printed += options->repeat_count_threshold;
	}
      else
	{
	  val_print (elttype, embedded_offset + i * eltlen,
		     address,
		     stream, recurse + 1, val, options, current_language);
	  annotate_elt ();
	  things_printed++;
	}
    }
  annotate_array_section_end ();
  if (i < len)
    {
      fprintf_filtered (stream, "...");
    }
}

/* Read LEN bytes of target memory at address MEMADDR, placing the
   results in GDB's memory at MYADDR.  Returns a count of the bytes
   actually read, and optionally a target_xfer_status value in the
   location pointed to by ERRPTR if ERRPTR is non-null.  */

/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
   function be eliminated.  */

static int
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
		     int len, int *errptr)
{
  int nread;			/* Number of bytes actually read.  */
  int errcode;			/* Error from last read.  */

  /* First try a complete read.  */
  errcode = target_read_memory (memaddr, myaddr, len);
  if (errcode == 0)
    {
      /* Got it all.  */
      nread = len;
    }
  else
    {
      /* Loop, reading one byte at a time until we get as much as we can.  */
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
	{
	  errcode = target_read_memory (memaddr++, myaddr++, 1);
	}
      /* If an error, the last read was unsuccessful, so adjust count.  */
      if (errcode != 0)
	{
	  nread--;
	}
    }
  if (errptr != NULL)
    {
      *errptr = errcode;
    }
  return (nread);
}

/* Read a string from the inferior, at ADDR, with LEN characters of
   WIDTH bytes each.  Fetch at most FETCHLIMIT characters.  BUFFER
   will be set to a newly allocated buffer containing the string, and
   BYTES_READ will be set to the number of bytes read.  Returns 0 on
   success, or a target_xfer_status on failure.

   If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
   (including eventual NULs in the middle or end of the string).

   If LEN is -1, stops at the first null character (not necessarily
   the first null byte) up to a maximum of FETCHLIMIT characters.  Set
   FETCHLIMIT to UINT_MAX to read as many characters as possible from
   the string.

   Unless an exception is thrown, BUFFER will always be allocated, even on
   failure.  In this case, some characters might have been read before the
   failure happened.  Check BYTES_READ to recognize this situation.

   Note: There was a FIXME asking to make this code use target_read_string,
   but this function is more general (can read past null characters, up to
   given LEN).  Besides, it is used much more often than target_read_string
   so it is more tested.  Perhaps callers of target_read_string should use
   this function instead?  */

int
read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
	     enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
	     int *bytes_read)
{
  int errcode;			/* Errno returned from bad reads.  */
  unsigned int nfetch;		/* Chars to fetch / chars fetched.  */
  gdb_byte *bufptr;		/* Pointer to next available byte in
				   buffer.  */

  /* Loop until we either have all the characters, or we encounter
     some error, such as bumping into the end of the address space.  */

  buffer->reset (nullptr);

  if (len > 0)
    {
      /* We want fetchlimit chars, so we might as well read them all in
	 one operation.  */
      unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);

      buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
      bufptr = buffer->get ();

      nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
	/ width;
      addr += nfetch * width;
      bufptr += nfetch * width;
    }
  else if (len == -1)
    {
      unsigned long bufsize = 0;
      unsigned int chunksize;	/* Size of each fetch, in chars.  */
      int found_nul;		/* Non-zero if we found the nul char.  */
      gdb_byte *limit;		/* First location past end of fetch buffer.  */

      found_nul = 0;
      /* We are looking for a NUL terminator to end the fetching, so we
	 might as well read in blocks that are large enough to be efficient,
	 but not so large as to be slow if fetchlimit happens to be large.
	 So we choose the minimum of 8 and fetchlimit.  We used to use 200
	 instead of 8 but 200 is way too big for remote debugging over a
	  serial line.  */
      chunksize = std::min (8u, fetchlimit);

      do
	{
	  QUIT;
	  nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);

	  if (*buffer == NULL)
	    buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
	  else
	    buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
						  (nfetch + bufsize) * width));

	  bufptr = buffer->get () + bufsize * width;
	  bufsize += nfetch;

	  /* Read as much as we can.  */
	  nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
		    / width;

	  /* Scan this chunk for the null character that terminates the string
	     to print.  If found, we don't need to fetch any more.  Note
	     that bufptr is explicitly left pointing at the next character
	     after the null character, or at the next character after the end
	     of the buffer.  */

	  limit = bufptr + nfetch * width;
	  while (bufptr < limit)
	    {
	      unsigned long c;

	      c = extract_unsigned_integer (bufptr, width, byte_order);
	      addr += width;
	      bufptr += width;
	      if (c == 0)
		{
		  /* We don't care about any error which happened after
		     the NUL terminator.  */
		  errcode = 0;
		  found_nul = 1;
		  break;
		}
	    }
	}
      while (errcode == 0	/* no error */
	     && bufptr - buffer->get () < fetchlimit * width	/* no overrun */
	     && !found_nul);	/* haven't found NUL yet */
    }
  else
    {				/* Length of string is really 0!  */
      /* We always allocate *buffer.  */
      buffer->reset ((gdb_byte *) xmalloc (1));
      bufptr = buffer->get ();
      errcode = 0;
    }

  /* bufptr and addr now point immediately beyond the last byte which we
     consider part of the string (including a '\0' which ends the string).  */
  *bytes_read = bufptr - buffer->get ();

  QUIT;

  return errcode;
}

/* Return true if print_wchar can display W without resorting to a
   numeric escape, false otherwise.  */

static int
wchar_printable (gdb_wchar_t w)
{
  return (gdb_iswprint (w)
	  || w == LCST ('\a') || w == LCST ('\b')
	  || w == LCST ('\f') || w == LCST ('\n')
	  || w == LCST ('\r') || w == LCST ('\t')
	  || w == LCST ('\v'));
}

/* A helper function that converts the contents of STRING to wide
   characters and then appends them to OUTPUT.  */

static void
append_string_as_wide (const char *string,
		       struct obstack *output)
{
  for (; *string; ++string)
    {
      gdb_wchar_t w = gdb_btowc (*string);
      obstack_grow (output, &w, sizeof (gdb_wchar_t));
    }
}

/* Print a wide character W to OUTPUT.  ORIG is a pointer to the
   original (target) bytes representing the character, ORIG_LEN is the
   number of valid bytes.  WIDTH is the number of bytes in a base
   characters of the type.  OUTPUT is an obstack to which wide
   characters are emitted.  QUOTER is a (narrow) character indicating
   the style of quotes surrounding the character to be printed.
   NEED_ESCAPE is an in/out flag which is used to track numeric
   escapes across calls.  */

static void
print_wchar (gdb_wint_t w, const gdb_byte *orig,
	     int orig_len, int width,
	     enum bfd_endian byte_order,
	     struct obstack *output,
	     int quoter, int *need_escapep)
{
  int need_escape = *need_escapep;

  *need_escapep = 0;

  /* iswprint implementation on Windows returns 1 for tab character.
     In order to avoid different printout on this host, we explicitly
     use wchar_printable function.  */
  switch (w)
    {
      case LCST ('\a'):
	obstack_grow_wstr (output, LCST ("\\a"));
	break;
      case LCST ('\b'):
	obstack_grow_wstr (output, LCST ("\\b"));
	break;
      case LCST ('\f'):
	obstack_grow_wstr (output, LCST ("\\f"));
	break;
      case LCST ('\n'):
	obstack_grow_wstr (output, LCST ("\\n"));
	break;
      case LCST ('\r'):
	obstack_grow_wstr (output, LCST ("\\r"));
	break;
      case LCST ('\t'):
	obstack_grow_wstr (output, LCST ("\\t"));
	break;
      case LCST ('\v'):
	obstack_grow_wstr (output, LCST ("\\v"));
	break;
      default:
	{
	  if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
						       && w != LCST ('8')
						       && w != LCST ('9'))))
	    {
	      gdb_wchar_t wchar = w;

	      if (w == gdb_btowc (quoter) || w == LCST ('\\'))
		obstack_grow_wstr (output, LCST ("\\"));
	      obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
	    }
	  else
	    {
	      int i;

	      for (i = 0; i + width <= orig_len; i += width)
		{
		  char octal[30];
		  ULONGEST value;

		  value = extract_unsigned_integer (&orig[i], width,
						  byte_order);
		  /* If the value fits in 3 octal digits, print it that
		     way.  Otherwise, print it as a hex escape.  */
		  if (value <= 0777)
		    xsnprintf (octal, sizeof (octal), "\\%.3o",
			       (int) (value & 0777));
		  else
		    xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
		  append_string_as_wide (octal, output);
		}
	      /* If we somehow have extra bytes, print them now.  */
	      while (i < orig_len)
		{
		  char octal[5];

		  xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
		  append_string_as_wide (octal, output);
		  ++i;
		}

	      *need_escapep = 1;
	    }
	  break;
	}
    }
}

/* Print the character C on STREAM as part of the contents of a
   literal string whose delimiter is QUOTER.  ENCODING names the
   encoding of C.  */

void
generic_emit_char (int c, struct type *type, struct ui_file *stream,
		   int quoter, const char *encoding)
{
  enum bfd_endian byte_order
    = gdbarch_byte_order (get_type_arch (type));
  gdb_byte *buf;
  int need_escape = 0;

  buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
  pack_long (buf, type, c);

  wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));

  /* This holds the printable form of the wchar_t data.  */
  auto_obstack wchar_buf;

  while (1)
    {
      int num_chars;
      gdb_wchar_t *chars;
      const gdb_byte *buf;
      size_t buflen;
      int print_escape = 1;
      enum wchar_iterate_result result;

      num_chars = iter.iterate (&result, &chars, &buf, &buflen);
      if (num_chars < 0)
	break;
      if (num_chars > 0)
	{
	  /* If all characters are printable, print them.  Otherwise,
	     we're going to have to print an escape sequence.  We
	     check all characters because we want to print the target
	     bytes in the escape sequence, and we don't know character
	     boundaries there.  */
	  int i;

	  print_escape = 0;
	  for (i = 0; i < num_chars; ++i)
	    if (!wchar_printable (chars[i]))
	      {
		print_escape = 1;
		break;
	      }

	  if (!print_escape)
	    {
	      for (i = 0; i < num_chars; ++i)
		print_wchar (chars[i], buf, buflen,
			     TYPE_LENGTH (type), byte_order,
			     &wchar_buf, quoter, &need_escape);
	    }
	}

      /* This handles the NUM_CHARS == 0 case as well.  */
      if (print_escape)
	print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
		     byte_order, &wchar_buf, quoter, &need_escape);
    }

  /* The output in the host encoding.  */
  auto_obstack output;

  convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
			     (gdb_byte *) obstack_base (&wchar_buf),
			     obstack_object_size (&wchar_buf),
			     sizeof (gdb_wchar_t), &output, translit_char);
  obstack_1grow (&output, '\0');

  fputs_filtered ((const char *) obstack_base (&output), stream);
}

/* Return the repeat count of the next character/byte in ITER,
   storing the result in VEC.  */

static int
count_next_character (wchar_iterator *iter,
		      std::vector<converted_character> *vec)
{
  struct converted_character *current;

  if (vec->empty ())
    {
      struct converted_character tmp;
      gdb_wchar_t *chars;

      tmp.num_chars
	= iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
      if (tmp.num_chars > 0)
	{
	  gdb_assert (tmp.num_chars < MAX_WCHARS);
	  memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
	}
      vec->push_back (tmp);
    }

  current = &vec->back ();

  /* Count repeated characters or bytes.  */
  current->repeat_count = 1;
  if (current->num_chars == -1)
    {
      /* EOF  */
      return -1;
    }
  else
    {
      gdb_wchar_t *chars;
      struct converted_character d;
      int repeat;

      d.repeat_count = 0;

      while (1)
	{
	  /* Get the next character.  */
	  d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);

	  /* If a character was successfully converted, save the character
	     into the converted character.  */
	  if (d.num_chars > 0)
	    {
	      gdb_assert (d.num_chars < MAX_WCHARS);
	      memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
	    }

	  /* Determine if the current character is the same as this
	     new character.  */
	  if (d.num_chars == current->num_chars && d.result == current->result)
	    {
	      /* There are two cases to consider:

		 1) Equality of converted character (num_chars > 0)
		 2) Equality of non-converted character (num_chars == 0)  */
	      if ((current->num_chars > 0
		   && memcmp (current->chars, d.chars,
			      WCHAR_BUFLEN (current->num_chars)) == 0)
		  || (current->num_chars == 0
		      && current->buflen == d.buflen
		      && memcmp (current->buf, d.buf, current->buflen) == 0))
		++current->repeat_count;
	      else
		break;
	    }
	  else
	    break;
	}

      /* Push this next converted character onto the result vector.  */
      repeat = current->repeat_count;
      vec->push_back (d);
      return repeat;
    }
}

/* Print the characters in CHARS to the OBSTACK.  QUOTE_CHAR is the quote
   character to use with string output.  WIDTH is the size of the output
   character type.  BYTE_ORDER is the the target byte order.  OPTIONS
   is the user's print options.  */

static void
print_converted_chars_to_obstack (struct obstack *obstack,
				  const std::vector<converted_character> &chars,
				  int quote_char, int width,
				  enum bfd_endian byte_order,
				  const struct value_print_options *options)
{
  unsigned int idx;
  const converted_character *elem;
  enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
  gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
  int need_escape = 0;

  /* Set the start state.  */
  idx = 0;
  last = state = START;
  elem = NULL;

  while (1)
    {
      switch (state)
	{
	case START:
	  /* Nothing to do.  */
	  break;

	case SINGLE:
	  {
	    int j;

	    /* We are outputting a single character
	       (< options->repeat_count_threshold).  */

	    if (last != SINGLE)
	      {
		/* We were outputting some other type of content, so we
		   must output and a comma and a quote.  */
		if (last != START)
		  obstack_grow_wstr (obstack, LCST (", "));
		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
	      }
	    /* Output the character.  */
	    for (j = 0; j < elem->repeat_count; ++j)
	      {
		if (elem->result == wchar_iterate_ok)
		  print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
			       byte_order, obstack, quote_char, &need_escape);
		else
		  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
			       byte_order, obstack, quote_char, &need_escape);
	      }
	  }
	  break;

	case REPEAT:
	  {
	    int j;

	    /* We are outputting a character with a repeat count
	       greater than options->repeat_count_threshold.  */

	    if (last == SINGLE)
	      {
		/* We were outputting a single string.  Terminate the
		   string.  */
		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
	      }
	    if (last != START)
	      obstack_grow_wstr (obstack, LCST (", "));

	    /* Output the character and repeat string.  */
	    obstack_grow_wstr (obstack, LCST ("'"));
	    if (elem->result == wchar_iterate_ok)
	      print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
			   byte_order, obstack, quote_char, &need_escape);
	    else
	      print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
			   byte_order, obstack, quote_char, &need_escape);
	    obstack_grow_wstr (obstack, LCST ("'"));
	    std::string s = string_printf (_(" <repeats %u times>"),
					   elem->repeat_count);
	    for (j = 0; s[j]; ++j)
	      {
		gdb_wchar_t w = gdb_btowc (s[j]);
		obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
	      }
	  }
	  break;

	case INCOMPLETE:
	  /* We are outputting an incomplete sequence.  */
	  if (last == SINGLE)
	    {
	      /* If we were outputting a string of SINGLE characters,
		 terminate the quote.  */
	      obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
	    }
	  if (last != START)
	    obstack_grow_wstr (obstack, LCST (", "));

	  /* Output the incomplete sequence string.  */
	  obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
	  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
		       obstack, 0, &need_escape);
	  obstack_grow_wstr (obstack, LCST (">"));

	  /* We do not attempt to outupt anything after this.  */
	  state = FINISH;
	  break;

	case FINISH:
	  /* All done.  If we were outputting a string of SINGLE
	     characters, the string must be terminated.  Otherwise,
	     REPEAT and INCOMPLETE are always left properly terminated.  */
	  if (last == SINGLE)
	    obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));

	  return;
	}

      /* Get the next element and state.  */
      last = state;
      if (state != FINISH)
	{
	  elem = &chars[idx++];
	  switch (elem->result)
	    {
	    case wchar_iterate_ok:
	    case wchar_iterate_invalid:
	      if (elem->repeat_count > options->repeat_count_threshold)
		state = REPEAT;
	      else
		state = SINGLE;
	      break;

	    case wchar_iterate_incomplete:
	      state = INCOMPLETE;
	      break;

	    case wchar_iterate_eof:
	      state = FINISH;
	      break;
	    }
	}
    }
}

/* Print the character string STRING, printing at most LENGTH
   characters.  LENGTH is -1 if the string is nul terminated.  TYPE is
   the type of each character.  OPTIONS holds the printing options;
   printing stops early if the number hits print_max; repeat counts
   are printed as appropriate.  Print ellipses at the end if we had to
   stop before printing LENGTH characters, or if FORCE_ELLIPSES.
   QUOTE_CHAR is the character to print at each end of the string.  If
   C_STYLE_TERMINATOR is true, and the last character is 0, then it is
   omitted.  */

void
generic_printstr (struct ui_file *stream, struct type *type, 
		  const gdb_byte *string, unsigned int length, 
		  const char *encoding, int force_ellipses,
		  int quote_char, int c_style_terminator,
		  const struct value_print_options *options)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
  unsigned int i;
  int width = TYPE_LENGTH (type);
  int finished = 0;
  struct converted_character *last;

  if (length == -1)
    {
      unsigned long current_char = 1;

      for (i = 0; current_char; ++i)
	{
	  QUIT;
	  current_char = extract_unsigned_integer (string + i * width,
						   width, byte_order);
	}
      length = i;
    }

  /* If the string was not truncated due to `set print elements', and
     the last byte of it is a null, we don't print that, in
     traditional C style.  */
  if (c_style_terminator
      && !force_ellipses
      && length > 0
      && (extract_unsigned_integer (string + (length - 1) * width,
				    width, byte_order) == 0))
    length--;

  if (length == 0)
    {
      fputs_filtered ("\"\"", stream);
      return;
    }

  /* Arrange to iterate over the characters, in wchar_t form.  */
  wchar_iterator iter (string, length * width, encoding, width);
  std::vector<converted_character> converted_chars;

  /* Convert characters until the string is over or the maximum
     number of printed characters has been reached.  */
  i = 0;
  while (i < options->print_max)
    {
      int r;

      QUIT;

      /* Grab the next character and repeat count.  */
      r = count_next_character (&iter, &converted_chars);

      /* If less than zero, the end of the input string was reached.  */
      if (r < 0)
	break;

      /* Otherwise, add the count to the total print count and get
	 the next character.  */
      i += r;
    }

  /* Get the last element and determine if the entire string was
     processed.  */
  last = &converted_chars.back ();
  finished = (last->result == wchar_iterate_eof);

  /* Ensure that CONVERTED_CHARS is terminated.  */
  last->result = wchar_iterate_eof;

  /* WCHAR_BUF is the obstack we use to represent the string in
     wchar_t form.  */
  auto_obstack wchar_buf;

  /* Print the output string to the obstack.  */
  print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
				    width, byte_order, options);

  if (force_ellipses || !finished)
    obstack_grow_wstr (&wchar_buf, LCST ("..."));

  /* OUTPUT is where we collect `char's for printing.  */
  auto_obstack output;

  convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
			     (gdb_byte *) obstack_base (&wchar_buf),
			     obstack_object_size (&wchar_buf),
			     sizeof (gdb_wchar_t), &output, translit_char);
  obstack_1grow (&output, '\0');

  fputs_filtered ((const char *) obstack_base (&output), stream);
}

/* Print a string from the inferior, starting at ADDR and printing up to LEN
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
   stops at the first null byte, otherwise printing proceeds (including null
   bytes) until either print_max or LEN characters have been printed,
   whichever is smaller.  ENCODING is the name of the string's
   encoding.  It can be NULL, in which case the target encoding is
   assumed.  */

int
val_print_string (struct type *elttype, const char *encoding,
		  CORE_ADDR addr, int len,
		  struct ui_file *stream,
		  const struct value_print_options *options)
{
  int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero.  */
  int err;			/* Non-zero if we got a bad read.  */
  int found_nul;		/* Non-zero if we found the nul char.  */
  unsigned int fetchlimit;	/* Maximum number of chars to print.  */
  int bytes_read;
  gdb::unique_xmalloc_ptr<gdb_byte> buffer;	/* Dynamically growable fetch buffer.  */
  struct gdbarch *gdbarch = get_type_arch (elttype);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int width = TYPE_LENGTH (elttype);

  /* First we need to figure out the limit on the number of characters we are
     going to attempt to fetch and print.  This is actually pretty simple.  If
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
     LEN is -1, then the limit is print_max.  This is true regardless of
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
     because finding the null byte (or available memory) is what actually
     limits the fetch.  */

  fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
							   options->print_max));

  err = read_string (addr, len, width, fetchlimit, byte_order,
		     &buffer, &bytes_read);

  addr += bytes_read;

  /* We now have either successfully filled the buffer to fetchlimit,
     or terminated early due to an error or finding a null char when
     LEN is -1.  */

  /* Determine found_nul by looking at the last character read.  */
  found_nul = 0;
  if (bytes_read >= width)
    found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
					  width, byte_order) == 0;
  if (len == -1 && !found_nul)
    {
      gdb_byte *peekbuf;

      /* We didn't find a NUL terminator we were looking for.  Attempt
         to peek at the next character.  If not successful, or it is not
         a null byte, then force ellipsis to be printed.  */

      peekbuf = (gdb_byte *) alloca (width);

      if (target_read_memory (addr, peekbuf, width) == 0
	  && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
	force_ellipsis = 1;
    }
  else if ((len >= 0 && err != 0) || (len > bytes_read / width))
    {
      /* Getting an error when we have a requested length, or fetching less
         than the number of characters actually requested, always make us
         print ellipsis.  */
      force_ellipsis = 1;
    }

  /* If we get an error before fetching anything, don't print a string.
     But if we fetch something and then get an error, print the string
     and then the error message.  */
  if (err == 0 || bytes_read > 0)
    {
      LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
		       encoding, force_ellipsis, options);
    }

  if (err != 0)
    {
      std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);

      fprintf_filtered (stream, "<error: ");
      fputs_filtered (str.c_str (), stream);
      fprintf_filtered (stream, ">");
    }

  gdb_flush (stream);

  return (bytes_read / width);
}


/* The 'set input-radix' command writes to this auxiliary variable.
   If the requested radix is valid, INPUT_RADIX is updated; otherwise,
   it is left unchanged.  */

static unsigned input_radix_1 = 10;

/* Validate an input or output radix setting, and make sure the user
   knows what they really did here.  Radix setting is confusing, e.g.
   setting the input radix to "10" never changes it!  */

static void
set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
{
  set_input_radix_1 (from_tty, input_radix_1);
}

static void
set_input_radix_1 (int from_tty, unsigned radix)
{
  /* We don't currently disallow any input radix except 0 or 1, which don't
     make any mathematical sense.  In theory, we can deal with any input
     radix greater than 1, even if we don't have unique digits for every
     value from 0 to radix-1, but in practice we lose on large radix values.
     We should either fix the lossage or restrict the radix range more.
     (FIXME).  */

  if (radix < 2)
    {
      input_radix_1 = input_radix;
      error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
	     radix);
    }
  input_radix_1 = input_radix = radix;
  if (from_tty)
    {
      printf_filtered (_("Input radix now set to "
			 "decimal %u, hex %x, octal %o.\n"),
		       radix, radix, radix);
    }
}

/* The 'set output-radix' command writes to this auxiliary variable.
   If the requested radix is valid, OUTPUT_RADIX is updated,
   otherwise, it is left unchanged.  */

static unsigned output_radix_1 = 10;

static void
set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
{
  set_output_radix_1 (from_tty, output_radix_1);
}

static void
set_output_radix_1 (int from_tty, unsigned radix)
{
  /* Validate the radix and disallow ones that we aren't prepared to
     handle correctly, leaving the radix unchanged.  */
  switch (radix)
    {
    case 16:
      user_print_options.output_format = 'x';	/* hex */
      break;
    case 10:
      user_print_options.output_format = 0;	/* decimal */
      break;
    case 8:
      user_print_options.output_format = 'o';	/* octal */
      break;
    default:
      output_radix_1 = output_radix;
      error (_("Unsupported output radix ``decimal %u''; "
	       "output radix unchanged."),
	     radix);
    }
  output_radix_1 = output_radix = radix;
  if (from_tty)
    {
      printf_filtered (_("Output radix now set to "
			 "decimal %u, hex %x, octal %o.\n"),
		       radix, radix, radix);
    }
}

/* Set both the input and output radix at once.  Try to set the output radix
   first, since it has the most restrictive range.  An radix that is valid as
   an output radix is also valid as an input radix.

   It may be useful to have an unusual input radix.  If the user wishes to
   set an input radix that is not valid as an output radix, he needs to use
   the 'set input-radix' command.  */

static void
set_radix (const char *arg, int from_tty)
{
  unsigned radix;

  radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
  set_output_radix_1 (0, radix);
  set_input_radix_1 (0, radix);
  if (from_tty)
    {
      printf_filtered (_("Input and output radices now set to "
			 "decimal %u, hex %x, octal %o.\n"),
		       radix, radix, radix);
    }
}

/* Show both the input and output radices.  */

static void
show_radix (const char *arg, int from_tty)
{
  if (from_tty)
    {
      if (input_radix == output_radix)
	{
	  printf_filtered (_("Input and output radices set to "
			     "decimal %u, hex %x, octal %o.\n"),
			   input_radix, input_radix, input_radix);
	}
      else
	{
	  printf_filtered (_("Input radix set to decimal "
			     "%u, hex %x, octal %o.\n"),
			   input_radix, input_radix, input_radix);
	  printf_filtered (_("Output radix set to decimal "
			     "%u, hex %x, octal %o.\n"),
			   output_radix, output_radix, output_radix);
	}
    }
}


static void
set_print (const char *arg, int from_tty)
{
  printf_unfiltered (
     "\"set print\" must be followed by the name of a print subcommand.\n");
  help_list (setprintlist, "set print ", all_commands, gdb_stdout);
}

static void
show_print (const char *args, int from_tty)
{
  cmd_show_list (showprintlist, from_tty, "");
}

static void
set_print_raw (const char *arg, int from_tty)
{
  printf_unfiltered (
     "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
  help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
}

static void
show_print_raw (const char *args, int from_tty)
{
  cmd_show_list (showprintrawlist, from_tty, "");
}


void
_initialize_valprint (void)
{
  add_prefix_cmd ("print", no_class, set_print,
		  _("Generic command for setting how things print."),
		  &setprintlist, "set print ", 0, &setlist);
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
  /* Prefer set print to set prompt.  */
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);

  add_prefix_cmd ("print", no_class, show_print,
		  _("Generic command for showing print settings."),
		  &showprintlist, "show print ", 0, &showlist);
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);

  add_prefix_cmd ("raw", no_class, set_print_raw,
		  _("\
Generic command for setting what things to print in \"raw\" mode."),
		  &setprintrawlist, "set print raw ", 0, &setprintlist);
  add_prefix_cmd ("raw", no_class, show_print_raw,
		  _("Generic command for showing \"print raw\" settings."),
		  &showprintrawlist, "show print raw ", 0, &showprintlist);

  add_setshow_uinteger_cmd ("elements", no_class,
			    &user_print_options.print_max, _("\
Set limit on string chars or array elements to print."), _("\
Show limit on string chars or array elements to print."), _("\
\"set print elements unlimited\" causes there to be no limit."),
			    NULL,
			    show_print_max,
			    &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("null-stop", no_class,
			   &user_print_options.stop_print_at_null, _("\
Set printing of char arrays to stop at first null char."), _("\
Show printing of char arrays to stop at first null char."), NULL,
			   NULL,
			   show_stop_print_at_null,
			   &setprintlist, &showprintlist);

  add_setshow_uinteger_cmd ("repeats", no_class,
			    &user_print_options.repeat_count_threshold, _("\
Set threshold for repeated print elements."), _("\
Show threshold for repeated print elements."), _("\
\"set print repeats unlimited\" causes all elements to be individually printed."),
			    NULL,
			    show_repeat_count_threshold,
			    &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("pretty", class_support,
			   &user_print_options.prettyformat_structs, _("\
Set pretty formatting of structures."), _("\
Show pretty formatting of structures."), NULL,
			   NULL,
			   show_prettyformat_structs,
			   &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("union", class_support,
			   &user_print_options.unionprint, _("\
Set printing of unions interior to structures."), _("\
Show printing of unions interior to structures."), NULL,
			   NULL,
			   show_unionprint,
			   &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("array", class_support,
			   &user_print_options.prettyformat_arrays, _("\
Set pretty formatting of arrays."), _("\
Show pretty formatting of arrays."), NULL,
			   NULL,
			   show_prettyformat_arrays,
			   &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("address", class_support,
			   &user_print_options.addressprint, _("\
Set printing of addresses."), _("\
Show printing of addresses."), NULL,
			   NULL,
			   show_addressprint,
			   &setprintlist, &showprintlist);

  add_setshow_boolean_cmd ("symbol", class_support,
			   &user_print_options.symbol_print, _("\
Set printing of symbol names when printing pointers."), _("\
Show printing of symbol names when printing pointers."),
			   NULL, NULL,
			   show_symbol_print,
			   &setprintlist, &showprintlist);

  add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
			     _("\
Set default input radix for entering numbers."), _("\
Show default input radix for entering numbers."), NULL,
			     set_input_radix,
			     show_input_radix,
			     &setlist, &showlist);

  add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
			     _("\
Set default output radix for printing of values."), _("\
Show default output radix for printing of values."), NULL,
			     set_output_radix,
			     show_output_radix,
			     &setlist, &showlist);

  /* The "set radix" and "show radix" commands are special in that
     they are like normal set and show commands but allow two normally
     independent variables to be either set or shown with a single
     command.  So the usual deprecated_add_set_cmd() and [deleted]
     add_show_from_set() commands aren't really appropriate.  */
  /* FIXME: i18n: With the new add_setshow_integer command, that is no
     longer true - show can display anything.  */
  add_cmd ("radix", class_support, set_radix, _("\
Set default input and output number radices.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Without an argument, sets both radices back to the default value of 10."),
	   &setlist);
  add_cmd ("radix", class_support, show_radix, _("\
Show the default input and output number radices.\n\
Use 'show input-radix' or 'show output-radix' to independently show each."),
	   &showlist);

  add_setshow_boolean_cmd ("array-indexes", class_support,
                           &user_print_options.print_array_indexes, _("\
Set printing of array indexes."), _("\
Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
                           &setprintlist, &showprintlist);
}