aboutsummaryrefslogtreecommitdiff
path: root/gdb/valops.c
blob: f902304e811b8b80ee03beb8a02c70d6e039a394 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
/* Perform non-arithmetic operations on values, for GDB.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996
   Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "demangle.h"
#include "language.h"

#include <errno.h>
#include "gdb_string.h"

/* Default to coercing float to double in function calls only when there is
   no prototype.  Otherwise on targets where the debug information is incorrect
   for either the prototype or non-prototype case, we can force it by defining
   COERCE_FLOAT_TO_DOUBLE in the target configuration file. */

#ifndef COERCE_FLOAT_TO_DOUBLE
#define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
#endif

/* Local functions.  */

static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));

#ifdef CALL_DUMMY
static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *));
#endif


#ifndef PUSH_ARGUMENTS
static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
#endif

static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
					      struct type *, int));

static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
					       value_ptr *,
					       int, int *, struct type *));

static int check_field_in PARAMS ((struct type *, const char *));

static CORE_ADDR allocate_space_in_inferior PARAMS ((int));

static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));

#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)

/* Flag for whether we want to abandon failed expression evals by default.  */

#if 0
static int auto_abandon = 0;
#endif


/* Find the address of function name NAME in the inferior.  */

value_ptr
find_function_in_inferior (name)
     char *name;
{
  register struct symbol *sym;
  sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
  if (sym != NULL)
    {
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
	{
	  error ("\"%s\" exists in this program but is not a function.",
		 name);
	}
      return value_of_variable (sym, NULL);
    }
  else
    {
      struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
      if (msymbol != NULL)
	{
	  struct type *type;
	  LONGEST maddr;
	  type = lookup_pointer_type (builtin_type_char);
	  type = lookup_function_type (type);
	  type = lookup_pointer_type (type);
	  maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
	  return value_from_longest (type, maddr);
	}
      else
	{
	  error ("evaluation of this expression requires the program to have a function \"%s\".", name);
	}
    }
}

/* Allocate NBYTES of space in the inferior using the inferior's malloc
   and return a value that is a pointer to the allocated space. */

value_ptr
value_allocate_space_in_inferior (len)
     int len;
{
  value_ptr blocklen;
  register value_ptr val = find_function_in_inferior ("malloc");

  blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
  val = call_function_by_hand (val, 1, &blocklen);
  if (value_logical_not (val))
    {
      error ("No memory available to program.");
    }
  return val;
}

static CORE_ADDR
allocate_space_in_inferior (len)
     int len;
{
  return value_as_long (value_allocate_space_in_inferior (len));
}

/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */

value_ptr
value_cast (type, arg2)
     struct type *type;
     register value_ptr arg2;
{
  register enum type_code code1;
  register enum type_code code2;
  register int scalar;
  struct type *type2;

  if (VALUE_TYPE (arg2) == type)
    return arg2;

  CHECK_TYPEDEF (type);
  code1 = TYPE_CODE (type);
  COERCE_REF(arg2);
  type2 = check_typedef (VALUE_TYPE (arg2));

  /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
     is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE). */
  if (code1 == TYPE_CODE_ARRAY)
    {
      struct type *element_type = TYPE_TARGET_TYPE (type);
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
      if (element_length > 0
	  && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
	{
	  struct type *range_type = TYPE_INDEX_TYPE (type);
	  int val_length = TYPE_LENGTH (type2);
	  LONGEST low_bound, high_bound, new_length;
	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
	    low_bound = 0, high_bound = 0;
	  new_length = val_length / element_length;
	  if (val_length % element_length != 0)
	    warning("array element type size does not divide object size in cast");
	  /* FIXME-type-allocation: need a way to free this type when we are
	     done with it.  */
	  range_type = create_range_type ((struct type *) NULL,
					  TYPE_TARGET_TYPE (range_type),
					  low_bound,
					  new_length + low_bound - 1);
	  VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
						 element_type, range_type);
	  return arg2;
	}
    }

  if (current_language->c_style_arrays
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
    arg2 = value_coerce_array (arg2);

  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);

  type2 = check_typedef (VALUE_TYPE (arg2));
  COERCE_VARYING_ARRAY (arg2, type2);
  code2 = TYPE_CODE (type2);

  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (type, arg2);
  if (code1 == TYPE_CODE_BOOL || code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT; 
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;

  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
	    || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);

  if (   code1 == TYPE_CODE_STRUCT
      && code2 == TYPE_CODE_STRUCT
      && TYPE_NAME (type) != 0)
    {
      /* Look in the type of the source to see if it contains the
	 type of the target as a superclass.  If so, we'll need to
	 offset the object in addition to changing its type.  */
      value_ptr v = search_struct_field (type_name_no_tag (type),
					 arg2, 0, type2, 1);
      if (v)
	{
	  VALUE_TYPE (v) = type;
	  return v;
	}
    }
  if (code1 == TYPE_CODE_FLT && scalar)
    return value_from_double (type, value_as_double (arg2));
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
	    || code1 == TYPE_CODE_RANGE)
	   && (scalar || code2 == TYPE_CODE_PTR))
    return value_from_longest (type, value_as_long (arg2));
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
	{
	  /* Look in the type of the source to see if it contains the
	     type of the target as a superclass.  If so, we'll need to
	     offset the pointer rather than just change its type.  */
	  struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
	  struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
	  if (   TYPE_CODE (t1) == TYPE_CODE_STRUCT
	      && TYPE_CODE (t2) == TYPE_CODE_STRUCT
	      && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
	    {
	      value_ptr v = search_struct_field (type_name_no_tag (t1),
						 value_ind (arg2), 0, t2, 1);
	      if (v)
		{
		  v = value_addr (v);
		  VALUE_TYPE (v) = type;
		  return v;
		}
	    }
	  /* No superclass found, just fall through to change ptr type.  */
	}
      VALUE_TYPE (arg2) = type;
      return arg2;
    }
  else if (chill_varying_type (type))
    {
      struct type *range1, *range2, *eltype1, *eltype2;
      value_ptr val;
      int count1, count2;
      LONGEST low_bound, high_bound;
      char *valaddr, *valaddr_data;
      if (code2 == TYPE_CODE_BITSTRING)
	error ("not implemented: converting bitstring to varying type");
      if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
	  || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
	      eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
	      (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
	       /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
	error ("Invalid conversion to varying type");
      range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
      range2 = TYPE_FIELD_TYPE (type2, 0);
      if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
	count1 = -1;
      else
	count1 = high_bound - low_bound + 1;
      if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
	count1 = -1, count2 = 0;  /* To force error before */
      else
	count2 = high_bound - low_bound + 1;
      if (count2 > count1)
	error ("target varying type is too small");
      val = allocate_value (type);
      valaddr = VALUE_CONTENTS_RAW (val);
      valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
      /* Set val's __var_length field to count2. */
      store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
			    count2);
      /* Set the __var_data field to count2 elements copied from arg2. */
      memcpy (valaddr_data, VALUE_CONTENTS (arg2),
	      count2 * TYPE_LENGTH (eltype2));
      /* Zero the rest of the __var_data field of val. */
      memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
	      (count1 - count2) * TYPE_LENGTH (eltype2));
      return val;
    }
  else if (VALUE_LVAL (arg2) == lval_memory)
    {
      return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
			    VALUE_BFD_SECTION (arg2));
    }
  else if (code1 == TYPE_CODE_VOID)
    {
      return value_zero (builtin_type_void, not_lval);
    }
  else
    {
      error ("Invalid cast.");
      return 0;
    }
}

/* Create a value of type TYPE that is zero, and return it.  */

value_ptr
value_zero (type, lv)
     struct type *type;
     enum lval_type lv;
{
  register value_ptr val = allocate_value (type);

  memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
  VALUE_LVAL (val) = lv;

  return val;
}

/* Return a value with type TYPE located at ADDR.  

   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag 
   is tested in the VALUE_CONTENTS macro, which is used if and when 
   the contents are actually required.  */

value_ptr
value_at (type, addr, sect)
     struct type *type;
     CORE_ADDR addr;
     asection *sect;
{
  register value_ptr val;

  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");

  val = allocate_value (type);

#ifdef GDB_TARGET_IS_D10V
  if (TYPE_TARGET_TYPE(type) && TYPE_CODE(TYPE_TARGET_TYPE(type)) == TYPE_CODE_FUNC)
    {
      int num;
      short snum;
      read_memory (addr, (char *)&snum, 2);
      num = D10V_MAKE_IADDR(snum);
      memcpy( VALUE_CONTENTS_RAW (val), &num, 4);
    }
  else
#endif

  read_memory_section (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type), sect);

  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_BFD_SECTION (val) = sect;

  return val;
}

/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */

value_ptr
value_at_lazy (type, addr, sect)
     struct type *type;
     CORE_ADDR addr;
     asection *sect;
{
  register value_ptr val;

  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");

  val = allocate_value (type);

  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_LAZY (val) = 1;
  VALUE_BFD_SECTION (val) = sect;

  return val;
}

/* Called only from the VALUE_CONTENTS macro, if the current data for
   a variable needs to be loaded into VALUE_CONTENTS(VAL).  Fetches the
   data from the user's process, and clears the lazy flag to indicate
   that the data in the buffer is valid.

   If the value is zero-length, we avoid calling read_memory, which would
   abort.  We mark the value as fetched anyway -- all 0 bytes of it.

   This function returns a value because it is used in the VALUE_CONTENTS
   macro as part of an expression, where a void would not work.  The
   value is ignored.  */

int
value_fetch_lazy (val)
     register value_ptr val;
{
  CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
  int length = TYPE_LENGTH (VALUE_TYPE (val));

#ifdef GDB_TARGET_IS_D10V
  struct type *type = VALUE_TYPE(val);
  if (TYPE_TARGET_TYPE(type) && TYPE_CODE(TYPE_TARGET_TYPE(type)) == TYPE_CODE_FUNC)
    {
      int num;
      short snum;
      read_memory (addr, (char *)&snum, 2);
      num = D10V_MAKE_IADDR(snum);
      memcpy( VALUE_CONTENTS_RAW (val), &num, 4);
    }
  else
#endif

  if (length)
    read_memory_section (addr, VALUE_CONTENTS_RAW (val), length,
			 VALUE_BFD_SECTION (val));
  VALUE_LAZY (val) = 0;
  return 0;
}


/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */

value_ptr
value_assign (toval, fromval)
     register value_ptr toval, fromval;
{
  register struct type *type;
  register value_ptr val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  int use_buffer = 0;

  if (!toval->modifiable)
    error ("Left operand of assignment is not a modifiable lvalue.");

  COERCE_REF (toval);

  type = VALUE_TYPE (toval);
  if (VALUE_LVAL (toval) != lval_internalvar)
    fromval = value_cast (type, fromval);
  else
    COERCE_ARRAY (fromval);
  CHECK_TYPEDEF (type);

  /* If TOVAL is a special machine register requiring conversion
     of program values to a special raw format,
     convert FROMVAL's contents now, with result in `raw_buffer',
     and set USE_BUFFER to the number of bytes to write.  */

#ifdef REGISTER_CONVERTIBLE
  if (VALUE_REGNO (toval) >= 0
      && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
    {
      int regno = VALUE_REGNO (toval);
      if (REGISTER_CONVERTIBLE (regno))
	{
	  struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
	  REGISTER_CONVERT_TO_RAW (fromtype, regno,
				   VALUE_CONTENTS (fromval), raw_buffer);
	  use_buffer = REGISTER_RAW_SIZE (regno);
	}
    }
#endif

  switch (VALUE_LVAL (toval))
    {
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      return value_copy (VALUE_INTERNALVAR (toval)->value);

    case lval_internalvar_component:
      set_internalvar_component (VALUE_INTERNALVAR (toval),
				 VALUE_OFFSET (toval),
				 VALUE_BITPOS (toval),
				 VALUE_BITSIZE (toval),
				 fromval);
      break;

    case lval_memory:
      if (VALUE_BITSIZE (toval))
	{
	  char buffer[sizeof (LONGEST)];
	  /* We assume that the argument to read_memory is in units of
	     host chars.  FIXME:  Is that correct?  */
	  int len = (VALUE_BITPOS (toval)
		     + VALUE_BITSIZE (toval)
		     + HOST_CHAR_BIT - 1)
		    / HOST_CHAR_BIT;

	  if (len > (int) sizeof (LONGEST))
	    error ("Can't handle bitfields which don't fit in a %d bit word.",
		   sizeof (LONGEST) * HOST_CHAR_BIT);

	  read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
		       buffer, len);
	  modify_field (buffer, value_as_long (fromval),
			VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
	  write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			buffer, len);
	}
      else if (use_buffer)
	write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
		      raw_buffer, use_buffer);
      else
	write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
		      VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
      break;

    case lval_register:
      if (VALUE_BITSIZE (toval))
	{
	  char buffer[sizeof (LONGEST)];
          int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));

	  if (len > (int) sizeof (LONGEST))
	    error ("Can't handle bitfields in registers larger than %d bits.",
		   sizeof (LONGEST) * HOST_CHAR_BIT);

	  if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
	      > len * HOST_CHAR_BIT)
	    /* Getting this right would involve being very careful about
	       byte order.  */
	    error ("\
Can't handle bitfield which doesn't fit in a single register.");

          read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                               buffer, len);
          modify_field (buffer, value_as_long (fromval),
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                                buffer, len);
	}
      else if (use_buffer)
	write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			      raw_buffer, use_buffer);
      else
        {
	  /* Do any conversion necessary when storing this type to more
	     than one register.  */
#ifdef REGISTER_CONVERT_FROM_TYPE
	  memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
	  REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
	  write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
				raw_buffer, TYPE_LENGTH (type));
#else
	  write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			        VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
#endif
	}
      /* Assigning to the stack pointer, frame pointer, and other
	 (architecture and calling convention specific) registers may
	 cause the frame cache to be out of date.  We just do this
	 on all assignments to registers for simplicity; I doubt the slowdown
	 matters.  */
      reinit_frame_cache ();
      break;

    case lval_reg_frame_relative:
      {
	/* value is stored in a series of registers in the frame
	   specified by the structure.  Copy that value out, modify
	   it, and copy it back in.  */
	int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
	int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
	int byte_offset = VALUE_OFFSET (toval) % reg_size;
	int reg_offset = VALUE_OFFSET (toval) / reg_size;
	int amount_copied;

	/* Make the buffer large enough in all cases.  */
	char *buffer = (char *) alloca (amount_to_copy
					+ sizeof (LONGEST)
					+ MAX_REGISTER_RAW_SIZE);

	int regno;
	struct frame_info *frame;

	/* Figure out which frame this is in currently.  */
	for (frame = get_current_frame ();
	     frame && FRAME_FP (frame) != VALUE_FRAME (toval);
	     frame = get_prev_frame (frame))
	  ;

	if (!frame)
	  error ("Value being assigned to is no longer active.");

	amount_to_copy += (reg_size - amount_to_copy % reg_size);

	/* Copy it out.  */
	for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
	      amount_copied = 0);
	     amount_copied < amount_to_copy;
	     amount_copied += reg_size, regno++)
	  {
	    get_saved_register (buffer + amount_copied,
				(int *)NULL, (CORE_ADDR *)NULL,
				frame, regno, (enum lval_type *)NULL);
	  }

	/* Modify what needs to be modified.  */
	if (VALUE_BITSIZE (toval))
	  modify_field (buffer + byte_offset,
			value_as_long (fromval),
			VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
	else if (use_buffer)
	  memcpy (buffer + byte_offset, raw_buffer, use_buffer);
	else
	  memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
		  TYPE_LENGTH (type));

	/* Copy it back.  */
	for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
	      amount_copied = 0);
	     amount_copied < amount_to_copy;
	     amount_copied += reg_size, regno++)
	  {
	    enum lval_type lval;
	    CORE_ADDR addr;
	    int optim;

	    /* Just find out where to put it.  */
	    get_saved_register ((char *)NULL,
			        &optim, &addr, frame, regno, &lval);
	    
	    if (optim)
	      error ("Attempt to assign to a value that was optimized out.");
	    if (lval == lval_memory)
	      write_memory (addr, buffer + amount_copied, reg_size);
	    else if (lval == lval_register)
	      write_register_bytes (addr, buffer + amount_copied, reg_size);
	    else
	      error ("Attempt to assign to an unmodifiable value.");
	  }
      }
      break;
	

    default:
      error ("Left operand of assignment is not an lvalue.");
    }

  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */
  if ((VALUE_BITSIZE (toval) > 0)
      && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;

      fieldval &= valmask;
      if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
	fieldval |= ~valmask;

      fromval = value_from_longest (type, fieldval);
    }

  val = value_copy (toval);
  memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
	  TYPE_LENGTH (type));
  VALUE_TYPE (val) = type;
  
  return val;
}

/* Extend a value VAL to COUNT repetitions of its type.  */

value_ptr
value_repeat (arg1, count)
     value_ptr arg1;
     int count;
{
  register value_ptr val;

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Only values in memory can be extended with '@'.");
  if (count < 1)
    error ("Invalid number %d of repetitions.", count);

  val = allocate_repeat_value (VALUE_TYPE (arg1), count);

  read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
	       VALUE_CONTENTS_RAW (val),
	       TYPE_LENGTH (VALUE_TYPE (val)));
  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);

  return val;
}

value_ptr
value_of_variable (var, b)
     struct symbol *var;
     struct block *b;
{
  value_ptr val;
  struct frame_info *frame = NULL;

  if (!b)
    frame = NULL;		/* Use selected frame.  */
  else if (symbol_read_needs_frame (var))
    {
      frame = block_innermost_frame (b);
      if (!frame)
	if (BLOCK_FUNCTION (b)
	    && SYMBOL_NAME (BLOCK_FUNCTION (b)))
	  error ("No frame is currently executing in block %s.",
		 SYMBOL_NAME (BLOCK_FUNCTION (b)));
	else
	  error ("No frame is currently executing in specified block");
    }

  val = read_var_value (var, frame);
  if (!val)
    error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));

  return val;
}

/* Given a value which is an array, return a value which is a pointer to its
   first element, regardless of whether or not the array has a nonzero lower
   bound.

   FIXME:  A previous comment here indicated that this routine should be
   substracting the array's lower bound.  It's not clear to me that this
   is correct.  Given an array subscripting operation, it would certainly
   work to do the adjustment here, essentially computing:

   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])

   However I believe a more appropriate and logical place to account for
   the lower bound is to do so in value_subscript, essentially computing:

   (&array[0] + ((index - lowerbound) * sizeof array[0]))

   As further evidence consider what would happen with operations other
   than array subscripting, where the caller would get back a value that
   had an address somewhere before the actual first element of the array,
   and the information about the lower bound would be lost because of
   the coercion to pointer type.
   */

value_ptr
value_coerce_array (arg1)
     value_ptr arg1;
{
  register struct type *type = check_typedef (VALUE_TYPE (arg1));

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
		       (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
}

/* Given a value which is a function, return a value which is a pointer
   to it.  */

value_ptr
value_coerce_function (arg1)
     value_ptr arg1;
{
  value_ptr retval;

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
			       (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
  VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
  return retval;
}  

/* Return a pointer value for the object for which ARG1 is the contents.  */

value_ptr
value_addr (arg1)
     value_ptr arg1;
{
  value_ptr retval;

  struct type *type = check_typedef (VALUE_TYPE (arg1));
  if (TYPE_CODE (type) == TYPE_CODE_REF)
    {
      /* Copy the value, but change the type from (T&) to (T*).
	 We keep the same location information, which is efficient,
	 and allows &(&X) to get the location containing the reference. */
      value_ptr arg2 = value_copy (arg1);
      VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      return arg2;
    }
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
			       (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
  VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
  return retval;
}

/* Given a value of a pointer type, apply the C unary * operator to it.  */

value_ptr
value_ind (arg1)
     value_ptr arg1;
{
  struct type *type1;
  COERCE_ARRAY (arg1);
  type1 = check_typedef (VALUE_TYPE (arg1));

  if (TYPE_CODE (type1) == TYPE_CODE_MEMBER)
    error ("not implemented: member types in value_ind");

  /* Allow * on an integer so we can cast it to whatever we want.
     This returns an int, which seems like the most C-like thing
     to do.  "long long" variables are rare enough that
     BUILTIN_TYPE_LONGEST would seem to be a mistake.  */
  if (TYPE_CODE (type1) == TYPE_CODE_INT)
    return value_at (builtin_type_int,
		     (CORE_ADDR) value_as_long (arg1),
		     VALUE_BFD_SECTION (arg1));
  else if (TYPE_CODE (type1) == TYPE_CODE_PTR)
    return value_at_lazy (TYPE_TARGET_TYPE (type1), value_as_pointer (arg1),
			  VALUE_BFD_SECTION (arg1));
  error ("Attempt to take contents of a non-pointer value.");
  return 0;  /* For lint -- never reached */
}

/* Pushing small parts of stack frames.  */

/* Push one word (the size of object that a register holds).  */

CORE_ADDR
push_word (sp, word)
     CORE_ADDR sp;
     ULONGEST word;
{
  register int len = REGISTER_SIZE;
  char buffer[MAX_REGISTER_RAW_SIZE];

  store_unsigned_integer (buffer, len, word);
#if 1 INNER_THAN 2
  sp -= len;
  write_memory (sp, buffer, len);
#else /* stack grows upward */
  write_memory (sp, buffer, len);
  sp += len;
#endif /* stack grows upward */

  return sp;
}

/* Push LEN bytes with data at BUFFER.  */

CORE_ADDR
push_bytes (sp, buffer, len)
     CORE_ADDR sp;
     char *buffer;
     int len;
{
#if 1 INNER_THAN 2
  sp -= len;
  write_memory (sp, buffer, len);
#else /* stack grows upward */
  write_memory (sp, buffer, len);
  sp += len;
#endif /* stack grows upward */

  return sp;
}

/* Push onto the stack the specified value VALUE.  */

#ifndef PUSH_ARGUMENTS

static CORE_ADDR
value_push (sp, arg)
     register CORE_ADDR sp;
     value_ptr arg;
{
  register int len = TYPE_LENGTH (VALUE_TYPE (arg));

#if 1 INNER_THAN 2
  sp -= len;
  write_memory (sp, VALUE_CONTENTS (arg), len);
#else /* stack grows upward */
  write_memory (sp, VALUE_CONTENTS (arg), len);
  sp += len;
#endif /* stack grows upward */

  return sp;
}

#endif	/* !PUSH_ARGUMENTS */

#ifdef CALL_DUMMY
/* Perform the standard coercions that are specified
   for arguments to be passed to C functions.

   If PARAM_TYPE is non-NULL, it is the expected parameter type. */

static value_ptr
value_arg_coerce (arg, param_type)
     value_ptr arg;
     struct type *param_type;
{
  register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
  register struct type *type
    = param_type ? check_typedef (param_type) : arg_type;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_REF:
      if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
	{
	  arg = value_addr (arg);
	  VALUE_TYPE (arg) = param_type;
	  return arg;
	}
      break;
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
	type = builtin_type_int;
      break;
   case TYPE_CODE_FLT:
     /* coerce float to double, unless the function prototype specifies float */
     if (COERCE_FLOAT_TO_DOUBLE)
       {
	 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
	   type = builtin_type_double;
	 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
	   type = builtin_type_long_double;
       }
     break;
    case TYPE_CODE_FUNC:
      type = lookup_pointer_type (type);
      break;
    case TYPE_CODE_ARRAY:
      if (current_language->c_style_arrays)
	type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      break;
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_PTR:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_VOID:
    case TYPE_CODE_SET:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_STRING:
    case TYPE_CODE_BITSTRING:
    case TYPE_CODE_ERROR:
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_METHOD:
    case TYPE_CODE_COMPLEX:
    default:
      break;
    }

  return value_cast (type, arg);
}

/* Determine a function's address and its return type from its value. 
   Calls error() if the function is not valid for calling.  */

static CORE_ADDR
find_function_addr (function, retval_type)
     value_ptr function;
     struct type **retval_type;
{
  register struct type *ftype = check_typedef (VALUE_TYPE (function));
  register enum type_code code = TYPE_CODE (ftype);
  struct type *value_type;
  CORE_ADDR funaddr;

  /* If it's a member function, just look at the function
     part of it.  */

  /* Determine address to call.  */
  if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
    {
      funaddr = VALUE_ADDRESS (function);
      value_type = TYPE_TARGET_TYPE (ftype);
    }
  else if (code == TYPE_CODE_PTR)
    {
      funaddr = value_as_pointer (function);
      ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
      if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
	{
#ifdef CONVERT_FROM_FUNC_PTR_ADDR
	  /* FIXME: This is a workaround for the unusual function
	     pointer representation on the RS/6000, see comment
	     in config/rs6000/tm-rs6000.h  */
	  funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
#endif
	  value_type = TYPE_TARGET_TYPE (ftype);
	}
      else
	value_type = builtin_type_int;
    }
  else if (code == TYPE_CODE_INT)
    {
      /* Handle the case of functions lacking debugging info.
	 Their values are characters since their addresses are char */
      if (TYPE_LENGTH (ftype) == 1)
	funaddr = value_as_pointer (value_addr (function));
      else
	/* Handle integer used as address of a function.  */
	funaddr = (CORE_ADDR) value_as_long (function);

      value_type = builtin_type_int;
    }
  else
    error ("Invalid data type for function to be called.");

  *retval_type = value_type;
  return funaddr;
}

/* All this stuff with a dummy frame may seem unnecessarily complicated
   (why not just save registers in GDB?).  The purpose of pushing a dummy
   frame which looks just like a real frame is so that if you call a
   function and then hit a breakpoint (get a signal, etc), "backtrace"
   will look right.  Whether the backtrace needs to actually show the
   stack at the time the inferior function was called is debatable, but
   it certainly needs to not display garbage.  So if you are contemplating
   making dummy frames be different from normal frames, consider that.  */

/* Perform a function call in the inferior.
   ARGS is a vector of values of arguments (NARGS of them).
   FUNCTION is a value, the function to be called.
   Returns a value representing what the function returned.
   May fail to return, if a breakpoint or signal is hit
   during the execution of the function.

   ARGS is modified to contain coerced values. */

value_ptr
call_function_by_hand (function, nargs, args)
     value_ptr function;
     int nargs;
     value_ptr *args;
{
  register CORE_ADDR sp;
  register int i;
  CORE_ADDR start_sp;
  /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
     is in host byte order.  Before calling FIX_CALL_DUMMY, we byteswap it
     and remove any extra bytes which might exist because ULONGEST is
     bigger than REGISTER_SIZE.  */
  static ULONGEST dummy[] = CALL_DUMMY;
  char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (ULONGEST)];
  CORE_ADDR old_sp;
  struct type *value_type;
  unsigned char struct_return;
  CORE_ADDR struct_addr = 0;
  struct inferior_status inf_status;
  struct cleanup *old_chain;
  CORE_ADDR funaddr;
  int using_gcc;	/* Set to version of gcc in use, or zero if not gcc */
  CORE_ADDR real_pc;
  struct type *ftype = check_typedef (SYMBOL_TYPE (function));

  if (!target_has_execution)
    noprocess();

  save_inferior_status (&inf_status, 1);
  old_chain = make_cleanup (restore_inferior_status, &inf_status);

  /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
     (and POP_FRAME for restoring them).  (At least on most machines)
     they are saved on the stack in the inferior.  */
  PUSH_DUMMY_FRAME;

  old_sp = sp = read_sp ();

#if 1 INNER_THAN 2		/* Stack grows down */
  sp -= sizeof dummy1;
  start_sp = sp;
#else				/* Stack grows up */
  start_sp = sp;
  sp += sizeof dummy1;
#endif

  funaddr = find_function_addr (function, &value_type);
  CHECK_TYPEDEF (value_type);

  {
    struct block *b = block_for_pc (funaddr);
    /* If compiled without -g, assume GCC 2.  */
    using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
  }

  /* Are we returning a value using a structure return or a normal
     value return? */

  struct_return = using_struct_return (function, funaddr, value_type,
				       using_gcc);

  /* Create a call sequence customized for this function
     and the number of arguments for it.  */
  for (i = 0; i < (int) (sizeof (dummy) / sizeof (dummy[0])); i++)
    store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
			    REGISTER_SIZE,
			    (ULONGEST)dummy[i]);

#ifdef GDB_TARGET_IS_HPPA
  real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
			    value_type, using_gcc);
#else
  FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
		  value_type, using_gcc);
  real_pc = start_sp;
#endif

#if CALL_DUMMY_LOCATION == ON_STACK
  write_memory (start_sp, (char *)dummy1, sizeof dummy1);
#endif /* On stack.  */

#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
  /* Convex Unix prohibits executing in the stack segment. */
  /* Hope there is empty room at the top of the text segment. */
  {
    extern CORE_ADDR text_end;
    static checked = 0;
    if (!checked)
      for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
	if (read_memory_integer (start_sp, 1) != 0)
	  error ("text segment full -- no place to put call");
    checked = 1;
    sp = old_sp;
    real_pc = text_end - sizeof dummy1;
    write_memory (real_pc, (char *)dummy1, sizeof dummy1);
  }
#endif /* Before text_end.  */

#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
  {
    extern CORE_ADDR text_end;
    int errcode;
    sp = old_sp;
    real_pc = text_end;
    errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
    if (errcode != 0)
      error ("Cannot write text segment -- call_function failed");
  }
#endif /* After text_end.  */

#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
  real_pc = funaddr;
#endif /* At entry point.  */

#ifdef lint
  sp = old_sp;		/* It really is used, for some ifdef's... */
#endif

  if (nargs < TYPE_NFIELDS (ftype))
    error ("too few arguments in function call");

  for (i = nargs - 1; i >= 0; i--)
    {
      struct type *param_type;
      if (TYPE_NFIELDS (ftype) > i)
	param_type = TYPE_FIELD_TYPE (ftype, i);
      else
	param_type = 0;
      args[i] = value_arg_coerce (args[i], param_type);
    }

#if defined (REG_STRUCT_HAS_ADDR)
  {
    /* This is a machine like the sparc, where we may need to pass a pointer
       to the structure, not the structure itself.  */
    for (i = nargs - 1; i >= 0; i--)
      {
	struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
	if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
	     || TYPE_CODE (arg_type) == TYPE_CODE_UNION
	     || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
	     || TYPE_CODE (arg_type) == TYPE_CODE_STRING
	     || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
	     || TYPE_CODE (arg_type) == TYPE_CODE_SET
	     || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
		 && TYPE_LENGTH (arg_type) > 8)
	     )
	  && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
	  {
	    CORE_ADDR addr;
	    int len = TYPE_LENGTH (arg_type);
#ifdef STACK_ALIGN
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
	    int aligned_len = STACK_ALIGN (len);
#else
	    int aligned_len = len;
#endif
#if !(1 INNER_THAN 2)
	    /* The stack grows up, so the address of the thing we push
	       is the stack pointer before we push it.  */
	    addr = sp;
#else
	    sp -= aligned_len;
#endif
	    /* Push the structure.  */
	    write_memory (sp, VALUE_CONTENTS (args[i]), len);
#if 1 INNER_THAN 2
	    /* The stack grows down, so the address of the thing we push
	       is the stack pointer after we push it.  */
	    addr = sp;
#else
	    sp += aligned_len;
#endif
	    /* The value we're going to pass is the address of the thing
	       we just pushed.  */
	    args[i] = value_from_longest (lookup_pointer_type (value_type),
					  (LONGEST) addr);
	  }
      }
  }
#endif /* REG_STRUCT_HAS_ADDR.  */

  /* Reserve space for the return structure to be written on the
     stack, if necessary */

  if (struct_return)
    {
      int len = TYPE_LENGTH (value_type);
#ifdef STACK_ALIGN
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
      len = STACK_ALIGN (len);
#endif
#if 1 INNER_THAN 2
      sp -= len;
      struct_addr = sp;
#else
      struct_addr = sp;
      sp += len;
#endif
    }

#if defined(STACK_ALIGN) && (1 INNER_THAN 2)
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
  {
  /* If stack grows down, we must leave a hole at the top. */
    int len = 0;

    for (i = nargs - 1; i >= 0; i--)
      len += TYPE_LENGTH (VALUE_TYPE (args[i]));
#ifdef CALL_DUMMY_STACK_ADJUST
    len += CALL_DUMMY_STACK_ADJUST;
#endif
    sp -= STACK_ALIGN (len) - len;
  }
#endif /* STACK_ALIGN */

#ifdef PUSH_ARGUMENTS
  PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
#else /* !PUSH_ARGUMENTS */
  for (i = nargs - 1; i >= 0; i--)
    sp = value_push (sp, args[i]);
#endif /* !PUSH_ARGUMENTS */

#ifdef PUSH_RETURN_ADDRESS	/* for targets that use no CALL_DUMMY */
  /* There are a number of targets now which actually don't write any
     CALL_DUMMY instructions into the target, but instead just save the
     machine state, push the arguments, and jump directly to the callee
     function.  Since this doesn't actually involve executing a JSR/BSR
     instruction, the return address must be set up by hand, either by
     pushing onto the stack or copying into a return-address register
     as appropriate.  Formerly this has been done in PUSH_ARGUMENTS, 
     but that's overloading its functionality a bit, so I'm making it
     explicit to do it here.  */
  sp = PUSH_RETURN_ADDRESS(real_pc, sp);
#endif	/* PUSH_RETURN_ADDRESS */

#if defined(STACK_ALIGN) && !(1 INNER_THAN 2)
  {
  /* If stack grows up, we must leave a hole at the bottom, note
     that sp already has been advanced for the arguments!  */
#ifdef CALL_DUMMY_STACK_ADJUST
    sp += CALL_DUMMY_STACK_ADJUST;
#endif
    sp = STACK_ALIGN (sp);
  }
#endif /* STACK_ALIGN */

/* XXX This seems wrong.  For stacks that grow down we shouldn't do
   anything here!  */
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
#ifdef CALL_DUMMY_STACK_ADJUST
#if 1 INNER_THAN 2
  sp -= CALL_DUMMY_STACK_ADJUST;
#endif
#endif /* CALL_DUMMY_STACK_ADJUST */

  /* Store the address at which the structure is supposed to be
     written.  Note that this (and the code which reserved the space
     above) assumes that gcc was used to compile this function.  Since
     it doesn't cost us anything but space and if the function is pcc
     it will ignore this value, we will make that assumption.

     Also note that on some machines (like the sparc) pcc uses a 
     convention like gcc's.  */

  if (struct_return)
    STORE_STRUCT_RETURN (struct_addr, sp);

  /* Write the stack pointer.  This is here because the statements above
     might fool with it.  On SPARC, this write also stores the register
     window into the right place in the new stack frame, which otherwise
     wouldn't happen.  (See store_inferior_registers in sparc-nat.c.)  */
  write_sp (sp);

  {
    char retbuf[REGISTER_BYTES];
    char *name;
    struct symbol *symbol;

    name = NULL;
    symbol = find_pc_function (funaddr);
    if (symbol)
      {
	name = SYMBOL_SOURCE_NAME (symbol);
      }
    else
      {
	/* Try the minimal symbols.  */
	struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);

	if (msymbol)
	  {
	    name = SYMBOL_SOURCE_NAME (msymbol);
	  }
      }
    if (name == NULL)
      {
	char format[80];
	sprintf (format, "at %s", local_hex_format ());
	name = alloca (80);
	/* FIXME-32x64: assumes funaddr fits in a long.  */
	sprintf (name, format, (unsigned long) funaddr);
      }

    /* Execute the stack dummy routine, calling FUNCTION.
       When it is done, discard the empty frame
       after storing the contents of all regs into retbuf.  */
    if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
      {
	/* We stopped somewhere besides the call dummy.  */

	/* If we did the cleanups, we would print a spurious error message
	   (Unable to restore previously selected frame), would write the
	   registers from the inf_status (which is wrong), and would do other
	   wrong things (like set stop_bpstat to the wrong thing).  */
	discard_cleanups (old_chain);
	/* Prevent memory leak.  */
	bpstat_clear (&inf_status.stop_bpstat);

	/* The following error message used to say "The expression
	   which contained the function call has been discarded."  It
	   is a hard concept to explain in a few words.  Ideally, GDB
	   would be able to resume evaluation of the expression when
	   the function finally is done executing.  Perhaps someday
	   this will be implemented (it would not be easy).  */

	/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
	   a C++ name with arguments and stuff.  */
	error ("\
The program being debugged stopped while in a function called from GDB.\n\
When the function (%s) is done executing, GDB will silently\n\
stop (instead of continuing to evaluate the expression containing\n\
the function call).", name);
      }

    do_cleanups (old_chain);

    /* Figure out the value returned by the function.  */
    return value_being_returned (value_type, retbuf, struct_return);
  }
}
#else /* no CALL_DUMMY.  */
value_ptr
call_function_by_hand (function, nargs, args)
     value_ptr function;
     int nargs;
     value_ptr *args;
{
  error ("Cannot invoke functions on this machine.");
}
#endif /* no CALL_DUMMY.  */


/* Create a value for an array by allocating space in the inferior, copying
   the data into that space, and then setting up an array value.

   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
   populated from the values passed in ELEMVEC.

   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types). */

value_ptr
value_array (lowbound, highbound, elemvec)
     int lowbound;
     int highbound;
     value_ptr *elemvec;
{
  int nelem;
  int idx;
  unsigned int typelength;
  value_ptr val;
  struct type *rangetype;
  struct type *arraytype;
  CORE_ADDR addr;

  /* Validate that the bounds are reasonable and that each of the elements
     have the same size. */

  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
    {
      error ("bad array bounds (%d, %d)", lowbound, highbound);
    }
  typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
  for (idx = 1; idx < nelem; idx++)
    {
      if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
	{
	  error ("array elements must all be the same size");
	}
    }

  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
				 lowbound, highbound);
  arraytype = create_array_type ((struct type *) NULL, 
				 VALUE_TYPE (elemvec[0]), rangetype);

  if (!current_language->c_style_arrays)
    {
      val = allocate_value (arraytype);
      for (idx = 0; idx < nelem; idx++)
	{
	  memcpy (VALUE_CONTENTS_RAW (val) + (idx * typelength),
		  VALUE_CONTENTS (elemvec[idx]),
		  typelength);
	}
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
      return val;
    }

  /* Allocate space to store the array in the inferior, and then initialize
     it by copying in each element.  FIXME:  Is it worth it to create a
     local buffer in which to collect each value and then write all the
     bytes in one operation? */

  addr = allocate_space_in_inferior (nelem * typelength);
  for (idx = 0; idx < nelem; idx++)
    {
      write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
		    typelength);
    }

  /* Create the array type and set up an array value to be evaluated lazily. */

  val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
  return (val);
}

/* Create a value for a string constant by allocating space in the inferior,
   copying the data into that space, and returning the address with type
   TYPE_CODE_STRING.  PTR points to the string constant data; LEN is number
   of characters.
   Note that string types are like array of char types with a lower bound of
   zero and an upper bound of LEN - 1.  Also note that the string may contain
   embedded null bytes. */

value_ptr
value_string (ptr, len)
     char *ptr;
     int len;
{
  value_ptr val;
  int lowbound = current_language->string_lower_bound;
  struct type *rangetype = create_range_type ((struct type *) NULL,
					      builtin_type_int,
					      lowbound, len + lowbound - 1);
  struct type *stringtype
    = create_string_type ((struct type *) NULL, rangetype);
  CORE_ADDR addr;

  if (current_language->c_style_arrays == 0)
    {
      val = allocate_value (stringtype);
      memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
      return val;
    }


  /* Allocate space to store the string in the inferior, and then
     copy LEN bytes from PTR in gdb to that address in the inferior. */

  addr = allocate_space_in_inferior (len);
  write_memory (addr, ptr, len);

  val = value_at_lazy (stringtype, addr, NULL);
  return (val);
}

value_ptr
value_bitstring (ptr, len)
     char *ptr;
     int len;
{
  value_ptr val;
  struct type *domain_type = create_range_type (NULL, builtin_type_int,
						0, len - 1);
  struct type *type = create_set_type ((struct type*) NULL, domain_type);
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  val = allocate_value (type);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
  return val;
}

/* See if we can pass arguments in T2 to a function which takes arguments
   of types T1.  Both t1 and t2 are NULL-terminated vectors.  If some
   arguments need coercion of some sort, then the coerced values are written
   into T2.  Return value is 0 if the arguments could be matched, or the
   position at which they differ if not.

   STATICP is nonzero if the T1 argument list came from a
   static member function.

   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we want
   to handle calls with objects from derived classes.  This is not
   entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */

static int
typecmp (staticp, t1, t2)
     int staticp;
     struct type *t1[];
     value_ptr t2[];
{
  int i;

  if (t2 == 0)
    return 1;
  if (staticp && t1 == 0)
    return t2[1] != 0;
  if (t1 == 0)
    return 1;
  if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
  if (t1[!staticp] == 0) return 0;
  for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
    {
    struct type *tt1, *tt2;
      if (! t2[i])
	return i+1;
      tt1 = check_typedef (t1[i]);
      tt2 = check_typedef (VALUE_TYPE(t2[i]));
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
	  /* We should be doing hairy argument matching, as below.  */
	  && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
	{
	  if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
	    t2[i] = value_coerce_array (t2[i]);
	  else
	    t2[i] = value_addr (t2[i]);
	  continue;
	}

      while (TYPE_CODE (tt1) == TYPE_CODE_PTR
	  && (   TYPE_CODE (tt2) == TYPE_CODE_ARRAY
	      || TYPE_CODE (tt2) == TYPE_CODE_PTR))
	{
	   tt1 = check_typedef (TYPE_TARGET_TYPE(tt1)); 
	   tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
	}
      if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
      /* Array to pointer is a `trivial conversion' according to the ARM.  */

      /* We should be doing much hairier argument matching (see section 13.2
	 of the ARM), but as a quick kludge, just check for the same type
	 code.  */
      if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
	return i+1;
    }
  if (!t1[i]) return 0;
  return t2[i] ? i+1 : 0;
}

/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
   look for a baseclass named NAME.  */

static value_ptr
search_struct_field (name, arg1, offset, type, looking_for_baseclass)
     char *name;
     register value_ptr arg1;
     int offset;
     register struct type *type;
     int looking_for_baseclass;
{
  int i;

  CHECK_TYPEDEF (type);

  if (! looking_for_baseclass)
    for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
      {
	char *t_field_name = TYPE_FIELD_NAME (type, i);

	if (t_field_name && STREQ (t_field_name, name))
	  {
	    value_ptr v;
	    if (TYPE_FIELD_STATIC (type, i))
	      {
		char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
		struct symbol *sym =
		    lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
		if (sym == NULL)
		    error ("Internal error: could not find physical static variable named %s",
			   phys_name);
		v = value_at (TYPE_FIELD_TYPE (type, i),
			      SYMBOL_VALUE_ADDRESS (sym), SYMBOL_BFD_SECTION (sym));
	      }
	    else
	      v = value_primitive_field (arg1, offset, i, type);
	    if (v == 0)
	      error("there is no field named %s", name);
	    return v;
	  }

	if (t_field_name
	    && (t_field_name[0] == '\0'
		|| (TYPE_CODE (type) == TYPE_CODE_UNION
		    && STREQ (t_field_name, "else"))))
	  {
	    struct type *field_type = TYPE_FIELD_TYPE (type, i);
	    if (TYPE_CODE (field_type) == TYPE_CODE_UNION
		|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
	      {
		/* Look for a match through the fields of an anonymous union,
		   or anonymous struct.  C++ provides anonymous unions.

		   In the GNU Chill implementation of variant record types,
		   each <alternative field> has an (anonymous) union type,
		   each member of the union represents a <variant alternative>.
		   Each <variant alternative> is represented as a struct,
		   with a member for each <variant field>.  */
		   
		value_ptr v;
		int new_offset = offset;

		/* This is pretty gross.  In G++, the offset in an anonymous
		   union is relative to the beginning of the enclosing struct.
		   In the GNU Chill implementation of variant records,
		   the bitpos is zero in an anonymous union field, so we
		   have to add the offset of the union here. */
		if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
		    || (TYPE_NFIELDS (field_type) > 0
			&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
		  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;

		v = search_struct_field (name, arg1, new_offset, field_type,
					 looking_for_baseclass);
		if (v)
		  return v;
	      }
	  }
      }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      value_ptr v;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when we
	 hit them.  But it could happen that the base part's member name
	 is not yet filled in.  */
      int found_baseclass = (looking_for_baseclass
			     && TYPE_BASECLASS_NAME (type, i) != NULL
			     && STREQ (name, TYPE_BASECLASS_NAME (type, i)));

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  int boffset = VALUE_OFFSET (arg1) + offset;
	  boffset = baseclass_offset (type, i,
				      VALUE_CONTENTS (arg1) + boffset,
				      VALUE_ADDRESS (arg1) + boffset);
	  if (boffset == -1)
	    error ("virtual baseclass botch");
	  if (found_baseclass)
	    {
	      value_ptr v2 = allocate_value (basetype);
	      VALUE_LVAL (v2) = VALUE_LVAL (arg1);
	      VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
	      VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + offset + boffset;
	      if (VALUE_LAZY (arg1))
		VALUE_LAZY (v2) = 1;
	      else
		memcpy (VALUE_CONTENTS_RAW (v2),
			VALUE_CONTENTS_RAW (arg1) + offset + boffset,
			TYPE_LENGTH (basetype));
	      return v2;
	    }
	  v = search_struct_field (name, arg1, offset + boffset,
				   TYPE_BASECLASS (type, i),
				   looking_for_baseclass);
	}
      else if (found_baseclass)
	v = value_primitive_field (arg1, offset, i, type);
      else
	v = search_struct_field (name, arg1,
				 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
				 basetype, looking_for_baseclass);
      if (v) return v;
    }
  return NULL;
}

/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else if name matched and args not return (value)-1,
   else return NULL. */

static value_ptr
search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
     char *name;
     register value_ptr *arg1p, *args;
     int offset, *static_memfuncp;
     register struct type *type;
{
  int i;
  value_ptr v;
  int name_matched = 0;
  char dem_opname[64];

  CHECK_TYPEDEF (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      /* FIXME!  May need to check for ARM demangling here */
      if (strncmp(t_field_name, "__", 2)==0 ||
	strncmp(t_field_name, "op", 2)==0 ||
	strncmp(t_field_name, "type", 4)==0 )
	{
	  if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
	    t_field_name = dem_opname;
	  else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
	    t_field_name = dem_opname; 
	}
      if (t_field_name && STREQ (t_field_name, name))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
 	  name_matched = 1; 

	  if (j > 0 && args == 0)
	    error ("cannot resolve overloaded method `%s'", name);
	  while (j >= 0)
	    {
	      if (TYPE_FN_FIELD_STUB (f, j))
		check_stub_method (type, i, j);
	      if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
			    TYPE_FN_FIELD_ARGS (f, j), args))
		{
		  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
		    return value_virtual_fn_field (arg1p, f, j, type, offset);
		  if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
		    *static_memfuncp = 1;
		  v = value_fn_field (arg1p, f, j, type, offset);
		  if (v != NULL) return v;
		}
	      j--;
	    }
	}
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  base_offset = VALUE_OFFSET (*arg1p) + offset;
	  base_offset =
	    baseclass_offset (type, i,
			      VALUE_CONTENTS (*arg1p) + base_offset,
			      VALUE_ADDRESS (*arg1p) + base_offset);
	  if (base_offset == -1)
	    error ("virtual baseclass botch");
	}
      else
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
        }
      v = search_struct_method (name, arg1p, args, base_offset + offset,
				static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (value_ptr) -1)
	{
	  name_matched = 1;
	}
      else if (v)
	{
/* FIXME-bothner:  Why is this commented out?  Why is it here?  */
/*	  *arg1p = arg1_tmp;*/
	  return v;
        }
    }
  if (name_matched) return (value_ptr) -1;
  else return NULL;
}

/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target structure/union
   and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.

   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method. Also, handle derived types.

   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.

   ERR is an error message to be printed in case the field is not found.  */

value_ptr
value_struct_elt (argp, args, name, static_memfuncp, err)
     register value_ptr *argp, *args;
     char *name;
     int *static_memfuncp;
     char *err;
{
  register struct type *t;
  value_ptr v;

  COERCE_ARRAY (*argp);

  t = check_typedef (VALUE_TYPE (*argp));

  /* Follow pointers until we get to a non-pointer.  */

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
	COERCE_ARRAY (*argp);
      t = check_typedef (VALUE_TYPE (*argp));
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in value_struct_elt");

  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a %s.", err);

  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
    *static_memfuncp =0;

  if (!args)
    {
      /* if there are no arguments ...do this...  */

      /* Try as a field first, because if we succeed, there
	 is less work to be done.  */
      v = search_struct_field (name, *argp, 0, t, 0);
      if (v)
	return v;

      /* C++: If it was not found as a data field, then try to
         return it as a pointer to a method.  */

      if (destructor_name_p (name, t))
	error ("Cannot get value of destructor");

      v = search_struct_method (name, argp, args, 0, static_memfuncp, t);

      if (v == (value_ptr) -1)
	error ("Cannot take address of a method");
      else if (v == 0)
	{
	  if (TYPE_NFN_FIELDS (t))
	    error ("There is no member or method named %s.", name);
	  else
	    error ("There is no member named %s.", name);
	}
      return v;
    }

  if (destructor_name_p (name, t))
    {
      if (!args[1])
	{
	  /* Destructors are a special case.  */
	  int m_index, f_index;

	  v = NULL;
	  if (get_destructor_fn_field (t, &m_index, &f_index))
	    {
	      v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
				  f_index, NULL, 0);
	    }
	  if (v == NULL)
	    error ("could not find destructor function named %s.", name);
	  else
	    return v;
	}
      else
	{
	  error ("destructor should not have any argument");
	}
    }
  else
    v = search_struct_method (name, argp, args, 0, static_memfuncp, t);

  if (v == (value_ptr) -1)
    {
	error("Argument list of %s mismatch with component in the structure.", name);
    }
  else if (v == 0)
    {
      /* See if user tried to invoke data as function.  If so,
	 hand it back.  If it's not callable (i.e., a pointer to function),
	 gdb should give an error.  */
      v = search_struct_field (name, *argp, 0, t, 0);
    }

  if (!v)
    error ("Structure has no component named %s.", name);
  return v;
}

/* C++: return 1 is NAME is a legitimate name for the destructor
   of type TYPE.  If TYPE does not have a destructor, or
   if NAME is inappropriate for TYPE, an error is signaled.  */
int
destructor_name_p (name, type)
     const char *name;
     const struct type *type;
{
  /* destructors are a special case.  */

  if (name[0] == '~')
    {
      char *dname = type_name_no_tag (type);
      char *cp = strchr (dname, '<');
      unsigned int len;

      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
	len = strlen (dname);
      else
	len = cp - dname;
      if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
	error ("name of destructor must equal name of class");
      else
	return 1;
    }
  return 0;
}

/* Helper function for check_field: Given TYPE, a structure/union,
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0. */

static int
check_field_in (type, name)
     register struct type *type;
     const char *name;
{
  register int i;

  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      if (t_field_name && STREQ (t_field_name, name))
	return 1;
    }

  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */

  /* Destructors are a special case.  */
  if (destructor_name_p (name, type))
    {
      int m_index, f_index;

      return get_destructor_fn_field (type, &m_index, &f_index);
    }

  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
    {
      if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
	return 1;
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    if (check_field_in (TYPE_BASECLASS (type, i), name))
      return 1;
      
  return 0;
}


/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0.  */

int
check_field (arg1, name)
     register value_ptr arg1;
     const char *name;
{
  register struct type *t;

  COERCE_ARRAY (arg1);

  t = VALUE_TYPE (arg1);

  /* Follow pointers until we get to a non-pointer.  */

  for (;;)
    {
      CHECK_TYPEDEF (t);
      if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
	break;
      t = TYPE_TARGET_TYPE (t);
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in check_field");

  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: `this' is not an aggregate");

  return check_field_in (t, name);
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member"
   type.  If INTYPE is non-null, then it will be the type
   of the member we are looking for.  This will help us resolve
   "pointers to member functions".  This function is used
   to resolve user expressions of the form "DOMAIN::NAME".  */

value_ptr
value_struct_elt_for_reference (domain, offset, curtype, name, intype)
     struct type *domain, *curtype, *intype;
     int offset;
     char *name;
{
  register struct type *t = curtype;
  register int i;
  value_ptr v;

  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: non-aggregate type to value_struct_elt_for_reference");

  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
      char *t_field_name = TYPE_FIELD_NAME (t, i);
      
      if (t_field_name && STREQ (t_field_name, name))
	{
	  if (TYPE_FIELD_STATIC (t, i))
	    {
	      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
	      struct symbol *sym =
		lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
	      if (sym == NULL)
		error ("Internal error: could not find physical static variable named %s",
		       phys_name);
	      return value_at (SYMBOL_TYPE (sym),
			       SYMBOL_VALUE_ADDRESS (sym),
			       SYMBOL_BFD_SECTION (sym));
	    }
	  if (TYPE_FIELD_PACKED (t, i))
	    error ("pointers to bitfield members not allowed");
	  
	  return value_from_longest
	    (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
							domain)),
	     offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
	}
    }

  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */

  /* Destructors are a special case.  */
  if (destructor_name_p (name, t))
    {
      error ("member pointers to destructors not implemented yet");
    }

  /* Perform all necessary dereferencing.  */
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
    intype = TYPE_TARGET_TYPE (intype);

  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char dem_opname[64];

      if (strncmp(t_field_name, "__", 2)==0 ||
	strncmp(t_field_name, "op", 2)==0 ||
	strncmp(t_field_name, "type", 4)==0 )
	{
	  if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
	    t_field_name = dem_opname;
	  else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
	    t_field_name = dem_opname; 
	}
      if (t_field_name && STREQ (t_field_name, name))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
	  
	  if (intype == 0 && j > 1)
	    error ("non-unique member `%s' requires type instantiation", name);
	  if (intype)
	    {
	      while (j--)
		if (TYPE_FN_FIELD_TYPE (f, j) == intype)
		  break;
	      if (j < 0)
		error ("no member function matches that type instantiation");
	    }
	  else
	    j = 0;
	  
	  if (TYPE_FN_FIELD_STUB (f, j))
	    check_stub_method (t, i, j);
	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
	    {
	      return value_from_longest
		(lookup_reference_type
		 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
				      domain)),
		 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
	    }
	  else
	    {
	      struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
						0, VAR_NAMESPACE, 0, NULL);
	      if (s == NULL)
		{
		  v = 0;
		}
	      else
		{
		  v = read_var_value (s, 0);
#if 0
		  VALUE_TYPE (v) = lookup_reference_type
		    (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
					 domain));
#endif
		}
	      return v;
	    }
	}
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
      value_ptr v;
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (t, i))
	base_offset = 0;
      else
	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
					  offset + base_offset,
					  TYPE_BASECLASS (t, i),
					  name,
					  intype);
      if (v)
	return v;
    }
  return 0;
}

/* C++: return the value of the class instance variable, if one exists.
   Flag COMPLAIN signals an error if the request is made in an
   inappropriate context.  */

value_ptr
value_of_this (complain)
     int complain;
{
  struct symbol *func, *sym;
  struct block *b;
  int i;
  static const char funny_this[] = "this";
  value_ptr this;

  if (selected_frame == 0)
    if (complain)
      error ("no frame selected");
    else return 0;

  func = get_frame_function (selected_frame);
  if (!func)
    {
      if (complain)
	error ("no `this' in nameless context");
      else return 0;
    }

  b = SYMBOL_BLOCK_VALUE (func);
  i = BLOCK_NSYMS (b);
  if (i <= 0)
    if (complain)
      error ("no args, no `this'");
    else return 0;

  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
     symbol instead of the LOC_ARG one (if both exist).  */
  sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
  if (sym == NULL)
    {
      if (complain)
	error ("current stack frame not in method");
      else
	return NULL;
    }

  this = read_var_value (sym, selected_frame);
  if (this == 0 && complain)
    error ("`this' argument at unknown address");
  return this;
}

/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
   long, starting at LOWBOUND.  The result has the same lower bound as
   the original ARRAY.  */

value_ptr
value_slice (array, lowbound, length)
     value_ptr array;
     int lowbound, length;
{
  struct type *slice_range_type, *slice_type, *range_type;
  LONGEST lowerbound, upperbound, offset;
  value_ptr slice;
  struct type *array_type;
  array_type = check_typedef (VALUE_TYPE (array));
  COERCE_VARYING_ARRAY (array, array_type);
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
    error ("cannot take slice of non-array");
  range_type = TYPE_INDEX_TYPE (array_type);
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
    error ("slice from bad array or bitstring");
  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound
      /* Chill allows zero-length strings but not arrays. */
      || (current_language->la_language == language_chill
	  && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
    error ("slice out of range");
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  slice_range_type = create_range_type ((struct type*) NULL,
					TYPE_TARGET_TYPE (range_type),
					lowbound, lowbound + length - 1);
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
    {
      int i;
      slice_type = create_set_type ((struct type*) NULL, slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      slice = value_zero (slice_type, not_lval);
      for (i = 0; i < length; i++)
	{
	  int element = value_bit_index (array_type,
					 VALUE_CONTENTS (array),
					 lowbound + i);
	  if (element < 0)
	    error ("internal error accessing bitstring");
	  else if (element > 0)
	    {
	      int j = i % TARGET_CHAR_BIT;
	      if (BITS_BIG_ENDIAN)
		j = TARGET_CHAR_BIT - 1 - j;
	      VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
	    }
	}
      /* We should set the address, bitssize, and bitspos, so the clice
	 can be used on the LHS, but that may require extensions to
	 value_assign.  For now, just leave as a non_lval.  FIXME.  */
    }
  else
    {
      struct type *element_type = TYPE_TARGET_TYPE (array_type);
      offset
	= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
      slice_type = create_array_type ((struct type*) NULL, element_type,
				      slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
      slice = allocate_value (slice_type);
      if (VALUE_LAZY (array))
	VALUE_LAZY (slice) = 1;
      else
	memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
		TYPE_LENGTH (slice_type));
      if (VALUE_LVAL (array) == lval_internalvar)
	VALUE_LVAL (slice) = lval_internalvar_component;
      else
	VALUE_LVAL (slice) = VALUE_LVAL (array);
      VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
      VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
    }
  return slice;
}

/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
   value as a fixed-length array. */

value_ptr
varying_to_slice (varray)
     value_ptr varray;
{
  struct type *vtype = check_typedef (VALUE_TYPE (varray));
  LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
				VALUE_CONTENTS (varray)
				+ TYPE_FIELD_BITPOS (vtype, 0) / 8);
  return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
}

/* Create a value for a FORTRAN complex number.  Currently most of 
   the time values are coerced to COMPLEX*16 (i.e. a complex number 
   composed of 2 doubles.  This really should be a smarter routine 
   that figures out precision inteligently as opposed to assuming 
   doubles. FIXME: fmb */ 

value_ptr
value_literal_complex (arg1, arg2, type)
     value_ptr arg1;
     value_ptr arg2;
     struct type *type;
{
  register value_ptr val;
  struct type *real_type = TYPE_TARGET_TYPE (type);

  val = allocate_value (type);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);

  memcpy (VALUE_CONTENTS_RAW (val),
	  VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
  memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
	  VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
  return val;
}

/* Cast a value into the appropriate complex data type. */

static value_ptr
cast_into_complex (type, val)
     struct type *type;
     register value_ptr val;
{
  struct type *real_type = TYPE_TARGET_TYPE (type);
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
    {
      struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
      value_ptr re_val = allocate_value (val_real_type);
      value_ptr im_val = allocate_value (val_real_type);

      memcpy (VALUE_CONTENTS_RAW (re_val),
	      VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
      memcpy (VALUE_CONTENTS_RAW (im_val),
	      VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
	       TYPE_LENGTH (val_real_type));

      return value_literal_complex (re_val, im_val, type);
    }
  else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
	   || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
    return value_literal_complex (val, value_zero (real_type, not_lval), type);
  else
    error ("cannot cast non-number to complex");
}

void
_initialize_valops ()
{
#if 0
  add_show_from_set
    (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
		  "Set automatic abandonment of expressions upon failure.",
		  &setlist),
     &showlist);
#endif
}