1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
|
/* Perform arithmetic and other operations on values, for GDB.
Copyright (C) 1986-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "value.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "target.h"
#include "language.h"
#include "target-float.h"
#include "infcall.h"
#include "gdbsupport/byte-vector.h"
#include "gdbarch.h"
/* Forward declarations. */
static struct value *value_subscripted_rvalue (struct value *array,
LONGEST index,
LONGEST lowerbound);
/* Define whether or not the C operator '/' truncates towards zero for
differently signed operands (truncation direction is undefined in C). */
#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif
/* Given a pointer, return the size of its target.
If the pointer type is void *, then return 1.
If the target type is incomplete, then error out.
This isn't a general purpose function, but just a
helper for value_ptradd. */
static LONGEST
find_size_for_pointer_math (struct type *ptr_type)
{
LONGEST sz = -1;
struct type *ptr_target;
gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
ptr_target = check_typedef (ptr_type->target_type ());
sz = type_length_units (ptr_target);
if (sz == 0)
{
if (ptr_type->code () == TYPE_CODE_VOID)
sz = 1;
else
{
const char *name;
name = ptr_target->name ();
if (name == NULL)
error (_("Cannot perform pointer math on incomplete types, "
"try casting to a known type, or void *."));
else
error (_("Cannot perform pointer math on incomplete type \"%s\", "
"try casting to a known type, or void *."), name);
}
}
return sz;
}
/* Given a pointer ARG1 and an integral value ARG2, return the
result of C-style pointer arithmetic ARG1 + ARG2. */
struct value *
value_ptradd (struct value *arg1, LONGEST arg2)
{
struct type *valptrtype;
LONGEST sz;
struct value *result;
arg1 = coerce_array (arg1);
valptrtype = check_typedef (value_type (arg1));
sz = find_size_for_pointer_math (valptrtype);
result = value_from_pointer (valptrtype,
value_as_address (arg1) + sz * arg2);
if (VALUE_LVAL (result) != lval_internalvar)
set_value_component_location (result, arg1);
return result;
}
/* Given two compatible pointer values ARG1 and ARG2, return the
result of C-style pointer arithmetic ARG1 - ARG2. */
LONGEST
value_ptrdiff (struct value *arg1, struct value *arg2)
{
struct type *type1, *type2;
LONGEST sz;
arg1 = coerce_array (arg1);
arg2 = coerce_array (arg2);
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
gdb_assert (type1->code () == TYPE_CODE_PTR);
gdb_assert (type2->code () == TYPE_CODE_PTR);
if (check_typedef (type1->target_type ())->length ()
!= check_typedef (type2->target_type ())->length ())
error (_("First argument of `-' is a pointer and "
"second argument is neither\n"
"an integer nor a pointer of the same type."));
sz = type_length_units (check_typedef (type1->target_type ()));
if (sz == 0)
{
warning (_("Type size unknown, assuming 1. "
"Try casting to a known type, or void *."));
sz = 1;
}
return (value_as_long (arg1) - value_as_long (arg2)) / sz;
}
/* Return the value of ARRAY[IDX].
ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
current language supports C-style arrays, it may also be TYPE_CODE_PTR.
See comments in value_coerce_array() for rationale for reason for
doing lower bounds adjustment here rather than there.
FIXME: Perhaps we should validate that the index is valid and if
verbosity is set, warn about invalid indices (but still use them). */
struct value *
value_subscript (struct value *array, LONGEST index)
{
bool c_style = current_language->c_style_arrays_p ();
struct type *tarray;
array = coerce_ref (array);
tarray = check_typedef (value_type (array));
if (tarray->code () == TYPE_CODE_ARRAY
|| tarray->code () == TYPE_CODE_STRING)
{
struct type *range_type = tarray->index_type ();
gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
if (!lowerbound.has_value ())
lowerbound = 0;
if (VALUE_LVAL (array) != lval_memory)
return value_subscripted_rvalue (array, index, *lowerbound);
gdb::optional<LONGEST> upperbound
= get_discrete_high_bound (range_type);
if (!upperbound.has_value ())
upperbound = -1;
if (index >= *lowerbound && index <= *upperbound)
return value_subscripted_rvalue (array, index, *lowerbound);
if (!c_style)
{
/* Emit warning unless we have an array of unknown size.
An array of unknown size has lowerbound 0 and upperbound -1. */
if (*upperbound > -1)
warning (_("array or string index out of range"));
/* fall doing C stuff */
c_style = true;
}
index -= *lowerbound;
array = value_coerce_array (array);
}
if (c_style)
return value_ind (value_ptradd (array, index));
else
error (_("not an array or string"));
}
/* Return the value of EXPR[IDX], expr an aggregate rvalue
(eg, a vector register). This routine used to promote floats
to doubles, but no longer does. */
static struct value *
value_subscripted_rvalue (struct value *array, LONGEST index,
LONGEST lowerbound)
{
struct type *array_type = check_typedef (value_type (array));
struct type *elt_type = array_type->target_type ();
LONGEST elt_size = type_length_units (elt_type);
/* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
in a byte. */
LONGEST stride = array_type->bit_stride ();
if (stride != 0)
{
struct gdbarch *arch = elt_type->arch ();
int unit_size = gdbarch_addressable_memory_unit_size (arch);
elt_size = stride / (unit_size * 8);
}
LONGEST elt_offs = elt_size * (index - lowerbound);
bool array_upper_bound_undefined
= array_type->bounds ()->high.kind () == PROP_UNDEFINED;
if (index < lowerbound
|| (!array_upper_bound_undefined
&& elt_offs >= type_length_units (array_type))
|| (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
{
if (type_not_associated (array_type))
error (_("no such vector element (vector not associated)"));
else if (type_not_allocated (array_type))
error (_("no such vector element (vector not allocated)"));
else
error (_("no such vector element"));
}
if (is_dynamic_type (elt_type))
{
CORE_ADDR address;
address = value_address (array) + elt_offs;
elt_type = resolve_dynamic_type (elt_type, {}, address);
}
return value_from_component (array, elt_type, elt_offs);
}
/* Check to see if either argument is a structure, or a reference to
one. This is called so we know whether to go ahead with the normal
binop or look for a user defined function instead.
For now, we do not overload the `=' operator. */
int
binop_types_user_defined_p (enum exp_opcode op,
struct type *type1, struct type *type2)
{
if (op == BINOP_ASSIGN)
return 0;
type1 = check_typedef (type1);
if (TYPE_IS_REFERENCE (type1))
type1 = check_typedef (type1->target_type ());
type2 = check_typedef (type2);
if (TYPE_IS_REFERENCE (type2))
type2 = check_typedef (type2->target_type ());
return (type1->code () == TYPE_CODE_STRUCT
|| type2->code () == TYPE_CODE_STRUCT);
}
/* Check to see if either argument is a structure, or a reference to
one. This is called so we know whether to go ahead with the normal
binop or look for a user defined function instead.
For now, we do not overload the `=' operator. */
int
binop_user_defined_p (enum exp_opcode op,
struct value *arg1, struct value *arg2)
{
return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
}
/* Check to see if argument is a structure. This is called so
we know whether to go ahead with the normal unop or look for a
user defined function instead.
For now, we do not overload the `&' operator. */
int
unop_user_defined_p (enum exp_opcode op, struct value *arg1)
{
struct type *type1;
if (op == UNOP_ADDR)
return 0;
type1 = check_typedef (value_type (arg1));
if (TYPE_IS_REFERENCE (type1))
type1 = check_typedef (type1->target_type ());
return type1->code () == TYPE_CODE_STRUCT;
}
/* Try to find an operator named OPERATOR which takes NARGS arguments
specified in ARGS. If the operator found is a static member operator
*STATIC_MEMFUNP will be set to 1, and otherwise 0.
The search if performed through find_overload_match which will handle
member operators, non member operators, operators imported implicitly or
explicitly, and perform correct overload resolution in all of the above
situations or combinations thereof. */
static struct value *
value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
int *static_memfuncp, enum noside noside)
{
struct symbol *symp = NULL;
struct value *valp = NULL;
find_overload_match (args, oper, BOTH /* could be method */,
&args[0] /* objp */,
NULL /* pass NULL symbol since symbol is unknown */,
&valp, &symp, static_memfuncp, 0, noside);
if (valp)
return valp;
if (symp)
{
/* This is a non member function and does not
expect a reference as its first argument
rather the explicit structure. */
args[0] = value_ind (args[0]);
return value_of_variable (symp, 0);
}
error (_("Could not find %s."), oper);
}
/* Lookup user defined operator NAME. Return a value representing the
function, otherwise return NULL. */
static struct value *
value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
char *name, int *static_memfuncp, enum noside noside)
{
struct value *result = NULL;
if (current_language->la_language == language_cplus)
{
result = value_user_defined_cpp_op (args, name, static_memfuncp,
noside);
}
else
result = value_struct_elt (argp, args, name, static_memfuncp,
"structure");
return result;
}
/* We know either arg1 or arg2 is a structure, so try to find the right
user defined function. Create an argument vector that calls
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
binary operator which is legal for GNU C++).
OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
is the opcode saying how to modify it. Otherwise, OTHEROP is
unused. */
struct value *
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
enum exp_opcode otherop, enum noside noside)
{
char *ptr;
char tstr[13];
int static_memfuncp;
arg1 = coerce_ref (arg1);
arg2 = coerce_ref (arg2);
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
error (_("Can't do that binary op on that type")); /* FIXME be explicit */
value *argvec_storage[3];
gdb::array_view<value *> argvec = argvec_storage;
argvec[1] = value_addr (arg1);
argvec[2] = arg2;
/* Make the right function name up. */
strcpy (tstr, "operator__");
ptr = tstr + 8;
switch (op)
{
case BINOP_ADD:
strcpy (ptr, "+");
break;
case BINOP_SUB:
strcpy (ptr, "-");
break;
case BINOP_MUL:
strcpy (ptr, "*");
break;
case BINOP_DIV:
strcpy (ptr, "/");
break;
case BINOP_REM:
strcpy (ptr, "%");
break;
case BINOP_LSH:
strcpy (ptr, "<<");
break;
case BINOP_RSH:
strcpy (ptr, ">>");
break;
case BINOP_BITWISE_AND:
strcpy (ptr, "&");
break;
case BINOP_BITWISE_IOR:
strcpy (ptr, "|");
break;
case BINOP_BITWISE_XOR:
strcpy (ptr, "^");
break;
case BINOP_LOGICAL_AND:
strcpy (ptr, "&&");
break;
case BINOP_LOGICAL_OR:
strcpy (ptr, "||");
break;
case BINOP_MIN:
strcpy (ptr, "<?");
break;
case BINOP_MAX:
strcpy (ptr, ">?");
break;
case BINOP_ASSIGN:
strcpy (ptr, "=");
break;
case BINOP_ASSIGN_MODIFY:
switch (otherop)
{
case BINOP_ADD:
strcpy (ptr, "+=");
break;
case BINOP_SUB:
strcpy (ptr, "-=");
break;
case BINOP_MUL:
strcpy (ptr, "*=");
break;
case BINOP_DIV:
strcpy (ptr, "/=");
break;
case BINOP_REM:
strcpy (ptr, "%=");
break;
case BINOP_BITWISE_AND:
strcpy (ptr, "&=");
break;
case BINOP_BITWISE_IOR:
strcpy (ptr, "|=");
break;
case BINOP_BITWISE_XOR:
strcpy (ptr, "^=");
break;
case BINOP_MOD: /* invalid */
default:
error (_("Invalid binary operation specified."));
}
break;
case BINOP_SUBSCRIPT:
strcpy (ptr, "[]");
break;
case BINOP_EQUAL:
strcpy (ptr, "==");
break;
case BINOP_NOTEQUAL:
strcpy (ptr, "!=");
break;
case BINOP_LESS:
strcpy (ptr, "<");
break;
case BINOP_GTR:
strcpy (ptr, ">");
break;
case BINOP_GEQ:
strcpy (ptr, ">=");
break;
case BINOP_LEQ:
strcpy (ptr, "<=");
break;
case BINOP_MOD: /* invalid */
default:
error (_("Invalid binary operation specified."));
}
argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
&static_memfuncp, noside);
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
argvec = argvec.slice (1);
}
if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
{
/* Static xmethods are not supported yet. */
gdb_assert (static_memfuncp == 0);
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
struct type *return_type
= result_type_of_xmethod (argvec[0], argvec.slice (1));
if (return_type == NULL)
error (_("Xmethod is missing return type."));
return value_zero (return_type, VALUE_LVAL (arg1));
}
return call_xmethod (argvec[0], argvec.slice (1));
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
struct type *return_type;
return_type = check_typedef (value_type (argvec[0]))->target_type ();
return value_zero (return_type, VALUE_LVAL (arg1));
}
return call_function_by_hand (argvec[0], NULL,
argvec.slice (1, 2 - static_memfuncp));
}
throw_error (NOT_FOUND_ERROR,
_("member function %s not found"), tstr);
}
/* We know that arg1 is a structure, so try to find a unary user
defined operator that matches the operator in question.
Create an argument vector that calls arg1.operator @ (arg1)
and return that value (where '@' is (almost) any unary operator which
is legal for GNU C++). */
struct value *
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
{
struct gdbarch *gdbarch = value_type (arg1)->arch ();
char *ptr;
char tstr[13], mangle_tstr[13];
int static_memfuncp, nargs;
arg1 = coerce_ref (arg1);
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
error (_("Can't do that unary op on that type")); /* FIXME be explicit */
value *argvec_storage[3];
gdb::array_view<value *> argvec = argvec_storage;
argvec[1] = value_addr (arg1);
argvec[2] = 0;
nargs = 1;
/* Make the right function name up. */
strcpy (tstr, "operator__");
ptr = tstr + 8;
strcpy (mangle_tstr, "__");
switch (op)
{
case UNOP_PREINCREMENT:
strcpy (ptr, "++");
break;
case UNOP_PREDECREMENT:
strcpy (ptr, "--");
break;
case UNOP_POSTINCREMENT:
strcpy (ptr, "++");
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
nargs ++;
break;
case UNOP_POSTDECREMENT:
strcpy (ptr, "--");
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
nargs ++;
break;
case UNOP_LOGICAL_NOT:
strcpy (ptr, "!");
break;
case UNOP_COMPLEMENT:
strcpy (ptr, "~");
break;
case UNOP_NEG:
strcpy (ptr, "-");
break;
case UNOP_PLUS:
strcpy (ptr, "+");
break;
case UNOP_IND:
strcpy (ptr, "*");
break;
case STRUCTOP_PTR:
strcpy (ptr, "->");
break;
default:
error (_("Invalid unary operation specified."));
}
argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
&static_memfuncp, noside);
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
argvec = argvec.slice (1);
}
if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
{
/* Static xmethods are not supported yet. */
gdb_assert (static_memfuncp == 0);
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
struct type *return_type
= result_type_of_xmethod (argvec[0], argvec[1]);
if (return_type == NULL)
error (_("Xmethod is missing return type."));
return value_zero (return_type, VALUE_LVAL (arg1));
}
return call_xmethod (argvec[0], argvec[1]);
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
struct type *return_type;
return_type = check_typedef (value_type (argvec[0]))->target_type ();
return value_zero (return_type, VALUE_LVAL (arg1));
}
return call_function_by_hand (argvec[0], NULL,
argvec.slice (1, nargs));
}
throw_error (NOT_FOUND_ERROR,
_("member function %s not found"), tstr);
}
/* Concatenate two values. One value must be an array; and the other
value must either be an array with the same element type, or be of
the array's element type. */
struct value *
value_concat (struct value *arg1, struct value *arg2)
{
struct type *type1 = check_typedef (value_type (arg1));
struct type *type2 = check_typedef (value_type (arg2));
if (type1->code () != TYPE_CODE_ARRAY && type2->code () != TYPE_CODE_ARRAY)
error ("no array provided to concatenation");
LONGEST low1, high1;
struct type *elttype1 = type1;
if (elttype1->code () == TYPE_CODE_ARRAY)
{
elttype1 = elttype1->target_type ();
if (!get_array_bounds (type1, &low1, &high1))
error (_("could not determine array bounds on left-hand-side of "
"array concatenation"));
}
else
{
low1 = 0;
high1 = 0;
}
LONGEST low2, high2;
struct type *elttype2 = type2;
if (elttype2->code () == TYPE_CODE_ARRAY)
{
elttype2 = elttype2->target_type ();
if (!get_array_bounds (type2, &low2, &high2))
error (_("could not determine array bounds on right-hand-side of "
"array concatenation"));
}
else
{
low2 = 0;
high2 = 0;
}
if (!types_equal (elttype1, elttype2))
error (_("concatenation with different element types"));
LONGEST lowbound = current_language->c_style_arrays_p () ? 0 : 1;
LONGEST n_elts = (high1 - low1 + 1) + (high2 - low2 + 1);
struct type *atype = lookup_array_range_type (elttype1,
lowbound,
lowbound + n_elts - 1);
struct value *result = allocate_value (atype);
gdb::array_view<gdb_byte> contents = value_contents_raw (result);
gdb::array_view<const gdb_byte> lhs_contents = value_contents (arg1);
gdb::array_view<const gdb_byte> rhs_contents = value_contents (arg2);
gdb::copy (lhs_contents, contents.slice (0, lhs_contents.size ()));
gdb::copy (rhs_contents, contents.slice (lhs_contents.size ()));
return result;
}
/* Integer exponentiation: V1**V2, where both arguments are
integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
static LONGEST
integer_pow (LONGEST v1, LONGEST v2)
{
if (v2 < 0)
{
if (v1 == 0)
error (_("Attempt to raise 0 to negative power."));
else
return 0;
}
else
{
/* The Russian Peasant's Algorithm. */
LONGEST v;
v = 1;
for (;;)
{
if (v2 & 1L)
v *= v1;
v2 >>= 1;
if (v2 == 0)
return v;
v1 *= v1;
}
}
}
/* Obtain argument values for binary operation, converting from
other types if one of them is not floating point. */
static void
value_args_as_target_float (struct value *arg1, struct value *arg2,
gdb_byte *x, struct type **eff_type_x,
gdb_byte *y, struct type **eff_type_y)
{
struct type *type1, *type2;
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
/* At least one of the arguments must be of floating-point type. */
gdb_assert (is_floating_type (type1) || is_floating_type (type2));
if (is_floating_type (type1) && is_floating_type (type2)
&& type1->code () != type2->code ())
/* The DFP extension to the C language does not allow mixing of
* decimal float types with other float types in expressions
* (see WDTR 24732, page 12). */
error (_("Mixing decimal floating types with "
"other floating types is not allowed."));
/* Obtain value of arg1, converting from other types if necessary. */
if (is_floating_type (type1))
{
*eff_type_x = type1;
memcpy (x, value_contents (arg1).data (), type1->length ());
}
else if (is_integral_type (type1))
{
*eff_type_x = type2;
if (type1->is_unsigned ())
target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
else
target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
}
else
error (_("Don't know how to convert from %s to %s."), type1->name (),
type2->name ());
/* Obtain value of arg2, converting from other types if necessary. */
if (is_floating_type (type2))
{
*eff_type_y = type2;
memcpy (y, value_contents (arg2).data (), type2->length ());
}
else if (is_integral_type (type2))
{
*eff_type_y = type1;
if (type2->is_unsigned ())
target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
else
target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
}
else
error (_("Don't know how to convert from %s to %s."), type1->name (),
type2->name ());
}
/* Assuming at last one of ARG1 or ARG2 is a fixed point value,
perform the binary operation OP on these two operands, and return
the resulting value (also as a fixed point). */
static struct value *
fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
struct type *type1 = check_typedef (value_type (arg1));
struct type *type2 = check_typedef (value_type (arg2));
const struct language_defn *language = current_language;
struct gdbarch *gdbarch = type1->arch ();
struct value *val;
gdb_mpq v1, v2, res;
gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
if (op == BINOP_MUL || op == BINOP_DIV)
{
v1 = value_to_gdb_mpq (arg1);
v2 = value_to_gdb_mpq (arg2);
/* The code below uses TYPE1 for the result type, so make sure
it is set properly. */
if (!is_fixed_point_type (type1))
type1 = type2;
}
else
{
if (!is_fixed_point_type (type1))
{
arg1 = value_cast (type2, arg1);
type1 = type2;
}
if (!is_fixed_point_type (type2))
{
arg2 = value_cast (type1, arg2);
type2 = type1;
}
v1.read_fixed_point (value_contents (arg1),
type_byte_order (type1), type1->is_unsigned (),
type1->fixed_point_scaling_factor ());
v2.read_fixed_point (value_contents (arg2),
type_byte_order (type2), type2->is_unsigned (),
type2->fixed_point_scaling_factor ());
}
auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
{
value *fp_val = allocate_value (type1);
fp.write_fixed_point
(value_contents_raw (fp_val),
type_byte_order (type1),
type1->is_unsigned (),
type1->fixed_point_scaling_factor ());
return fp_val;
};
switch (op)
{
case BINOP_ADD:
mpq_add (res.val, v1.val, v2.val);
val = fixed_point_to_value (res);
break;
case BINOP_SUB:
mpq_sub (res.val, v1.val, v2.val);
val = fixed_point_to_value (res);
break;
case BINOP_MIN:
val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
break;
case BINOP_MAX:
val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
break;
case BINOP_MUL:
mpq_mul (res.val, v1.val, v2.val);
val = fixed_point_to_value (res);
break;
case BINOP_DIV:
if (mpq_sgn (v2.val) == 0)
error (_("Division by zero"));
mpq_div (res.val, v1.val, v2.val);
val = fixed_point_to_value (res);
break;
case BINOP_EQUAL:
val = value_from_ulongest (language_bool_type (language, gdbarch),
mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
break;
case BINOP_LESS:
val = value_from_ulongest (language_bool_type (language, gdbarch),
mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
break;
default:
error (_("Integer-only operation on fixed point number."));
}
return val;
}
/* A helper function that finds the type to use for a binary operation
involving TYPE1 and TYPE2. */
static struct type *
promotion_type (struct type *type1, struct type *type2)
{
struct type *result_type;
if (is_floating_type (type1) || is_floating_type (type2))
{
/* If only one type is floating-point, use its type.
Otherwise use the bigger type. */
if (!is_floating_type (type1))
result_type = type2;
else if (!is_floating_type (type2))
result_type = type1;
else if (type2->length () > type1->length ())
result_type = type2;
else
result_type = type1;
}
else
{
/* Integer types. */
if (type1->length () > type2->length ())
result_type = type1;
else if (type2->length () > type1->length ())
result_type = type2;
else if (type1->is_unsigned ())
result_type = type1;
else if (type2->is_unsigned ())
result_type = type2;
else
result_type = type1;
}
return result_type;
}
static struct value *scalar_binop (struct value *arg1, struct value *arg2,
enum exp_opcode op);
/* Perform a binary operation on complex operands. */
static struct value *
complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
struct type *arg1_type = check_typedef (value_type (arg1));
struct type *arg2_type = check_typedef (value_type (arg2));
struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
if (arg1_type->code () == TYPE_CODE_COMPLEX)
{
arg1_real = value_real_part (arg1);
arg1_imag = value_imaginary_part (arg1);
}
else
{
arg1_real = arg1;
arg1_imag = value_zero (arg1_type, not_lval);
}
if (arg2_type->code () == TYPE_CODE_COMPLEX)
{
arg2_real = value_real_part (arg2);
arg2_imag = value_imaginary_part (arg2);
}
else
{
arg2_real = arg2;
arg2_imag = value_zero (arg2_type, not_lval);
}
struct type *comp_type = promotion_type (value_type (arg1_real),
value_type (arg2_real));
if (!can_create_complex_type (comp_type))
error (_("Argument to complex arithmetic operation not supported."));
arg1_real = value_cast (comp_type, arg1_real);
arg1_imag = value_cast (comp_type, arg1_imag);
arg2_real = value_cast (comp_type, arg2_real);
arg2_imag = value_cast (comp_type, arg2_imag);
struct type *result_type = init_complex_type (nullptr, comp_type);
struct value *result_real, *result_imag;
switch (op)
{
case BINOP_ADD:
case BINOP_SUB:
result_real = scalar_binop (arg1_real, arg2_real, op);
result_imag = scalar_binop (arg1_imag, arg2_imag, op);
break;
case BINOP_MUL:
{
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
result_real = scalar_binop (x1, x2, BINOP_SUB);
x1 = scalar_binop (arg1_real, arg2_imag, op);
x2 = scalar_binop (arg1_imag, arg2_real, op);
result_imag = scalar_binop (x1, x2, BINOP_ADD);
}
break;
case BINOP_DIV:
{
if (arg2_type->code () == TYPE_CODE_COMPLEX)
{
struct value *conjugate = value_complement (arg2);
/* We have to reconstruct ARG1, in case the type was
promoted. */
arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
struct value *numerator = scalar_binop (arg1, conjugate,
BINOP_MUL);
arg1_real = value_real_part (numerator);
arg1_imag = value_imaginary_part (numerator);
struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
arg2_real = scalar_binop (x1, x2, BINOP_ADD);
}
result_real = scalar_binop (arg1_real, arg2_real, op);
result_imag = scalar_binop (arg1_imag, arg2_real, op);
}
break;
case BINOP_EQUAL:
case BINOP_NOTEQUAL:
{
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
LONGEST v1 = value_as_long (x1);
LONGEST v2 = value_as_long (x2);
if (op == BINOP_EQUAL)
v1 = v1 && v2;
else
v1 = v1 || v2;
return value_from_longest (value_type (x1), v1);
}
break;
default:
error (_("Invalid binary operation on numbers."));
}
return value_literal_complex (result_real, result_imag, result_type);
}
/* Return the type's length in bits. */
static int
type_length_bits (type *type)
{
int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
return unit_size * 8 * type->length ();
}
/* Check whether the RHS value of a shift is valid in C/C++ semantics.
SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of
the shift count value, used to determine whether the type is
signed, and RESULT_TYPE is the result type. This is used to avoid
both negative and too-large shift amounts, which are undefined, and
would crash a GDB built with UBSan. Depending on the current
language, if the shift is not valid, this either warns and returns
false, or errors out. Returns true if valid. */
static bool
check_valid_shift_count (int op, type *result_type,
type *shift_count_type, ULONGEST shift_count)
{
if (!shift_count_type->is_unsigned () && (LONGEST) shift_count < 0)
{
auto error_or_warning = [] (const char *msg)
{
/* Shifts by a negative amount are always an error in Go. Other
languages are more permissive and their compilers just warn or
have modes to disable the errors. */
if (current_language->la_language == language_go)
error (("%s"), msg);
else
warning (("%s"), msg);
};
if (op == BINOP_RSH)
error_or_warning (_("right shift count is negative"));
else
error_or_warning (_("left shift count is negative"));
return false;
}
if (shift_count >= type_length_bits (result_type))
{
/* In Go, shifting by large amounts is defined. Be silent and
still return false, as the caller's error path does the right
thing for Go. */
if (current_language->la_language != language_go)
{
if (op == BINOP_RSH)
warning (_("right shift count >= width of type"));
else
warning (_("left shift count >= width of type"));
}
return false;
}
return true;
}
/* Perform a binary operation on two operands which have reasonable
representations as integers or floats. This includes booleans,
characters, integers, or floats.
Does not support addition and subtraction on pointers;
use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
static struct value *
scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
struct value *val;
struct type *type1, *type2, *result_type;
arg1 = coerce_ref (arg1);
arg2 = coerce_ref (arg2);
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
if (type1->code () == TYPE_CODE_COMPLEX
|| type2->code () == TYPE_CODE_COMPLEX)
return complex_binop (arg1, arg2, op);
if ((!is_floating_value (arg1)
&& !is_integral_type (type1)
&& !is_fixed_point_type (type1))
|| (!is_floating_value (arg2)
&& !is_integral_type (type2)
&& !is_fixed_point_type (type2)))
error (_("Argument to arithmetic operation not a number or boolean."));
if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
return fixed_point_binop (arg1, arg2, op);
if (is_floating_type (type1) || is_floating_type (type2))
{
result_type = promotion_type (type1, type2);
val = allocate_value (result_type);
struct type *eff_type_v1, *eff_type_v2;
gdb::byte_vector v1, v2;
v1.resize (result_type->length ());
v2.resize (result_type->length ());
value_args_as_target_float (arg1, arg2,
v1.data (), &eff_type_v1,
v2.data (), &eff_type_v2);
target_float_binop (op, v1.data (), eff_type_v1,
v2.data (), eff_type_v2,
value_contents_raw (val).data (), result_type);
}
else if (type1->code () == TYPE_CODE_BOOL
|| type2->code () == TYPE_CODE_BOOL)
{
LONGEST v1, v2, v = 0;
v1 = value_as_long (arg1);
v2 = value_as_long (arg2);
switch (op)
{
case BINOP_BITWISE_AND:
v = v1 & v2;
break;
case BINOP_BITWISE_IOR:
v = v1 | v2;
break;
case BINOP_BITWISE_XOR:
v = v1 ^ v2;
break;
case BINOP_EQUAL:
v = v1 == v2;
break;
case BINOP_NOTEQUAL:
v = v1 != v2;
break;
default:
error (_("Invalid operation on booleans."));
}
result_type = type1;
val = allocate_value (result_type);
store_signed_integer (value_contents_raw (val).data (),
result_type->length (),
type_byte_order (result_type),
v);
}
else
/* Integral operations here. */
{
/* Determine type length of the result, and if the operation should
be done unsigned. For exponentiation and shift operators,
use the length and type of the left operand. Otherwise,
use the signedness of the operand with the greater length.
If both operands are of equal length, use unsigned operation
if one of the operands is unsigned. */
if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
result_type = type1;
else
result_type = promotion_type (type1, type2);
if (result_type->is_unsigned ())
{
LONGEST v2_signed = value_as_long (arg2);
ULONGEST v1, v2, v = 0;
v1 = (ULONGEST) value_as_long (arg1);
v2 = (ULONGEST) v2_signed;
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
v = v1 - v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
case BINOP_INTDIV:
if (v2 != 0)
v = v1 / v2;
else
error (_("Division by zero"));
break;
case BINOP_EXP:
v = uinteger_pow (v1, v2_signed);
break;
case BINOP_REM:
if (v2 != 0)
v = v1 % v2;
else
error (_("Division by zero"));
break;
case BINOP_MOD:
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
v1 mod 0 has a defined value, v1. */
if (v2 == 0)
{
v = v1;
}
else
{
v = v1 / v2;
/* Note floor(v1/v2) == v1/v2 for unsigned. */
v = v1 - (v2 * v);
}
break;
case BINOP_LSH:
if (!check_valid_shift_count (op, result_type, type2, v2))
v = 0;
else
v = v1 << v2;
break;
case BINOP_RSH:
if (!check_valid_shift_count (op, result_type, type2, v2))
v = 0;
else
v = v1 >> v2;
break;
case BINOP_BITWISE_AND:
v = v1 & v2;
break;
case BINOP_BITWISE_IOR:
v = v1 | v2;
break;
case BINOP_BITWISE_XOR:
v = v1 ^ v2;
break;
case BINOP_LOGICAL_AND:
v = v1 && v2;
break;
case BINOP_LOGICAL_OR:
v = v1 || v2;
break;
case BINOP_MIN:
v = v1 < v2 ? v1 : v2;
break;
case BINOP_MAX:
v = v1 > v2 ? v1 : v2;
break;
case BINOP_EQUAL:
v = v1 == v2;
break;
case BINOP_NOTEQUAL:
v = v1 != v2;
break;
case BINOP_LESS:
v = v1 < v2;
break;
case BINOP_GTR:
v = v1 > v2;
break;
case BINOP_LEQ:
v = v1 <= v2;
break;
case BINOP_GEQ:
v = v1 >= v2;
break;
default:
error (_("Invalid binary operation on numbers."));
}
val = allocate_value (result_type);
store_unsigned_integer (value_contents_raw (val).data (),
value_type (val)->length (),
type_byte_order (result_type),
v);
}
else
{
LONGEST v1, v2, v = 0;
v1 = value_as_long (arg1);
v2 = value_as_long (arg2);
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
/* Avoid runtime error: signed integer overflow: \
0 - -9223372036854775808 cannot be represented in type
'long int'. */
v = (ULONGEST)v1 - (ULONGEST)v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
case BINOP_INTDIV:
if (v2 != 0)
v = v1 / v2;
else
error (_("Division by zero"));
break;
case BINOP_EXP:
v = integer_pow (v1, v2);
break;
case BINOP_REM:
if (v2 != 0)
v = v1 % v2;
else
error (_("Division by zero"));
break;
case BINOP_MOD:
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
X mod 0 has a defined value, X. */
if (v2 == 0)
{
v = v1;
}
else
{
v = v1 / v2;
/* Compute floor. */
if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
{
v--;
}
v = v1 - (v2 * v);
}
break;
case BINOP_LSH:
if (!check_valid_shift_count (op, result_type, type2, v2))
v = 0;
else
{
/* Cast to unsigned to avoid undefined behavior on
signed shift overflow (unless C++20 or later),
which would crash GDB when built with UBSan.
Note we don't warn on left signed shift overflow,
because starting with C++20, that is actually
defined behavior. Also, note GDB assumes 2's
complement throughout. */
v = (ULONGEST) v1 << v2;
}
break;
case BINOP_RSH:
if (!check_valid_shift_count (op, result_type, type2, v2))
{
/* Pretend the too-large shift was decomposed in a
number of smaller shifts. An arithmetic signed
right shift of a negative number always yields -1
with such semantics. This is the right thing to
do for Go, and we might as well do it for
languages where it is undefined. Also, pretend a
shift by a negative number was a shift by the
negative number cast to unsigned, which is the
same as shifting by a too-large number. */
if (v1 < 0)
v = -1;
else
v = 0;
}
else
v = v1 >> v2;
break;
case BINOP_BITWISE_AND:
v = v1 & v2;
break;
case BINOP_BITWISE_IOR:
v = v1 | v2;
break;
case BINOP_BITWISE_XOR:
v = v1 ^ v2;
break;
case BINOP_LOGICAL_AND:
v = v1 && v2;
break;
case BINOP_LOGICAL_OR:
v = v1 || v2;
break;
case BINOP_MIN:
v = v1 < v2 ? v1 : v2;
break;
case BINOP_MAX:
v = v1 > v2 ? v1 : v2;
break;
case BINOP_EQUAL:
v = v1 == v2;
break;
case BINOP_NOTEQUAL:
v = v1 != v2;
break;
case BINOP_LESS:
v = v1 < v2;
break;
case BINOP_GTR:
v = v1 > v2;
break;
case BINOP_LEQ:
v = v1 <= v2;
break;
case BINOP_GEQ:
v = v1 >= v2;
break;
default:
error (_("Invalid binary operation on numbers."));
}
val = allocate_value (result_type);
store_signed_integer (value_contents_raw (val).data (),
value_type (val)->length (),
type_byte_order (result_type),
v);
}
}
return val;
}
/* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
replicating SCALAR_VALUE for each element of the vector. Only scalar
types that can be cast to the type of one element of the vector are
acceptable. The newly created vector value is returned upon success,
otherwise an error is thrown. */
struct value *
value_vector_widen (struct value *scalar_value, struct type *vector_type)
{
/* Widen the scalar to a vector. */
struct type *eltype, *scalar_type;
struct value *elval;
LONGEST low_bound, high_bound;
int i;
vector_type = check_typedef (vector_type);
gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
&& vector_type->is_vector ());
if (!get_array_bounds (vector_type, &low_bound, &high_bound))
error (_("Could not determine the vector bounds"));
eltype = check_typedef (vector_type->target_type ());
elval = value_cast (eltype, scalar_value);
scalar_type = check_typedef (value_type (scalar_value));
/* If we reduced the length of the scalar then check we didn't loose any
important bits. */
if (eltype->length () < scalar_type->length ()
&& !value_equal (elval, scalar_value))
error (_("conversion of scalar to vector involves truncation"));
value *val = allocate_value (vector_type);
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
int elt_len = eltype->length ();
for (i = 0; i < high_bound - low_bound + 1; i++)
/* Duplicate the contents of elval into the destination vector. */
copy (value_contents_all (elval),
val_contents.slice (i * elt_len, elt_len));
return val;
}
/* Performs a binary operation on two vector operands by calling scalar_binop
for each pair of vector components. */
static struct value *
vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
{
struct type *type1, *type2, *eltype1, *eltype2;
int t1_is_vec, t2_is_vec, elsize, i;
LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
type1 = check_typedef (value_type (val1));
type2 = check_typedef (value_type (val2));
t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
&& type1->is_vector ()) ? 1 : 0;
t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
&& type2->is_vector ()) ? 1 : 0;
if (!t1_is_vec || !t2_is_vec)
error (_("Vector operations are only supported among vectors"));
if (!get_array_bounds (type1, &low_bound1, &high_bound1)
|| !get_array_bounds (type2, &low_bound2, &high_bound2))
error (_("Could not determine the vector bounds"));
eltype1 = check_typedef (type1->target_type ());
eltype2 = check_typedef (type2->target_type ());
elsize = eltype1->length ();
if (eltype1->code () != eltype2->code ()
|| elsize != eltype2->length ()
|| eltype1->is_unsigned () != eltype2->is_unsigned ()
|| low_bound1 != low_bound2 || high_bound1 != high_bound2)
error (_("Cannot perform operation on vectors with different types"));
value *val = allocate_value (type1);
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
scoped_value_mark mark;
for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
{
value *tmp = value_binop (value_subscript (val1, i),
value_subscript (val2, i), op);
copy (value_contents_all (tmp),
val_contents.slice (i * elsize, elsize));
}
return val;
}
/* Perform a binary operation on two operands. */
struct value *
value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
struct value *val;
struct type *type1 = check_typedef (value_type (arg1));
struct type *type2 = check_typedef (value_type (arg2));
int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
&& type1->is_vector ());
int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
&& type2->is_vector ());
if (!t1_is_vec && !t2_is_vec)
val = scalar_binop (arg1, arg2, op);
else if (t1_is_vec && t2_is_vec)
val = vector_binop (arg1, arg2, op);
else
{
/* Widen the scalar operand to a vector. */
struct value **v = t1_is_vec ? &arg2 : &arg1;
struct type *t = t1_is_vec ? type2 : type1;
if (t->code () != TYPE_CODE_FLT
&& t->code () != TYPE_CODE_DECFLOAT
&& !is_integral_type (t))
error (_("Argument to operation not a number or boolean."));
/* Replicate the scalar value to make a vector value. */
*v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
val = vector_binop (arg1, arg2, op);
}
return val;
}
/* See value.h. */
bool
value_logical_not (struct value *arg1)
{
int len;
const gdb_byte *p;
struct type *type1;
arg1 = coerce_array (arg1);
type1 = check_typedef (value_type (arg1));
if (is_floating_value (arg1))
return target_float_is_zero (value_contents (arg1).data (), type1);
len = type1->length ();
p = value_contents (arg1).data ();
while (--len >= 0)
{
if (*p++)
break;
}
return len < 0;
}
/* Perform a comparison on two string values (whose content are not
necessarily null terminated) based on their length. */
static int
value_strcmp (struct value *arg1, struct value *arg2)
{
int len1 = value_type (arg1)->length ();
int len2 = value_type (arg2)->length ();
const gdb_byte *s1 = value_contents (arg1).data ();
const gdb_byte *s2 = value_contents (arg2).data ();
int i, len = len1 < len2 ? len1 : len2;
for (i = 0; i < len; i++)
{
if (s1[i] < s2[i])
return -1;
else if (s1[i] > s2[i])
return 1;
else
continue;
}
if (len1 < len2)
return -1;
else if (len1 > len2)
return 1;
else
return 0;
}
/* Simulate the C operator == by returning a 1
iff ARG1 and ARG2 have equal contents. */
int
value_equal (struct value *arg1, struct value *arg2)
{
int len;
const gdb_byte *p1;
const gdb_byte *p2;
struct type *type1, *type2;
enum type_code code1;
enum type_code code2;
int is_int1, is_int2;
arg1 = coerce_array (arg1);
arg2 = coerce_array (arg2);
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
code1 = type1->code ();
code2 = type2->code ();
is_int1 = is_integral_type (type1);
is_int2 = is_integral_type (type2);
if (is_int1 && is_int2)
return longest_to_int (value_as_long (value_binop (arg1, arg2,
BINOP_EQUAL)));
else if ((is_floating_value (arg1) || is_int1)
&& (is_floating_value (arg2) || is_int2))
{
struct type *eff_type_v1, *eff_type_v2;
gdb::byte_vector v1, v2;
v1.resize (std::max (type1->length (), type2->length ()));
v2.resize (std::max (type1->length (), type2->length ()));
value_args_as_target_float (arg1, arg2,
v1.data (), &eff_type_v1,
v2.data (), &eff_type_v2);
return target_float_compare (v1.data (), eff_type_v1,
v2.data (), eff_type_v2) == 0;
}
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
is bigger. */
else if (code1 == TYPE_CODE_PTR && is_int2)
return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
else if (code2 == TYPE_CODE_PTR && is_int1)
return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
else if (code1 == code2
&& ((len = (int) type1->length ())
== (int) type2->length ()))
{
p1 = value_contents (arg1).data ();
p2 = value_contents (arg2).data ();
while (--len >= 0)
{
if (*p1++ != *p2++)
break;
}
return len < 0;
}
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
{
return value_strcmp (arg1, arg2) == 0;
}
else
error (_("Invalid type combination in equality test."));
}
/* Compare values based on their raw contents. Useful for arrays since
value_equal coerces them to pointers, thus comparing just the address
of the array instead of its contents. */
int
value_equal_contents (struct value *arg1, struct value *arg2)
{
struct type *type1, *type2;
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
return (type1->code () == type2->code ()
&& type1->length () == type2->length ()
&& memcmp (value_contents (arg1).data (),
value_contents (arg2).data (),
type1->length ()) == 0);
}
/* Simulate the C operator < by returning 1
iff ARG1's contents are less than ARG2's. */
int
value_less (struct value *arg1, struct value *arg2)
{
enum type_code code1;
enum type_code code2;
struct type *type1, *type2;
int is_int1, is_int2;
arg1 = coerce_array (arg1);
arg2 = coerce_array (arg2);
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
code1 = type1->code ();
code2 = type2->code ();
is_int1 = is_integral_type (type1);
is_int2 = is_integral_type (type2);
if ((is_int1 && is_int2)
|| (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
return longest_to_int (value_as_long (value_binop (arg1, arg2,
BINOP_LESS)));
else if ((is_floating_value (arg1) || is_int1)
&& (is_floating_value (arg2) || is_int2))
{
struct type *eff_type_v1, *eff_type_v2;
gdb::byte_vector v1, v2;
v1.resize (std::max (type1->length (), type2->length ()));
v2.resize (std::max (type1->length (), type2->length ()));
value_args_as_target_float (arg1, arg2,
v1.data (), &eff_type_v1,
v2.data (), &eff_type_v2);
return target_float_compare (v1.data (), eff_type_v1,
v2.data (), eff_type_v2) == -1;
}
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
return value_as_address (arg1) < value_as_address (arg2);
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
is bigger. */
else if (code1 == TYPE_CODE_PTR && is_int2)
return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
else if (code2 == TYPE_CODE_PTR && is_int1)
return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
return value_strcmp (arg1, arg2) < 0;
else
{
error (_("Invalid type combination in ordering comparison."));
return 0;
}
}
/* The unary operators +, - and ~. They free the argument ARG1. */
struct value *
value_pos (struct value *arg1)
{
struct type *type;
arg1 = coerce_ref (arg1);
type = check_typedef (value_type (arg1));
if (is_integral_type (type) || is_floating_value (arg1)
|| (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
|| type->code () == TYPE_CODE_COMPLEX)
return value_from_contents (type, value_contents (arg1).data ());
else
error (_("Argument to positive operation not a number."));
}
struct value *
value_neg (struct value *arg1)
{
struct type *type;
arg1 = coerce_ref (arg1);
type = check_typedef (value_type (arg1));
if (is_integral_type (type) || is_floating_type (type))
return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
else if (is_fixed_point_type (type))
return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
{
struct value *val = allocate_value (type);
struct type *eltype = check_typedef (type->target_type ());
int i;
LONGEST low_bound, high_bound;
if (!get_array_bounds (type, &low_bound, &high_bound))
error (_("Could not determine the vector bounds"));
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
int elt_len = eltype->length ();
for (i = 0; i < high_bound - low_bound + 1; i++)
{
value *tmp = value_neg (value_subscript (arg1, i));
copy (value_contents_all (tmp),
val_contents.slice (i * elt_len, elt_len));
}
return val;
}
else if (type->code () == TYPE_CODE_COMPLEX)
{
struct value *real = value_real_part (arg1);
struct value *imag = value_imaginary_part (arg1);
real = value_neg (real);
imag = value_neg (imag);
return value_literal_complex (real, imag, type);
}
else
error (_("Argument to negate operation not a number."));
}
struct value *
value_complement (struct value *arg1)
{
struct type *type;
struct value *val;
arg1 = coerce_ref (arg1);
type = check_typedef (value_type (arg1));
if (is_integral_type (type))
val = value_from_longest (type, ~value_as_long (arg1));
else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
{
struct type *eltype = check_typedef (type->target_type ());
int i;
LONGEST low_bound, high_bound;
if (!get_array_bounds (type, &low_bound, &high_bound))
error (_("Could not determine the vector bounds"));
val = allocate_value (type);
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
int elt_len = eltype->length ();
for (i = 0; i < high_bound - low_bound + 1; i++)
{
value *tmp = value_complement (value_subscript (arg1, i));
copy (value_contents_all (tmp),
val_contents.slice (i * elt_len, elt_len));
}
}
else if (type->code () == TYPE_CODE_COMPLEX)
{
/* GCC has an extension that treats ~complex as the complex
conjugate. */
struct value *real = value_real_part (arg1);
struct value *imag = value_imaginary_part (arg1);
imag = value_neg (imag);
return value_literal_complex (real, imag, type);
}
else
error (_("Argument to complement operation not an integer, boolean."));
return val;
}
/* The INDEX'th bit of SET value whose value_type is TYPE,
and whose value_contents is valaddr.
Return -1 if out of range, -2 other error. */
int
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
{
struct gdbarch *gdbarch = type->arch ();
LONGEST low_bound, high_bound;
LONGEST word;
unsigned rel_index;
struct type *range = type->index_type ();
if (!get_discrete_bounds (range, &low_bound, &high_bound))
return -2;
if (index < low_bound || index > high_bound)
return -1;
rel_index = index - low_bound;
word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
type_byte_order (type));
rel_index %= TARGET_CHAR_BIT;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
rel_index = TARGET_CHAR_BIT - 1 - rel_index;
return (word >> rel_index) & 1;
}
int
value_in (struct value *element, struct value *set)
{
int member;
struct type *settype = check_typedef (value_type (set));
struct type *eltype = check_typedef (value_type (element));
if (eltype->code () == TYPE_CODE_RANGE)
eltype = eltype->target_type ();
if (settype->code () != TYPE_CODE_SET)
error (_("Second argument of 'IN' has wrong type"));
if (eltype->code () != TYPE_CODE_INT
&& eltype->code () != TYPE_CODE_CHAR
&& eltype->code () != TYPE_CODE_ENUM
&& eltype->code () != TYPE_CODE_BOOL)
error (_("First argument of 'IN' has wrong type"));
member = value_bit_index (settype, value_contents (set).data (),
value_as_long (element));
if (member < 0)
error (_("First argument of 'IN' not in range"));
return member;
}
|