1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
|
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
Copyright 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
#include "arch-utils.h"
#include "regcache.h"
#include "symtab.h"
struct gdbarch_tdep
{
/* gdbarch target dependent data here. Currently unused for v850. */
};
/* Extra info which is saved in each frame_info. */
struct frame_extra_info
{
};
enum {
E_R0_REGNUM,
E_R1_REGNUM,
E_R2_REGNUM, E_SAVE1_START_REGNUM = E_R2_REGNUM, E_SAVE1_END_REGNUM = E_R2_REGNUM,
E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
E_R4_REGNUM,
E_R5_REGNUM,
E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
E_R7_REGNUM,
E_R8_REGNUM,
E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
E_R12_REGNUM,
E_R13_REGNUM,
E_R14_REGNUM,
E_R15_REGNUM,
E_R16_REGNUM,
E_R17_REGNUM,
E_R18_REGNUM,
E_R19_REGNUM,
E_R20_REGNUM, E_SAVE2_START_REGNUM = E_R20_REGNUM,
E_R21_REGNUM,
E_R22_REGNUM,
E_R23_REGNUM,
E_R24_REGNUM,
E_R25_REGNUM,
E_R26_REGNUM,
E_R27_REGNUM,
E_R28_REGNUM,
E_R29_REGNUM, E_SAVE2_END_REGNUM = E_R29_REGNUM, E_FP_RAW_REGNUM = E_R29_REGNUM,
E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
E_R31_REGNUM, E_SAVE3_START_REGNUM = E_R31_REGNUM, E_SAVE3_END_REGNUM = E_R31_REGNUM, E_RP_REGNUM = E_R31_REGNUM,
E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
E_R33_REGNUM,
E_R34_REGNUM,
E_R35_REGNUM,
E_R36_REGNUM,
E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
E_R38_REGNUM,
E_R39_REGNUM,
E_R40_REGNUM,
E_R41_REGNUM,
E_R42_REGNUM,
E_R43_REGNUM,
E_R44_REGNUM,
E_R45_REGNUM,
E_R46_REGNUM,
E_R47_REGNUM,
E_R48_REGNUM,
E_R49_REGNUM,
E_R50_REGNUM,
E_R51_REGNUM,
E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
E_R53_REGNUM,
E_R54_REGNUM,
E_R55_REGNUM,
E_R56_REGNUM,
E_R57_REGNUM,
E_R58_REGNUM,
E_R59_REGNUM,
E_R60_REGNUM,
E_R61_REGNUM,
E_R62_REGNUM,
E_R63_REGNUM,
E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
E_R65_REGNUM, E_FP_REGNUM = E_R65_REGNUM,
E_NUM_REGS
};
enum
{
v850_reg_size = 4
};
/* Size of all registers as a whole. */
enum
{
E_ALL_REGS_SIZE = (E_NUM_REGS) * v850_reg_size
};
/* Size of return datatype which fits into all return registers. */
enum
{
E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
};
static LONGEST call_dummy_nil[] = {0};
static char *v850_generic_reg_names[] =
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"pc", "fp"
};
static char *v850e_reg_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"pc", "fp"
};
char **v850_register_names = v850_generic_reg_names;
struct
{
char **regnames;
int mach;
}
v850_processor_type_table[] =
{
{
v850_generic_reg_names, bfd_mach_v850
}
,
{
v850e_reg_names, bfd_mach_v850e
}
,
{
NULL, 0
}
};
/* Info gleaned from scanning a function's prologue. */
struct pifsr /* Info about one saved reg */
{
int framereg; /* Frame reg (SP or FP) */
int offset; /* Offset from framereg */
int cur_frameoffset; /* Current frameoffset */
int reg; /* Saved register number */
};
struct prologue_info
{
int framereg;
int frameoffset;
int start_function;
struct pifsr *pifsrs;
};
static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs);
/* Function: v850_register_name
Returns the name of the v850/v850e register N. */
static const char *
v850_register_name (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_name: illegal register number %d",
regnum);
else
return v850_register_names[regnum];
}
/* Function: v850_register_byte
Returns the byte position in the register cache for register N. */
static int
v850_register_byte (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_byte: illegal register number %d",
regnum);
else
return regnum * v850_reg_size;
}
/* Function: v850_register_raw_size
Returns the number of bytes occupied by the register on the target. */
static int
v850_register_raw_size (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_raw_size: illegal register number %d",
regnum);
/* Only the PC has 4 Byte, all other registers 2 Byte. */
else
return v850_reg_size;
}
/* Function: v850_register_virtual_size
Returns the number of bytes occupied by the register as represented
internally by gdb. */
static int
v850_register_virtual_size (int regnum)
{
return v850_register_raw_size (regnum);
}
/* Function: v850_reg_virtual_type
Returns the default type for register N. */
static struct type *
v850_reg_virtual_type (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_virtual_type: illegal register number %d",
regnum);
else if (regnum == E_PC_REGNUM)
return builtin_type_uint32;
else
return builtin_type_int32;
}
static int
v850_type_is_scalar (struct type *t)
{
return (TYPE_CODE (t) != TYPE_CODE_STRUCT
&& TYPE_CODE (t) != TYPE_CODE_UNION
&& TYPE_CODE (t) != TYPE_CODE_ARRAY);
}
/* Should call_function allocate stack space for a struct return? */
static int
v850_use_struct_convention (int gcc_p, struct type *type)
{
/* According to ABI:
* return TYPE_LENGTH (type) > 8);
*/
/* Current implementation in gcc: */
int i;
struct type *fld_type, *tgt_type;
/* 1. The value is greater than 8 bytes -> returned by copying */
if (TYPE_LENGTH (type) > 8)
return 1;
/* 2. The value is a single basic type -> returned in register */
if (v850_type_is_scalar (type))
return 0;
/* The value is a structure or union with a single element
* and that element is either a single basic type or an array of
* a single basic type whoes size is greater than or equal to 4
* -> returned in register */
if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
&& TYPE_NFIELDS (type) == 1)
{
fld_type = TYPE_FIELD_TYPE (type, 0);
if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
return 0;
if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
{
tgt_type = TYPE_TARGET_TYPE (fld_type);
if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
return 0;
}
}
/* The value is a structure whose first element is an integer or
* a float, and which contains no arrays of more than two elements
* -> returned in register */
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
&& TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
{
for (i = 1; i < TYPE_NFIELDS (type); ++i)
{
fld_type = TYPE_FIELD_TYPE (type, 0);
if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
{
tgt_type = TYPE_TARGET_TYPE (fld_type);
if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
&& TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
return 1;
}
}
return 0;
}
/* The value is a union which contains at least one field which
* would be returned in registers according to these rules
* -> returned in register */
if (TYPE_CODE (type) == TYPE_CODE_UNION)
{
for (i = 0; i < TYPE_NFIELDS (type); ++i)
{
fld_type = TYPE_FIELD_TYPE (type, 0);
if (!v850_use_struct_convention (0, fld_type))
return 0;
}
}
return 1;
}
/* Structure for mapping bits in register lists to register numbers. */
struct reg_list
{
long mask;
int regno;
};
/* Helper function for v850_scan_prologue to handle prepare instruction. */
static void
handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
struct prologue_info *pi, struct pifsr **pifsr_ptr)
{
CORE_ADDR current_pc = *current_pc_ptr;
struct pifsr *pifsr = *pifsr_ptr;
long next = insn2 & 0xffff;
long list12 = ((insn & 1) << 16) + (next & 0xffe0);
long offset = (insn & 0x3e) << 1;
static struct reg_list reg_table[] =
{
{0x00800, 20}, /* r20 */
{0x00400, 21}, /* r21 */
{0x00200, 22}, /* r22 */
{0x00100, 23}, /* r23 */
{0x08000, 24}, /* r24 */
{0x04000, 25}, /* r25 */
{0x02000, 26}, /* r26 */
{0x01000, 27}, /* r27 */
{0x00080, 28}, /* r28 */
{0x00040, 29}, /* r29 */
{0x10000, 30}, /* ep */
{0x00020, 31}, /* lp */
{0, 0} /* end of table */
};
int i;
if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
current_pc += 2;
else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
current_pc += 2;
else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
current_pc += 4;
/* Calculate the total size of the saved registers, and add it
it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask)
offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value
the SP will have after the registers have been pushed and the
imm5 value has been subtracted from it. */
if (pifsr)
{
for (i = 0; reg_table[i].mask != 0; i++)
{
if (list12 & reg_table[i].mask)
{
int reg = reg_table[i].regno;
offset -= v850_register_raw_size (reg);
pifsr->reg = reg;
pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
}
}
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
/* Set result parameters. */
*current_pc_ptr = current_pc;
*pifsr_ptr = pifsr;
}
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
FIXME: the SR bit of the register list is not supported; must check
that the compiler does not ever generate this bit. */
static void
handle_pushm (int insn, int insn2, struct prologue_info *pi,
struct pifsr **pifsr_ptr)
{
struct pifsr *pifsr = *pifsr_ptr;
long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
long offset = 0;
static struct reg_list pushml_reg_table[] =
{
{0x80000, E_PS_REGNUM}, /* PSW */
{0x40000, 1}, /* r1 */
{0x20000, 2}, /* r2 */
{0x10000, 3}, /* r3 */
{0x00800, 4}, /* r4 */
{0x00400, 5}, /* r5 */
{0x00200, 6}, /* r6 */
{0x00100, 7}, /* r7 */
{0x08000, 8}, /* r8 */
{0x04000, 9}, /* r9 */
{0x02000, 10}, /* r10 */
{0x01000, 11}, /* r11 */
{0x00080, 12}, /* r12 */
{0x00040, 13}, /* r13 */
{0x00020, 14}, /* r14 */
{0x00010, 15}, /* r15 */
{0, 0} /* end of table */
};
static struct reg_list pushmh_reg_table[] =
{
{0x80000, 16}, /* r16 */
{0x40000, 17}, /* r17 */
{0x20000, 18}, /* r18 */
{0x10000, 19}, /* r19 */
{0x00800, 20}, /* r20 */
{0x00400, 21}, /* r21 */
{0x00200, 22}, /* r22 */
{0x00100, 23}, /* r23 */
{0x08000, 24}, /* r24 */
{0x04000, 25}, /* r25 */
{0x02000, 26}, /* r26 */
{0x01000, 27}, /* r27 */
{0x00080, 28}, /* r28 */
{0x00040, 29}, /* r29 */
{0x00010, 30}, /* r30 */
{0x00020, 31}, /* r31 */
{0, 0} /* end of table */
};
struct reg_list *reg_table;
int i;
/* Is this a pushml or a pushmh? */
if ((insn2 & 7) == 1)
reg_table = pushml_reg_table;
else
reg_table = pushmh_reg_table;
/* Calculate the total size of the saved registers, and add it
it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask)
offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value
the SP will have after the registers have been pushed and the
imm5 value is subtracted from it. */
if (pifsr)
{
for (i = 0; reg_table[i].mask != 0; i++)
{
if (list12 & reg_table[i].mask)
{
int reg = reg_table[i].regno;
offset -= v850_register_raw_size (reg);
pifsr->reg = reg;
pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
}
}
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
/* Set result parameters. */
*pifsr_ptr = pifsr;
}
/* Function: scan_prologue
Scan the prologue of the function that contains PC, and record what
we find in PI. Returns the pc after the prologue. Note that the
addresses saved in frame->saved_regs are just frame relative (negative
offsets from the frame pointer). This is because we don't know the
actual value of the frame pointer yet. In some circumstances, the
frame pointer can't be determined till after we have scanned the
prologue. */
static CORE_ADDR
v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
{
CORE_ADDR func_addr, prologue_end, current_pc;
struct pifsr *pifsr, *pifsr_tmp;
int fp_used;
int ep_used;
int reg;
CORE_ADDR save_pc, save_end;
int regsave_func_p;
int r12_tmp;
/* First, figure out the bounds of the prologue so that we can limit the
search to something reasonable. */
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (func_addr == entry_point_address ())
pi->start_function = 1;
else
pi->start_function = 0;
#if 0
if (sal.line == 0)
prologue_end = pc;
else
prologue_end = sal.end;
#else
prologue_end = pc;
#endif
}
else
{ /* We're in the boondocks */
func_addr = pc - 100;
prologue_end = pc;
}
prologue_end = min (prologue_end, pc);
/* Now, search the prologue looking for instructions that setup fp, save
rp, adjust sp and such. We also record the frame offset of any saved
registers. */
pi->frameoffset = 0;
pi->framereg = E_SP_REGNUM;
fp_used = 0;
ep_used = 0;
pifsr = pi->pifsrs;
regsave_func_p = 0;
save_pc = 0;
save_end = 0;
r12_tmp = 0;
#ifdef DEBUG
printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
(long) func_addr, (long) prologue_end);
#endif
for (current_pc = func_addr; current_pc < prologue_end;)
{
int insn;
int insn2 = -1; /* dummy value */
#ifdef DEBUG
printf_filtered ("0x%.8lx ", (long) current_pc);
TARGET_PRINT_INSN (current_pc, &tm_print_insn_info);
#endif
insn = read_memory_unsigned_integer (current_pc, 2);
current_pc += 2;
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
{
insn2 = read_memory_unsigned_integer (current_pc, 2);
current_pc += 2;
}
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
{ /* jarl <func>,10 */
long low_disp = insn2 & ~(long) 1;
long disp = (((((insn & 0x3f) << 16) + low_disp)
& ~(long) 1) ^ 0x00200000) - 0x00200000;
save_pc = current_pc;
save_end = prologue_end;
regsave_func_p = 1;
current_pc += disp - 4;
prologue_end = (current_pc
+ (2 * 3) /* moves to/from ep */
+ 4 /* addi <const>,sp,sp */
+ 2 /* jmp [r10] */
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
+ 20); /* slop area */
#ifdef DEBUG
printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
disp, low_disp, (long) current_pc + 2);
#endif
continue;
}
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
{ /* callt <imm6> */
long ctbp = read_register (E_CTBP_REGNUM);
long adr = ctbp + ((insn & 0x3f) << 1);
save_pc = current_pc;
save_end = prologue_end;
regsave_func_p = 1;
current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
prologue_end = (current_pc
+ (2 * 3) /* prepare list2,imm5,sp/imm */
+ 4 /* ctret */
+ 20); /* slop area */
#ifdef DEBUG
printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n",
ctbp, adr, (long) current_pc);
#endif
continue;
}
else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
{
handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
continue;
}
else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
{ /* ctret after processing register save function */
current_pc = save_pc;
prologue_end = save_end;
regsave_func_p = 0;
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
continue;
}
else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
{ /* pushml, pushmh */
handle_pushm (insn, insn2, pi, &pifsr);
continue;
}
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
{ /* jmp after processing register save function */
current_pc = save_pc;
prologue_end = save_end;
regsave_func_p = 0;
#ifdef DEBUG
printf_filtered ("\tfound jmp after regsave func");
#endif
continue;
}
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|| (insn & 0xffe0) == 0x0060 /* jmp */
|| (insn & 0x0780) == 0x0580) /* branch */
{
#ifdef DEBUG
printf_filtered ("\n");
#endif
break; /* Ran into end of prologue */
}
else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) /* addi <imm>,sp,sp */
pi->frameoffset += insn2;
else if (insn == ((E_FP_RAW_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,fp */
{
fp_used = 1;
pi->framereg = E_FP_RAW_REGNUM;
}
else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) /* movhi hi(const),r0,r12 */
r12_tmp = insn2 << 16;
else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) /* movea lo(const),r12,r12 */
r12_tmp += insn2;
else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) /* add r12,sp */
pi->frameoffset = r12_tmp;
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,ep */
ep_used = 1;
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) /* mov r1,ep */
ep_used = 0;
else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|| (fp_used
&& (insn & 0x07ff) == (0x0760 | E_FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
&& pifsr
&& (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{
pifsr->reg = reg;
pifsr->offset = insn2 & ~1;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
else if (ep_used /* sst.w <reg>,<offset>[ep] */
&& ((insn & 0x0781) == 0x0501)
&& pifsr
&& (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{
pifsr->reg = reg;
pifsr->offset = (insn & 0x007e) << 1;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
#ifdef DEBUG
printf_filtered ("\n");
#endif
}
if (pifsr)
pifsr->framereg = 0; /* Tie off last entry */
/* Fix up any offsets to the final offset. If a frame pointer was created, use it
instead of the stack pointer. */
for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
{
pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
pifsr_tmp->framereg = pi->framereg;
#ifdef DEBUG
printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
#endif
}
#ifdef DEBUG
printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
#endif
return current_pc;
}
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
v850_find_callers_reg (struct frame_info *fi, int regnum)
{
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->saved_regs[regnum] != 0)
return read_memory_unsigned_integer (fi->saved_regs[regnum],
v850_register_raw_size (regnum));
return read_register (regnum);
}
/* Function: frame_chain
Figure out the frame prior to FI. Unfortunately, this involves
scanning the prologue of the caller, which will also be done
shortly by v850_init_extra_frame_info. For the dummy frame, we
just return the stack pointer that was in use at the time the
function call was made. */
CORE_ADDR
v850_frame_chain (struct frame_info *fi)
{
struct prologue_info pi;
CORE_ADDR callers_pc, fp;
/* First, find out who called us */
callers_pc = FRAME_SAVED_PC (fi);
/* If caller is a call-dummy, then our FP bears no relation to his FP! */
fp = v850_find_callers_reg (fi, E_FP_RAW_REGNUM);
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
return fp; /* caller is call-dummy: return oldest value of FP */
/* Caller is NOT a call-dummy, so everything else should just work.
Even if THIS frame is a call-dummy! */
pi.pifsrs = NULL;
v850_scan_prologue (callers_pc, &pi);
if (pi.start_function)
return 0; /* Don't chain beyond the start function */
if (pi.framereg == E_FP_RAW_REGNUM)
return v850_find_callers_reg (fi, pi.framereg);
return fi->frame - pi.frameoffset;
}
/* Function: skip_prologue
Return the address of the first code past the prologue of the function. */
CORE_ADDR
v850_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end;
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end < func_end)
return sal.end;
else
/* Either there's no line info, or the line after the prologue is after
the end of the function. In this case, there probably isn't a
prologue. */
return pc;
}
/* We can't find the start of this function, so there's nothing we can do. */
return pc;
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
void
v850_pop_frame (void)
{
struct frame_info *frame = get_current_frame ();
int regnum;
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
write_register (E_PC_REGNUM, FRAME_SAVED_PC (frame));
for (regnum = 0; regnum < E_NUM_REGS; regnum++)
if (frame->saved_regs[regnum] != 0)
write_register (regnum,
read_memory_unsigned_integer (frame->saved_regs[regnum],
v850_register_raw_size (regnum)));
write_register (E_SP_REGNUM, get_frame_base (frame));
}
flush_cached_frames ();
}
/* Function: push_arguments
Setup arguments and RP for a call to the target. First four args
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
are passed by reference. 64 bit quantities (doubles and long
longs) may be split between the regs and the stack. When calling a
function that returns a struct, a pointer to the struct is passed
in as a secret first argument (always in R6).
Stack space for the args has NOT been allocated: that job is up to us.
*/
CORE_ADDR
v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int argnum;
int len = 0;
int stack_offset;
/* First, just for safety, make sure stack is aligned */
sp &= ~3;
/* The offset onto the stack at which we will start copying parameters
(after the registers are used up) begins at 16 rather than at zero.
I don't really know why, that's just the way it seems to work. */
stack_offset = 16;
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
sp -= len + stack_offset; /* possibly over-allocating, but it works... */
/* (you might think we could allocate 16 bytes */
/* less, but the ABI seems to use it all! ) */
argreg = E_ARG0_REGNUM;
/* the struct_return pointer occupies the first parameter-passing reg */
if (struct_return)
argreg++;
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. There are 16 bytes
in four registers available. Loop thru args from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
char *val;
char valbuf[v850_register_raw_size (E_ARG0_REGNUM)];
if (!v850_type_is_scalar (VALUE_TYPE (*args))
&& TYPE_LENGTH (VALUE_TYPE (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
{
store_address (valbuf, 4, VALUE_ADDRESS (*args));
len = 4;
val = valbuf;
}
else
{
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *) VALUE_CONTENTS (*args);
}
while (len > 0)
if (argreg <= E_ARGLAST_REGNUM)
{
CORE_ADDR regval;
regval = extract_address (val, v850_register_raw_size (argreg));
write_register (argreg, regval);
len -= v850_register_raw_size (argreg);
val += v850_register_raw_size (argreg);
argreg++;
}
else
{
write_memory (sp + stack_offset, val, 4);
len -= 4;
val += 4;
stack_offset += 4;
}
args++;
}
return sp;
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
CORE_ADDR
v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
write_register (E_RP_REGNUM, CALL_DUMMY_ADDRESS ());
return sp;
}
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if E_RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
CORE_ADDR
v850_frame_saved_pc (struct frame_info *fi)
{
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return deprecated_read_register_dummy (fi->pc, fi->frame, E_PC_REGNUM);
else
return v850_find_callers_reg (fi, E_RP_REGNUM);
}
/* Function: fix_call_dummy
Pokes the callee function's address into the CALL_DUMMY assembly stub.
Assumes that the CALL_DUMMY looks like this:
jarl <offset24>, r31
trap
*/
void
v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
{
long offset24;
offset24 = (long) fun - (long) entry_point_address ();
offset24 &= 0x3fffff;
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
}
static CORE_ADDR
v850_saved_pc_after_call (struct frame_info *ignore)
{
return read_register (E_RP_REGNUM);
}
static void
v850_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
CORE_ADDR return_buffer;
if (!v850_use_struct_convention (0, type))
{
/* Scalar return values of <= 8 bytes are returned in
E_V0_REGNUM to E_V1_REGNUM. */
memcpy (valbuf,
®buf[REGISTER_BYTE (E_V0_REGNUM)],
TYPE_LENGTH (type));
}
else
{
/* Aggregates and return values > 8 bytes are returned in memory,
pointed to by R6. */
return_buffer =
extract_address (regbuf + REGISTER_BYTE (E_V0_REGNUM),
REGISTER_RAW_SIZE (E_V0_REGNUM));
read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
}
}
const static unsigned char *
v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] = { 0x85, 0x05 };
*lenptr = sizeof (breakpoint);
return breakpoint;
}
static CORE_ADDR
v850_extract_struct_value_address (char *regbuf)
{
return extract_address (regbuf + v850_register_byte (E_V0_REGNUM),
v850_register_raw_size (E_V0_REGNUM));
}
static void
v850_store_return_value (struct type *type, char *valbuf)
{
CORE_ADDR return_buffer;
if (!v850_use_struct_convention (0, type))
deprecated_write_register_bytes (REGISTER_BYTE (E_V0_REGNUM), valbuf,
TYPE_LENGTH (type));
else
{
return_buffer = read_register (E_V0_REGNUM);
write_memory (return_buffer, valbuf, TYPE_LENGTH (type));
}
}
static void
v850_frame_init_saved_regs (struct frame_info *fi)
{
struct prologue_info pi;
struct pifsr pifsrs[E_NUM_REGS + 1], *pifsr;
CORE_ADDR func_addr, func_end;
if (!fi->saved_regs)
{
frame_saved_regs_zalloc (fi);
/* The call dummy doesn't save any registers on the stack, so we
can return now. */
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return;
/* Find the beginning of this function, so we can analyze its
prologue. */
if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
{
pi.pifsrs = pifsrs;
v850_scan_prologue (fi->pc, &pi);
if (!fi->next && pi.framereg == E_SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
{
fi->saved_regs[pifsr->reg] = pifsr->offset + fi->frame;
if (pifsr->framereg == E_SP_REGNUM)
fi->saved_regs[pifsr->reg] += pi.frameoffset;
}
}
/* Else we're out of luck (can't debug completely stripped code).
FIXME. */
}
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
static void
v850_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
struct prologue_info pi;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
v850_frame_init_saved_regs (fi);
}
static void
v850_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
write_register (E_ARG0_REGNUM, addr);
}
static CORE_ADDR
v850_target_read_fp (void)
{
return read_register (E_FP_RAW_REGNUM);
}
static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
static LONGEST call_dummy_words[1] = { 0 };
struct gdbarch_tdep *tdep = NULL;
struct gdbarch *gdbarch;
int i;
/* find a candidate among the list of pre-declared architectures. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return (arches->gdbarch);
#if 0
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif
/* Change the register names based on the current machine type. */
if (info.bfd_arch_info->arch != bfd_arch_v850)
return 0;
gdbarch = gdbarch_alloc (&info, 0);
for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
{
if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach)
{
v850_register_names = v850_processor_type_table[i].regnames;
tm_print_insn_info.mach = info.bfd_arch_info->mach;
break;
}
}
/*
* Basic register fields and methods.
*/
set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
set_gdbarch_register_name (gdbarch, v850_register_name);
set_gdbarch_register_size (gdbarch, v850_reg_size);
set_gdbarch_register_bytes (gdbarch, E_ALL_REGS_SIZE);
set_gdbarch_register_byte (gdbarch, v850_register_byte);
set_gdbarch_register_raw_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_virtual_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_type (gdbarch, v850_reg_virtual_type);
set_gdbarch_read_fp (gdbarch, v850_target_read_fp);
/*
* Frame Info
*/
set_gdbarch_init_extra_frame_info (gdbarch, v850_init_extra_frame_info);
set_gdbarch_frame_init_saved_regs (gdbarch, v850_frame_init_saved_regs);
set_gdbarch_frame_chain (gdbarch, v850_frame_chain);
set_gdbarch_saved_pc_after_call (gdbarch, v850_saved_pc_after_call);
set_gdbarch_frame_saved_pc (gdbarch, v850_frame_saved_pc);
set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
/*
* Miscelany
*/
/* Stack grows up. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
/* PC stops zero byte after a trap instruction
(which means: exactly on trap instruction). */
set_gdbarch_decr_pc_after_break (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_function_start_offset (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_frame_args_skip (gdbarch, 0);
/* OK to default this value to 'unknown'. */
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
/* W/o prototype, coerce float args to double. */
set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double);
/*
* Call Dummies
*
* These values and methods are used when gdb calls a target function. */
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, v850_push_return_address);
set_gdbarch_deprecated_extract_return_value (gdbarch, v850_extract_return_value);
set_gdbarch_push_arguments (gdbarch, v850_push_arguments);
set_gdbarch_pop_frame (gdbarch, v850_pop_frame);
set_gdbarch_store_struct_return (gdbarch, v850_store_struct_return);
set_gdbarch_deprecated_store_return_value (gdbarch, v850_store_return_value);
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, v850_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, v850_use_struct_convention);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
/* set_gdbarch_call_dummy_stack_adjust */
set_gdbarch_fix_call_dummy (gdbarch, v850_fix_call_dummy);
set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
return gdbarch;
}
void
_initialize_v850_tdep (void)
{
tm_print_insn = print_insn_v850;
register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
}
|