aboutsummaryrefslogtreecommitdiff
path: root/gdb/v850-tdep.c
blob: 8bd74eaa3b0885bdcc0f67542102ca97ca86e60b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.

   Copyright (C) 1996-2021 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "dwarf2/frame.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "gdbcore.h"
#include "arch-utils.h"
#include "regcache.h"
#include "dis-asm.h"
#include "osabi.h"
#include "elf-bfd.h"
#include "elf/v850.h"

enum
  {
    /* General purpose registers.  */
    E_R0_REGNUM,
    E_R1_REGNUM,
    E_R2_REGNUM,
    E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
    E_R4_REGNUM,
    E_R5_REGNUM,
    E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
    E_R7_REGNUM,
    E_R8_REGNUM,
    E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
    E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
    E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
    E_R12_REGNUM,
    E_R13_REGNUM,
    E_R14_REGNUM,
    E_R15_REGNUM,
    E_R16_REGNUM,
    E_R17_REGNUM,
    E_R18_REGNUM,
    E_R19_REGNUM,
    E_R20_REGNUM,
    E_R21_REGNUM,
    E_R22_REGNUM,
    E_R23_REGNUM,
    E_R24_REGNUM,
    E_R25_REGNUM,
    E_R26_REGNUM,
    E_R27_REGNUM,
    E_R28_REGNUM,
    E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
    E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
    E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,

    /* System registers - main banks.  */
    E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
    E_R33_REGNUM,
    E_R34_REGNUM,
    E_R35_REGNUM,
    E_R36_REGNUM,
    E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
    E_R38_REGNUM,
    E_R39_REGNUM,
    E_R40_REGNUM,
    E_R41_REGNUM,
    E_R42_REGNUM,
    E_R43_REGNUM,
    E_R44_REGNUM,
    E_R45_REGNUM,
    E_R46_REGNUM,
    E_R47_REGNUM,
    E_R48_REGNUM,
    E_R49_REGNUM,
    E_R50_REGNUM,
    E_R51_REGNUM,
    E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
    E_R53_REGNUM,
    E_R54_REGNUM,
    E_R55_REGNUM,
    E_R56_REGNUM,
    E_R57_REGNUM,
    E_R58_REGNUM,
    E_R59_REGNUM,
    E_R60_REGNUM,
    E_R61_REGNUM,
    E_R62_REGNUM,
    E_R63_REGNUM,

    /* PC.  */
    E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
    E_R65_REGNUM,
    E_NUM_OF_V850_REGS,
    E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,

    /* System registers - MPV (PROT00) bank.  */
    E_R66_REGNUM = E_NUM_OF_V850_REGS,
    E_R67_REGNUM,
    E_R68_REGNUM,
    E_R69_REGNUM,
    E_R70_REGNUM,
    E_R71_REGNUM,
    E_R72_REGNUM,
    E_R73_REGNUM,
    E_R74_REGNUM,
    E_R75_REGNUM,
    E_R76_REGNUM,
    E_R77_REGNUM,
    E_R78_REGNUM,
    E_R79_REGNUM,
    E_R80_REGNUM,
    E_R81_REGNUM,
    E_R82_REGNUM,
    E_R83_REGNUM,
    E_R84_REGNUM,
    E_R85_REGNUM,
    E_R86_REGNUM,
    E_R87_REGNUM,
    E_R88_REGNUM,
    E_R89_REGNUM,
    E_R90_REGNUM,
    E_R91_REGNUM,
    E_R92_REGNUM,
    E_R93_REGNUM,

    /* System registers - MPU (PROT01) bank.  */
    E_R94_REGNUM,
    E_R95_REGNUM,
    E_R96_REGNUM,
    E_R97_REGNUM,
    E_R98_REGNUM,
    E_R99_REGNUM,
    E_R100_REGNUM,
    E_R101_REGNUM,
    E_R102_REGNUM,
    E_R103_REGNUM,
    E_R104_REGNUM,
    E_R105_REGNUM,
    E_R106_REGNUM,
    E_R107_REGNUM,
    E_R108_REGNUM,
    E_R109_REGNUM,
    E_R110_REGNUM,
    E_R111_REGNUM,
    E_R112_REGNUM,
    E_R113_REGNUM,
    E_R114_REGNUM,
    E_R115_REGNUM,
    E_R116_REGNUM,
    E_R117_REGNUM,
    E_R118_REGNUM,
    E_R119_REGNUM,
    E_R120_REGNUM,
    E_R121_REGNUM,

    /* FPU system registers.  */
    E_R122_REGNUM,
    E_R123_REGNUM,
    E_R124_REGNUM,
    E_R125_REGNUM,
    E_R126_REGNUM,
    E_R127_REGNUM,
    E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
    E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
    E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
    E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
    E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
    E_R133_REGNUM,
    E_R134_REGNUM,
    E_R135_REGNUM,
    E_R136_REGNUM,
    E_R137_REGNUM,
    E_R138_REGNUM,
    E_R139_REGNUM,
    E_R140_REGNUM,
    E_R141_REGNUM,
    E_R142_REGNUM,
    E_R143_REGNUM,
    E_R144_REGNUM,
    E_R145_REGNUM,
    E_R146_REGNUM,
    E_R147_REGNUM,
    E_R148_REGNUM,
    E_R149_REGNUM,
    E_NUM_OF_V850E2_REGS,

    /* v850e3v5 system registers, selID 1 thru 7.  */
    E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
    E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,

    E_SELID_2_R0_REGNUM,
    E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,

    E_SELID_3_R0_REGNUM,
    E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,

    E_SELID_4_R0_REGNUM,
    E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,

    E_SELID_5_R0_REGNUM,
    E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,

    E_SELID_6_R0_REGNUM,
    E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,

    E_SELID_7_R0_REGNUM,
    E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,

    /* v850e3v5 vector registers.  */
    E_VR0_REGNUM,
    E_VR31_REGNUM = E_VR0_REGNUM + 31,

    E_NUM_OF_V850E3V5_REGS,

    /* Total number of possible registers.  */
    E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
  };

enum
{
  v850_reg_size = 4
};

/* Size of return datatype which fits into all return registers.  */
enum
{
  E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
};

/* When v850 support was added to GCC in the late nineties, the intention
   was to follow the Green Hills ABI for v850.  In fact, the authors of
   that support at the time thought that they were doing so.  As far as
   I can tell, the calling conventions are correct, but the return value
   conventions were not quite right.  Over time, the return value code
   in this file was modified to mostly reflect what GCC was actually
   doing instead of to actually follow the Green Hills ABI as it did
   when the code was first written.

   Renesas defined the RH850 ABI which they use in their compiler.  It
   is similar to the original Green Hills ABI with some minor
   differences.  */

enum v850_abi
{
  V850_ABI_GCC,
  V850_ABI_RH850
};

/* Architecture specific data.  */

struct gdbarch_tdep
{
  /* Fields from the ELF header.  */
  int e_flags;
  int e_machine;

  /* Which ABI are we using?  */
  enum v850_abi abi;
  int eight_byte_align;
};

struct v850_frame_cache
{ 
  /* Base address.  */
  CORE_ADDR base;
  LONGEST sp_offset;
  CORE_ADDR pc;
  
  /* Flag showing that a frame has been created in the prologue code.  */
  int uses_fp;
  
  /* Saved registers.  */
  trad_frame_saved_reg *saved_regs;
};

/* Info gleaned from scanning a function's prologue.  */
struct pifsr		/* Info about one saved register.  */
{
  int offset;		/* Offset from sp or fp.  */
  int cur_frameoffset;	/* Current frameoffset.  */
  int reg;		/* Saved register number.  */
};

static const char *
v850_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850_reg_names[] =
  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
  };
  if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
    return NULL;
  return v850_reg_names[regnum];
}

static const char *
v850e_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e_reg_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
  };
  if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
    return NULL;
  return v850e_reg_names[regnum];
}

static const char *
v850e2_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e2_reg_names[] =
  {
    /* General purpose registers.  */
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

    /* System registers - main banks.  */
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
    "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
    "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",


    /* PC.  */
    "pc", "",

    /* System registers - MPV (PROT00) bank.  */
    "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
    "vpecr", "vptid", "vpadr", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "mca", "mcs", "mcc", "mcr",

    /* System registers - MPU (PROT01) bank.  */
    "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
    "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
    "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
    "dpa4l", "dpa4u", "dpa5l", "dpa5u",

    /* FPU system registers.  */
    "", "", "", "", "", "", "fpsr", "fpepc",
    "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "fpspc"
  };
  if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
    return NULL;
  return v850e2_reg_names[regnum];
}

/* Implement the "register_name" gdbarch method for v850e3v5.  */

static const char *
v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e3v5_reg_names[] =
  {
    /* General purpose registers.  */
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

    /* selID 0, not including FPU registers.  The FPU registers are
       listed later on.  */
    "eipc", "eipsw", "fepc", "fepsw",
    "", "psw", "" /* fpsr */, "" /* fpepc */,
    "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
    "sesr", "eiic", "feic", "",
    "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
    "", "", "", "", "eiwr", "fewr", "", "bsel",


    /* PC.  */
    "pc", "",

    /* v850e2 MPV bank.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* Skip v850e2 MPU bank.  It's tempting to reuse these, but we need
       32 entries for this bank.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* FPU system registers.  These are actually in selID 0, but
       are placed here to preserve register numbering compatibility
       with previous architectures.  */
    "", "", "", "", "", "", "fpsr", "fpepc",
    "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* selID 1.  */
    "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
    "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
    "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
    "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",

    /* selID 2.  */
    "htcfg0", "", "", "", "", "htctl", "mea", "asid",
    "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
    "tlbsch", "", "", "", "", "", "", "htscctl",
    "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
    "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",

    /* selID 3.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",

    /* selID 4.  */
    "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
    "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
    "ictagl", "ictagh", "icdatl", "icdath",
    "dctagl", "dctagh", "dcdatl", "dcdath",
    "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",

    /* selID 5.  */
    "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
    "mca", "mcs", "mcc", "mcr", "", "", "", "",
    "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
    "", "", "", "", "", "", "", "",

    /* selID 6.  */
    "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
    "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
    "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
    "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",

    /* selID 7.  */
    "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
    "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
    "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
    "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",

    /* Vector Registers */
    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
  };

  if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
    return NULL;
  return v850e3v5_reg_names[regnum];
}

/* Returns the default type for register N.  */

static struct type *
v850_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum == E_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
    return builtin_type (gdbarch)->builtin_uint64;
  return builtin_type (gdbarch)->builtin_int32;
}

static int
v850_type_is_scalar (struct type *t)
{
  return (t->code () != TYPE_CODE_STRUCT
	  && t->code () != TYPE_CODE_UNION
	  && t->code () != TYPE_CODE_ARRAY);
}

/* Should call_function allocate stack space for a struct return?  */

static int
v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
{
  int i;
  struct type *fld_type, *tgt_type;

  if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
    {
      if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
	return 0;

      /* Structs are never returned in registers for this ABI.  */
      return 1;
    }
  /* 1. The value is greater than 8 bytes -> returned by copying.  */
  if (TYPE_LENGTH (type) > 8)
    return 1;

  /* 2. The value is a single basic type -> returned in register.  */
  if (v850_type_is_scalar (type))
    return 0;

  /* The value is a structure or union with a single element and that
     element is either a single basic type or an array of a single basic
     type whose size is greater than or equal to 4 -> returned in register.  */
  if ((type->code () == TYPE_CODE_STRUCT
       || type->code () == TYPE_CODE_UNION)
       && type->num_fields () == 1)
    {
      fld_type = type->field (0).type ();
      if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
	return 0;

      if (fld_type->code () == TYPE_CODE_ARRAY)
	{
	  tgt_type = TYPE_TARGET_TYPE (fld_type);
	  if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
	    return 0;
	}
    }

  /* The value is a structure whose first element is an integer or a float,
     and which contains no arrays of more than two elements -> returned in
     register.  */
  if (type->code () == TYPE_CODE_STRUCT
      && v850_type_is_scalar (type->field (0).type ())
      && TYPE_LENGTH (type->field (0).type ()) == 4)
    {
      for (i = 1; i < type->num_fields (); ++i)
	{
	  fld_type = type->field (0).type ();
	  if (fld_type->code () == TYPE_CODE_ARRAY)
	    {
	      tgt_type = TYPE_TARGET_TYPE (fld_type);
	      if (TYPE_LENGTH (tgt_type) > 0
		  && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
		return 1;
	    }
	}
      return 0;
    }
    
  /* The value is a union which contains at least one field which
     would be returned in registers according to these rules ->
     returned in register.  */
  if (type->code () == TYPE_CODE_UNION)
    {
      for (i = 0; i < type->num_fields (); ++i)
	{
	  fld_type = type->field (0).type ();
	  if (!v850_use_struct_convention (gdbarch, fld_type))
	    return 0;
	}
    }

  return 1;
}

/* Structure for mapping bits in register lists to register numbers.  */

struct reg_list
{
  long mask;
  int regno;
};

/* Helper function for v850_scan_prologue to handle prepare instruction.  */

static void
v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
		     struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
{
  CORE_ADDR current_pc = *current_pc_ptr;
  struct pifsr *pifsr = *pifsr_ptr;
  long next = insn2 & 0xffff;
  long list12 = ((insn & 1) << 16) + (next & 0xffe0);
  long offset = (insn & 0x3e) << 1;
  static struct reg_list reg_table[] =
  {
    {0x00800, 20},		/* r20 */
    {0x00400, 21},		/* r21 */
    {0x00200, 22},		/* r22 */
    {0x00100, 23},		/* r23 */
    {0x08000, 24},		/* r24 */
    {0x04000, 25},		/* r25 */
    {0x02000, 26},		/* r26 */
    {0x01000, 27},		/* r27 */
    {0x00080, 28},		/* r28 */
    {0x00040, 29},		/* r29 */
    {0x10000, 30},		/* ep */
    {0x00020, 31},		/* lp */
    {0, 0}			/* end of table */
  };
  int i;

  if ((next & 0x1f) == 0x0b)		/* skip imm16 argument */
    current_pc += 2;
  else if ((next & 0x1f) == 0x13)	/* skip imm16 argument */
    current_pc += 2;
  else if ((next & 0x1f) == 0x1b)	/* skip imm32 argument */
    current_pc += 4;

  /* Calculate the total size of the saved registers, and add it to the
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
  pi->sp_offset -= offset;

  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value has
     been subtracted from it.  */
  if (pifsr)
    {
      for (i = 0; reg_table[i].mask != 0; i++)
	{
	  if (list12 & reg_table[i].mask)
	    {
	      int reg = reg_table[i].regno;
	      offset -= v850_reg_size;
	      pifsr->reg = reg;
	      pifsr->offset = offset;
	      pifsr->cur_frameoffset = pi->sp_offset;
	      pifsr++;
	    }
	}
    }

  /* Set result parameters.  */
  *current_pc_ptr = current_pc;
  *pifsr_ptr = pifsr;
}


/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
   The SR bit of the register list is not supported.  gcc does not generate
   this bit.  */

static void
v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
		   struct pifsr **pifsr_ptr)
{
  struct pifsr *pifsr = *pifsr_ptr;
  long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
  long offset = 0;
  static struct reg_list pushml_reg_table[] =
  {
    {0x80000, E_PS_REGNUM},	/* PSW */
    {0x40000, 1},		/* r1 */
    {0x20000, 2},		/* r2 */
    {0x10000, 3},		/* r3 */
    {0x00800, 4},		/* r4 */
    {0x00400, 5},		/* r5 */
    {0x00200, 6},		/* r6 */
    {0x00100, 7},		/* r7 */
    {0x08000, 8},		/* r8 */
    {0x04000, 9},		/* r9 */
    {0x02000, 10},		/* r10 */
    {0x01000, 11},		/* r11 */
    {0x00080, 12},		/* r12 */
    {0x00040, 13},		/* r13 */
    {0x00020, 14},		/* r14 */
    {0x00010, 15},		/* r15 */
    {0, 0}			/* end of table */
  };
  static struct reg_list pushmh_reg_table[] =
  {
    {0x80000, 16},		/* r16 */
    {0x40000, 17},		/* r17 */
    {0x20000, 18},		/* r18 */
    {0x10000, 19},		/* r19 */
    {0x00800, 20},		/* r20 */
    {0x00400, 21},		/* r21 */
    {0x00200, 22},		/* r22 */
    {0x00100, 23},		/* r23 */
    {0x08000, 24},		/* r24 */
    {0x04000, 25},		/* r25 */
    {0x02000, 26},		/* r26 */
    {0x01000, 27},		/* r27 */
    {0x00080, 28},		/* r28 */
    {0x00040, 29},		/* r29 */
    {0x00010, 30},		/* r30 */
    {0x00020, 31},		/* r31 */
    {0, 0}			/* end of table */
  };
  struct reg_list *reg_table;
  int i;

  /* Is this a pushml or a pushmh?  */
  if ((insn2 & 7) == 1)
    reg_table = pushml_reg_table;
  else
    reg_table = pushmh_reg_table;

  /* Calculate the total size of the saved registers, and add it to the
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
  pi->sp_offset -= offset;

  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value is
     subtracted from it.  */
  if (pifsr)
    {
      for (i = 0; reg_table[i].mask != 0; i++)
	{
	  if (list12 & reg_table[i].mask)
	    {
	      int reg = reg_table[i].regno;
	      offset -= v850_reg_size;
	      pifsr->reg = reg;
	      pifsr->offset = offset;
	      pifsr->cur_frameoffset = pi->sp_offset;
	      pifsr++;
	    }
	}
    }

  /* Set result parameters.  */
  *pifsr_ptr = pifsr;
}

/* Helper function to evaluate if register is one of the "save" registers.
   This allows to simplify conditionals in v850_analyze_prologue a lot.  */

static int
v850_is_save_register (int reg)
{
 /* The caller-save registers are R2, R20 - R29 and R31.  All other
    registers are either special purpose (PC, SP), argument registers,
    or just considered free for use in the caller.  */
 return reg == E_R2_REGNUM
	|| (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
	|| reg == E_R31_REGNUM;
}

/* Scan the prologue of the function that contains PC, and record what
   we find in PI.  Returns the pc after the prologue.  Note that the
   addresses saved in frame->saved_regs are just frame relative (negative
   offsets from the frame pointer).  This is because we don't know the
   actual value of the frame pointer yet.  In some circumstances, the
   frame pointer can't be determined till after we have scanned the
   prologue.  */

static CORE_ADDR
v850_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR func_addr, CORE_ADDR pc,
		       struct v850_frame_cache *pi, ULONGEST ctbp)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR prologue_end, current_pc;
  struct pifsr pifsrs[E_NUM_REGS + 1];
  struct pifsr *pifsr, *pifsr_tmp;
  int ep_used;
  int reg;
  CORE_ADDR save_pc, save_end;
  int regsave_func_p;
  int r12_tmp;

  memset (&pifsrs, 0, sizeof pifsrs);
  pifsr = &pifsrs[0];

  prologue_end = pc;

  /* Now, search the prologue looking for instructions that setup fp, save
     rp, adjust sp and such.  We also record the frame offset of any saved
     registers.  */

  pi->sp_offset = 0;
  pi->uses_fp = 0;
  ep_used = 0;
  regsave_func_p = 0;
  save_pc = 0;
  save_end = 0;
  r12_tmp = 0;

  for (current_pc = func_addr; current_pc < prologue_end;)
    {
      int insn;
      int insn2 = -1; /* dummy value */

      insn = read_memory_integer (current_pc, 2, byte_order);
      current_pc += 2;
      if ((insn & 0x0780) >= 0x0600)	/* Four byte instruction?  */
	{
	  insn2 = read_memory_integer (current_pc, 2, byte_order);
	  current_pc += 2;
	}

      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
	{			/* jarl <func>,10 */
	  long low_disp = insn2 & ~(long) 1;
	  long disp = (((((insn & 0x3f) << 16) + low_disp)
			& ~(long) 1) ^ 0x00200000) - 0x00200000;

	  save_pc = current_pc;
	  save_end = prologue_end;
	  regsave_func_p = 1;
	  current_pc += disp - 4;
	  prologue_end = (current_pc
			  + (2 * 3)	/* moves to/from ep */
			  + 4		/* addi <const>,sp,sp */
			  + 2		/* jmp [r10] */
			  + (2 * 12)	/* sst.w to save r2, r20-r29, r31 */
			  + 20);	/* slop area */
	}
      else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
	{			/* callt <imm6> */
	  long adr = ctbp + ((insn & 0x3f) << 1);

	  save_pc = current_pc;
	  save_end = prologue_end;
	  regsave_func_p = 1;
	  current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
			       & 0xffff);
	  prologue_end = (current_pc
			  + (2 * 3)	/* prepare list2,imm5,sp/imm */
			  + 4		/* ctret */
			  + 20);	/* slop area */
	  continue;
	}
      else if ((insn & 0xffc0) == 0x0780)	/* prepare list2,imm5 */
	{
	  v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
	  continue;
	}
      else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
	{			/* ctret after processing register save.  */
	  current_pc = save_pc;
	  prologue_end = save_end;
	  regsave_func_p = 0;
	  continue;
	}
      else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
	{			/* pushml, pushmh */
	  v850_handle_pushm (insn, insn2, pi, &pifsr);
	  continue;
	}
      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
	{			/* jmp after processing register save.  */
	  current_pc = save_pc;
	  prologue_end = save_end;
	  regsave_func_p = 0;
	  continue;
	}
      else if ((insn & 0x07c0) == 0x0780	/* jarl or jr */
	       || (insn & 0xffe0) == 0x0060	/* jmp */
	       || (insn & 0x0780) == 0x0580)	/* branch */
	{
	  break;		/* Ran into end of prologue.  */
	}

      else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
	/* add <imm>,sp */
	pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
      else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
	/* addi <imm>,sp,sp */
	pi->sp_offset += insn2;
      else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
	/* mov sp,fp */
	pi->uses_fp = 1;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
	/* movhi hi(const),r0,r12 */
	r12_tmp = insn2 << 16;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
	/* movea lo(const),r12,r12 */
	r12_tmp += insn2;
      else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
	/* add r12,sp */
	pi->sp_offset += r12_tmp;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
	/* mov sp,ep */
	ep_used = 1;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
	/* mov r1,ep */
	ep_used = 0;
      else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)	
		|| (pi->uses_fp
		    && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
	       && pifsr
	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
	{
	  /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
	  pifsr->reg = reg;
	  pifsr->offset = insn2 & ~1;
	  pifsr->cur_frameoffset = pi->sp_offset;
	  pifsr++;
	}
      else if (ep_used
	       && ((insn & 0x0781) == 0x0501)
	       && pifsr
	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
	{
	  /* sst.w <reg>,<offset>[ep] */
	  pifsr->reg = reg;
	  pifsr->offset = (insn & 0x007e) << 1;
	  pifsr->cur_frameoffset = pi->sp_offset;
	  pifsr++;
	}
    }

  /* Fix up any offsets to the final offset.  If a frame pointer was created,
     use it instead of the stack pointer.  */
  for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
    {
      pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
      pi->saved_regs[pifsr_tmp->reg].set_addr (pifsr_tmp->offset);
    }

  return current_pc;
}

/* Return the address of the first code past the prologue of the function.  */

static CORE_ADDR
v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;

  /* See what the symbol table says.  */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);
      if (sal.line != 0 && sal.end < func_end)
	return sal.end;

      /* Either there's no line info, or the line after the prologue is after
	 the end of the function.  In this case, there probably isn't a
	 prologue.  */
      return pc;
    }

  /* We can't find the start of this function, so there's nothing we
     can do.  */
  return pc;
}

/* Return 1 if the data structure has any 8-byte fields that'll require
   the entire data structure to be aligned.  Otherwise, return 0.  */

static int
v850_eight_byte_align_p (struct type *type)
{
  type = check_typedef (type);

  if (v850_type_is_scalar (type))
    return (TYPE_LENGTH (type) == 8);
  else
    {
      int i;

      for (i = 0; i < type->num_fields (); i++)
	{
	  if (v850_eight_byte_align_p (type->field (i).type ()))
	    return 1;
	}
    }
  return 0;
}

static CORE_ADDR
v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
{
  return sp & ~3;
}

/* Setup arguments and LP for a call to the target.  First four args
   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
   are passed by reference.  64 bit quantities (doubles and long longs)
   may be split between the regs and the stack.  When calling a function
   that returns a struct, a pointer to the struct is passed in as a secret
   first argument (always in R6).

   Stack space for the args has NOT been allocated: that job is up to us.  */

static CORE_ADDR
v850_push_dummy_call (struct gdbarch *gdbarch,
		      struct value *function,
		      struct regcache *regcache,
		      CORE_ADDR bp_addr,
		      int nargs,
		      struct value **args,
		      CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int argreg;
  int argnum;
  int arg_space = 0;
  int stack_offset;

  if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
    stack_offset = 0;
  else
  /* The offset onto the stack at which we will start copying parameters
     (after the registers are used up) begins at 16 rather than at zero.
     That's how the ABI is defined, though there's no indication that these
     16 bytes are used for anything, not even for saving incoming
     argument registers.  */
  stack_offset = 16;

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    arg_space += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
  sp -= arg_space + stack_offset;

  argreg = E_ARG0_REGNUM;
  /* The struct_return pointer occupies the first parameter register.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      gdb_byte *val;
      gdb_byte valbuf[v850_reg_size];

      if (!v850_type_is_scalar (value_type (*args))
	 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
	  && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
	{
	  store_unsigned_integer (valbuf, 4, byte_order,
				  value_address (*args));
	  len = 4;
	  val = valbuf;
	}
      else
	{
	  len = TYPE_LENGTH (value_type (*args));
	  val = (gdb_byte *) value_contents (*args);
	}

      if (gdbarch_tdep (gdbarch)->eight_byte_align
	  && v850_eight_byte_align_p (value_type (*args)))
	{
	  if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
	    argreg++;
	  else if (stack_offset & 0x4)
	    stack_offset += 4;
	}

      while (len > 0)
	if (argreg <= E_ARGLAST_REGNUM)
	  {
	    CORE_ADDR regval;

	    regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
	    regcache_cooked_write_unsigned (regcache, argreg, regval);

	    len -= v850_reg_size;
	    val += v850_reg_size;
	    argreg++;
	  }
	else
	  {
	    write_memory (sp + stack_offset, val, 4);

	    len -= 4;
	    val += 4;
	    stack_offset += 4;
	  }
      args++;
    }

  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);

  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);

  return sp;
}

static void
v850_extract_return_value (struct type *type, struct regcache *regcache,
			   gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);

  if (len <= v850_reg_size)
    {
      ULONGEST val;

      regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
      store_unsigned_integer (valbuf, len, byte_order, val);
    }
  else if (len <= 2 * v850_reg_size)
    {
      int i, regnum = E_V0_REGNUM;
      gdb_byte buf[v850_reg_size];
      for (i = 0; len > 0; i += 4, len -= 4)
	{
	  regcache->raw_read (regnum++, buf);
	  memcpy (valbuf + i, buf, len > 4 ? 4 : len);
	}
    }
}

static void
v850_store_return_value (struct type *type, struct regcache *regcache,
			 const gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);

  if (len <= v850_reg_size)
      regcache_cooked_write_unsigned
	(regcache, E_V0_REGNUM,
	 extract_unsigned_integer (valbuf, len, byte_order));
  else if (len <= 2 * v850_reg_size)
    {
      int i, regnum = E_V0_REGNUM;
      for (i = 0; i < len; i += 4)
	regcache->raw_write (regnum++, valbuf + i);
    }
}

static enum return_value_convention
v850_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (v850_use_struct_convention (gdbarch, type))
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
    v850_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    v850_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  return 2;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  *size = kind;

    switch (gdbarch_bfd_arch_info (gdbarch)->mach)
    {
    case bfd_mach_v850e2:
    case bfd_mach_v850e2v3:
    case bfd_mach_v850e3v5:
      {
	/* Implement software breakpoints by using the dbtrap instruction.
	   Older architectures had no such instruction.  For those, an
	   unconditional branch to self instruction is used.  */

	static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 };

	return dbtrap_breakpoint;
      }
      break;
    default:
      {
	static unsigned char breakpoint[] = { 0x85, 0x05 };

	return breakpoint;
      }
      break;
    }
}

static struct v850_frame_cache *
v850_alloc_frame_cache (struct frame_info *this_frame)
{
  struct v850_frame_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;

  return cache;
}

static struct v850_frame_cache *
v850_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct v850_frame_cache *cache;
  CORE_ADDR current_pc;
  int i;

  if (*this_cache)
    return (struct v850_frame_cache *) *this_cache;

  cache = v850_alloc_frame_cache (this_frame);
  *this_cache = cache;

  /* In principle, for normal frames, fp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */
  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
  if (cache->base == 0)
    return cache;

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  if (cache->pc != 0)
    {
      ULONGEST ctbp;
      ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
      v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
    }

  if (!cache->uses_fp)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */
      cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of sp in the calling frame.  */
  trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
  			cache->base - cache->sp_offset);

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    if (trad_frame_addr_p (cache->saved_regs, i))
      cache->saved_regs[i].set_addr (cache->saved_regs[i].addr ()
				     + cache->base);

  /* The call instruction moves the caller's PC in the callee's LP.
     Since this is an unwind, do the reverse.  Copy the location of LP
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the LP.  */

  cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];

  return cache;
}


static struct value *
v850_frame_prev_register (struct frame_info *this_frame,
			  void **this_cache, int regnum)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}

static void
v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr (), cache->pc);
}

static const struct frame_unwind v850_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  v850_frame_this_id,
  v850_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base v850_frame_base = {
  &v850_frame_unwind,
  v850_frame_base_address,
  v850_frame_base_address,
  v850_frame_base_address
};

static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int e_flags, e_machine;

  /* Extract the elf_flags if available.  */
  if (info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    {
      e_flags = elf_elfheader (info.abfd)->e_flags;
      e_machine = elf_elfheader (info.abfd)->e_machine;
    }
  else
    {
      e_flags = 0;
      e_machine = 0;
    }


  /* Try to find the architecture in the list of already defined
     architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
	  || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
	continue;

      return arches->gdbarch;
    }
  tdep = XCNEW (struct gdbarch_tdep);
  tdep->e_flags = e_flags;
  tdep->e_machine = e_machine;

  switch (tdep->e_machine)
    {
    case EM_V800:
      tdep->abi = V850_ABI_RH850;
      break;
    default:
      tdep->abi = V850_ABI_GCC;
      break;
    }

  tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_v850:
      set_gdbarch_register_name (gdbarch, v850_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
      break;
    case bfd_mach_v850e:
    case bfd_mach_v850e1:
      set_gdbarch_register_name (gdbarch, v850e_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
      break;
    case bfd_mach_v850e2:
    case bfd_mach_v850e2v3:
      set_gdbarch_register_name (gdbarch, v850e2_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
      break;
    case bfd_mach_v850e3v5:
      set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
      break;
    }

  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, -1);

  set_gdbarch_register_type (gdbarch, v850_register_type);

  set_gdbarch_char_signed (gdbarch, 1);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind);
  set_gdbarch_return_value (gdbarch, v850_return_value);
  set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
  set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);

  set_gdbarch_frame_align (gdbarch, v850_frame_align);
  frame_base_set_default (gdbarch, &v850_frame_base);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);

  return gdbarch;
}

void _initialize_v850_tdep ();
void
_initialize_v850_tdep ()
{
  register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
  register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
}