aboutsummaryrefslogtreecommitdiff
path: root/gdb/valarith.c
blob: adf0044cc0325f0d21f21e4f4a83c99b6eea3626 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/* Perform arithmetic and other operations on values, for GDB.
   Copyright (C) 1986 Free Software Foundation, Inc.

GDB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the GDB General Public License for full details.

Everyone is granted permission to copy, modify and redistribute GDB,
but only under the conditions described in the GDB General Public
License.  A copy of this license is supposed to have been given to you
along with GDB so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

In other words, go ahead and share GDB, but don't try to stop
anyone else from sharing it farther.  Help stamp out software hoarding!
*/

#include "defs.h"
#include "initialize.h"
#include "param.h"
#include "symtab.h"
#include "value.h"
#include "expression.h"

START_FILE

value value_x_binop ();

value
value_add (arg1, arg2)
	value arg1, arg2;
{
  register value val, valint, valptr;
  register int len;

  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg2);

  if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
       || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR)
      &&
      (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT
       || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT))
    /* Exactly one argument is a pointer, and one is an integer.  */
    {
      if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
	{
	  valptr = arg1;
	  valint = arg2;
	}
      else
	{
	  valptr = arg2;
	  valint = arg1;
	}
      len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr)));
      if (len == 0) len = 1;	/* For (void *) */
      val = value_from_long (builtin_type_long,
			     value_as_long (valptr)
			     + (len * value_as_long (valint)));
      VALUE_TYPE (val) = VALUE_TYPE (valptr);
      return val;
    }

  return value_binop (arg1, arg2, BINOP_ADD);
}

value
value_sub (arg1, arg2)
	value arg1, arg2;
{
  register value val;

  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg2);

  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
      && 
      TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)
    {
      val = value_from_long (builtin_type_long,
			     value_as_long (arg1)
			     - TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) * value_as_long (arg2));
      VALUE_TYPE (val) = VALUE_TYPE (arg1);
      return val;
    }

  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
      && 
      VALUE_TYPE (arg1) == VALUE_TYPE (arg2))
    {
      val = value_from_long (builtin_type_long,
			     (value_as_long (arg1) - value_as_long (arg2))
			     / TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))));
      return val;
    }

  return value_binop (arg1, arg2, BINOP_SUB);
}

/* Return the value of ARRAY[IDX].  */

value
value_subscript (array, idx)
     value array, idx;
{
  return value_ind (value_add (array, idx));
}

/* Check to see if either argument is a structure.  This is called so
   we know whether to go ahead with the normal binop or look for a 
   user defined function instead.

   For now, we do not overload the `=' operator.  */

int
binop_user_defined_p (op, arg1, arg2)
     enum exp_opcode op;
     value arg1, arg2;
{
  if (op == BINOP_ASSIGN)
    return 0;
  return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
	  || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT
	  || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
	      && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)
	  || (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF
	      && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT));
}

/* Check to see if argument is a structure.  This is called so
   we know whether to go ahead with the normal unop or look for a 
   user defined function instead.

   For now, we do not overload the `&' operator.  */

int unop_user_defined_p (op, arg1)
     enum exp_opcode op;
     value arg1;
{
  if (op == UNOP_ADDR)
    return 0;
  return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
	  || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
	      && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT));
}

/* We know either arg1 or arg2 is a structure, so try to find the right
   user defined function.  Create an argument vector that calls 
   arg1.operator @ (arg1,arg2) and return that value (where '@' is any
   binary operator which is legal for GNU C++).  */

value
value_x_binop (arg1, arg2, op, otherop)
     value arg1, arg2;
     int op, otherop;
{
  value * argvec;
  char *ptr;
  char tstr[13];
  
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg2);

  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */

  if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
    error ("friend functions not implemented yet");

  argvec = (value *) alloca (sizeof (value) * 4);
  argvec[1] = value_addr (arg1);
  argvec[2] = arg2;
  argvec[3] = 0;

  /* make the right function name up */  
  strcpy(tstr, "operator __");
  ptr = tstr+9;
  switch (op)
    {
    case BINOP_ADD:	strcpy(ptr,"+"); break;
    case BINOP_SUB:	strcpy(ptr,"-"); break;
    case BINOP_MUL:	strcpy(ptr,"*"); break;
    case BINOP_DIV:	strcpy(ptr,"/"); break;
    case BINOP_REM:	strcpy(ptr,"%"); break;
    case BINOP_LSH:	strcpy(ptr,"<<"); break;
    case BINOP_RSH:	strcpy(ptr,">>"); break;
    case BINOP_LOGAND:	strcpy(ptr,"&"); break;
    case BINOP_LOGIOR:	strcpy(ptr,"|"); break;
    case BINOP_LOGXOR:	strcpy(ptr,"^"); break;
    case BINOP_AND:	strcpy(ptr,"&&"); break;
    case BINOP_OR:	strcpy(ptr,"||"); break;
    case BINOP_MIN:	strcpy(ptr,"<?"); break;
    case BINOP_MAX:	strcpy(ptr,">?"); break;
    case BINOP_ASSIGN:	strcpy(ptr,"="); break;
    case BINOP_ASSIGN_MODIFY:	
      switch (otherop)
	{
	case BINOP_ADD:      strcpy(ptr,"+="); break;
	case BINOP_SUB:      strcpy(ptr,"-="); break;
	case BINOP_MUL:      strcpy(ptr,"*="); break;
	case BINOP_DIV:      strcpy(ptr,"/="); break;
	case BINOP_REM:      strcpy(ptr,"%="); break;
	case BINOP_LOGAND:   strcpy(ptr,"&="); break;
	case BINOP_LOGIOR:   strcpy(ptr,"|="); break;
	case BINOP_LOGXOR:   strcpy(ptr,"^="); break;
	default:
	  error ("Invalid binary operation specified.");
	}
      break;
    case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break;
    case BINOP_EQUAL:	  strcpy(ptr,"=="); break;
    case BINOP_NOTEQUAL:  strcpy(ptr,"!="); break;
    case BINOP_LESS:      strcpy(ptr,"<"); break;
    case BINOP_GTR:       strcpy(ptr,">"); break;
    case BINOP_GEQ:       strcpy(ptr,">="); break;
    case BINOP_LEQ:       strcpy(ptr,"<="); break;
    default:
      error ("Invalid binary operation specified.");
    }
  argvec[0] = value_struct_elt (arg1, argvec+1, tstr, "structure");
  if (argvec[0])
    return call_function (argvec[0], 2, argvec + 1);
  else error ("member function %s not found", tstr);
}

/* We know that arg1 is a structure, so try to find a unary user
   defined operator that matches the operator in question.  
   Create an argument vector that calls arg1.operator @ (arg1)
   and return that value (where '@' is (almost) any unary operator which
   is legal for GNU C++).  */

value
value_x_unop (arg1, op)
     value arg1;
     int op;
{
  value * argvec;
  char *ptr;
  char tstr[13];
  
  COERCE_ENUM (arg1);

  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */

  if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
    error ("friend functions not implemented yet");

  argvec = (value *) alloca (sizeof (value) * 3);
  argvec[1] = value_addr (arg1);
  argvec[2] = 0;

  /* make the right function name up */  
  strcpy(tstr,"operator __");
  ptr = tstr+9;
  switch (op)
    {
    case UNOP_PREINCREMENT:	strcpy(ptr,"++"); break;
    case UNOP_PREDECREMENT:	strcpy(ptr,"++"); break;
    case UNOP_POSTINCREMENT:	strcpy(ptr,"++"); break;
    case UNOP_POSTDECREMENT:	strcpy(ptr,"++"); break;
    case UNOP_ZEROP:	strcpy(ptr,"!"); break;
    case UNOP_LOGNOT:	strcpy(ptr,"~"); break;
    case UNOP_NEG:	strcpy(ptr,"-"); break;
    default:
      error ("Invalid binary operation specified.");
    }
  argvec[0] = value_struct_elt (arg1, argvec+1, tstr, "structure");
  if (argvec[0])
    return call_function (argvec[0], 1, argvec + 1);
  else error ("member function %s not found", tstr);
}

/* Perform a binary operation on two integers or two floats.
   Does not support addition and subtraction on pointers;
   use value_add or value_sub if you want to handle those possibilities.  */

value
value_binop (arg1, arg2, op)
     value arg1, arg2;
     int op;
{
  register value val;

  COERCE_ENUM (arg1);
  COERCE_ENUM (arg2);

  if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT
       &&
       TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
      ||
      (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT
       &&
       TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT))
    error ("Argument to arithmetic operation not a number.");

  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT
      ||
      TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT)
    {
      double v1, v2, v;
      v1 = value_as_double (arg1);
      v2 = value_as_double (arg2);
      switch (op)
	{
	case BINOP_ADD:
	  v = v1 + v2;
	  break;

	case BINOP_SUB:
	  v = v1 - v2;
	  break;

	case BINOP_MUL:
	  v = v1 * v2;
	  break;

	case BINOP_DIV:
	  v = v1 / v2;
	  break;

	default:
	  error ("Integer-only operation on floating point number.");
	}

      val = allocate_value (builtin_type_double);
      *(double *) VALUE_CONTENTS (val) = v;
    }
  else
    {
      long v1, v2, v;
      v1 = value_as_long (arg1);
      v2 = value_as_long (arg2);

      switch (op)
	{
	case BINOP_ADD:
	  v = v1 + v2;
	  break;

	case BINOP_SUB:
	  v = v1 - v2;
	  break;

	case BINOP_MUL:
	  v = v1 * v2;
	  break;

	case BINOP_DIV:
	  v = v1 / v2;
	  break;

	case BINOP_REM:
	  v = v1 % v2;
	  break;

	case BINOP_LSH:
	  v = v1 << v2;
	  break;

	case BINOP_RSH:
	  v = v1 >> v2;
	  break;

	case BINOP_LOGAND:
	  v = v1 & v2;
	  break;

	case BINOP_LOGIOR:
	  v = v1 | v2;
	  break;

	case BINOP_LOGXOR:
	  v = v1 ^ v2;
	  break;

	case BINOP_AND:
	  v = v1 && v2;
	  break;

	case BINOP_OR:
	  v = v1 || v2;
	  break;

	case BINOP_MIN:
	  v = v1 < v2 ? v1 : v2;
	  break;

	case BINOP_MAX:
	  v = v1 > v2 ? v1 : v2;
	  break;

	default:
	  error ("Invalid binary operation on numbers.");
	}

      val = allocate_value (builtin_type_long);
      *(long *) VALUE_CONTENTS (val) = v;
    }

  return val;
}

/* Simulate the C operator ! -- return 1 if ARG1 contains zeros.  */

int
value_zerop (arg1)
     value arg1;
{
  register int len;
  register char *p;

  COERCE_ARRAY (arg1);

  len = TYPE_LENGTH (VALUE_TYPE (arg1));
  p = VALUE_CONTENTS (arg1);

  while (--len >= 0)
    {
      if (*p++)
	break;
    }

  return len < 0;
}

/* Simulate the C operator == by returning a 1
   iff ARG1 and ARG2 have equal contents.  */

int
value_equal (arg1, arg2)
     register value arg1, arg2;

{
  register int len;
  register char *p1, *p2;
  enum type_code code1;
  enum type_code code2;

  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg2);

  code1 = TYPE_CODE (VALUE_TYPE (arg1));
  code2 = TYPE_CODE (VALUE_TYPE (arg2));

  if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
    return value_as_long (arg1) == value_as_long (arg2);
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
	   && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
    return value_as_double (arg1) == value_as_double (arg2);
  else if ((code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT)
	   || (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT))
    return value_as_long (arg1) == value_as_long (arg2);
  else if (code1 == code2
	   && ((len = TYPE_LENGTH (VALUE_TYPE (arg1)))
	       == TYPE_LENGTH (VALUE_TYPE (arg2))))
    {
      p1 = VALUE_CONTENTS (arg1);
      p2 = VALUE_CONTENTS (arg2);
      while (--len >= 0)
	{
	  if (*p1++ != *p2++)
	    break;
	}
      return len < 0;
    }
  else
    error ("Invalid type combination in equality test.");
}

/* Simulate the C operator < by returning 1
   iff ARG1's contents are less than ARG2's.  */

int
value_less (arg1, arg2)
     register value arg1, arg2;
{
  register enum type_code code1;
  register enum type_code code2;

  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg2);

  code1 = TYPE_CODE (VALUE_TYPE (arg1));
  code2 = TYPE_CODE (VALUE_TYPE (arg2));

  if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
    return value_as_long (arg1) < value_as_long (arg2);
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
	   && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
    return value_as_double (arg1) < value_as_double (arg2);
  else if ((code1 == TYPE_CODE_PTR || code1 == TYPE_CODE_INT)
	   && (code2 == TYPE_CODE_PTR || code2 == TYPE_CODE_INT))
    return value_as_long (arg1) < value_as_long (arg2);
  else
    error ("Invalid type combination in ordering comparison.");
}

/* The unary operators - and ~.  Both free the argument ARG1.  */

value
value_neg (arg1)
     register value arg1;
{
  register struct type *type;

  COERCE_ENUM (arg1);

  type = VALUE_TYPE (arg1);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    return value_from_double (type, - value_as_double (arg1));
  else if (TYPE_CODE (type) == TYPE_CODE_INT)
    return value_from_long (type, - value_as_long (arg1));
  else
    error ("Argument to negate operation not a number.");
}

value
value_lognot (arg1)
     register value arg1;
{
  COERCE_ENUM (arg1);

  if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
    error ("Argument to complement operation not an integer.");

  return value_from_long (VALUE_TYPE (arg1), ~ value_as_long (arg1));
}

static
initialize ()
{
}

END_FILE