1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* Parameters for execution on a z8000 series machine.
Copyright 1992 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define IEEE_FLOAT 1
#undef TARGET_INT_BIT
#undef TARGET_LONG_BIT
#undef TARGET_SHORT_BIT
#undef TARGET_PTR_BIT
#define TARGET_SHORT_BIT 16
#define TARGET_INT_BIT 16
#define TARGET_LONG_BIT 32
#define TARGET_PTR_BIT (BIG ? 32: 16)
/* Define the bit, byte, and word ordering of the machine. */
#define TARGET_BYTE_ORDER BIG_ENDIAN
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(ip) {(ip) = z8k_skip_prologue(ip);}
extern CORE_ADDR mz8k_skip_prologue PARAMS ((CORE_ADDR ip));
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame)
/* Stack grows downward. */
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction. */
#define BREAKPOINT {0x36,0x00}
/* If your kernel resets the pc after the trap happens you may need to
define this before including this file. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. */
/* Allow any of the return instructions, including a trapv and a return
from interupt. */
#define ABOUT_TO_RETURN(pc) about_to_return(pc)
/* Return 1 if P points to an invalid floating point value. */
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
/* Say how long registers are. */
#define REGISTER_TYPE unsigned int
#define NUM_REGS 23 /* 16 registers + 1 ccr + 1 pc + 3 debug
regs + fake fp + fake sp*/
#define REGISTER_BYTES (NUM_REGS *4)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N)*4)
/* Number of bytes of storage in the actual machine representation
for register N. On the z8k, all but the pc are 2 bytes, but we
keep them all as 4 bytes and trim them on I/O */
#define REGISTER_RAW_SIZE(N) (((N) < 16)? 2:4)
/* Number of bytes of storage in the program's representation
for register N. */
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 4
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 4
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) 0
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
register_convert_to_virtual(REGNUM, FROM, TO)
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
register_convert_to_raw(REGNUM, FROM, TO)
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) \
(REGISTER_VIRTUAL_SIZE(N) == 2? builtin_type_unsigned_int : builtin_type_long)
/*#define INIT_FRAME_PC(x,y) init_frame_pc(x,y)*/
/* Initializer for an array of names of registers.
Entries beyond the first NUM_REGS are ignored. */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"ccr", "pc", "cycles","insts","time","fp","sp"}
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define CCR_REGNUM 16 /* Contains processor status */
#define PC_REGNUM 17 /* Contains program counter */
#define CYCLES_REGNUM 18
#define INSTS_REGNUM 19
#define TIME_REGNUM 20
#define FP_REGNUM 21 /* Contains fp, whatever memory model */
#define SP_REGNUM 22 /* Conatins sp, whatever memory model */
#define PTR_SIZE (BIG ? 4: 2)
#define PTR_MASK (BIG ? 0xff00ffff : 0x0000ffff)
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function. */
#define STORE_STRUCT_RETURN(ADDR, SP) store_struct_return(ADDR,SP)
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. This is assuming that floating point values are returned
as doubles in d0/d1. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
extract_return_value(TYPE,REGBUF,VALBUF)
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. Assumes floats are passed
in d0/d1. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) store_return_value(TYPE,VALBUF);
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
chain-pointer.
In the case of the 68000, the frame's nominal address
is the address of a 4-byte word containing the calling frame's address. */
#define FRAME_CHAIN(thisframe) frame_chain(thisframe)
/* Define other aspects of the stack frame. */
/* A macro that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. If it
does not, FRAMELESS is set to 1, else 0. */
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
(FRAMELESS) = frameless_look_for_prologue(FI)
#define FRAME_SAVED_PC(FRAME) frame_saved_pc(FRAME)
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Set VAL to the number of args passed to frame described by FI.
Can set VAL to -1, meaning no way to tell. */
/* We can't tell how many args there are
now that the C compiler delays popping them. */
#if !defined (FRAME_NUM_ARGS)
#define FRAME_NUM_ARGS(val,fi) (val = -1)
#endif
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 8
/* Things needed for making the inferior call functions.
It seems like every m68k based machine has almost identical definitions
in the individual machine's configuration files. Most other cpu types
(mips, i386, etc) have routines in their *-tdep.c files to handle this
for most configurations. The m68k family should be able to do this as
well. These macros can still be overridden when necessary. */
/* The CALL_DUMMY macro is the sequence of instructions, as disassembled
by gdb itself:
fmovemx fp0-fp7,sp@- 0xf227 0xe0ff
moveml d0-a5,sp@- 0x48e7 0xfffc
clrw sp@- 0x4267
movew ccr,sp@- 0x42e7
/..* The arguments are pushed at this point by GDB;
no code is needed in the dummy for this.
The CALL_DUMMY_START_OFFSET gives the position of
the following jsr instruction. *../
jsr @#0x32323232 0x4eb9 0x3232 0x3232
addal #0x69696969,sp 0xdffc 0x6969 0x6969
trap #<your BPT_VECTOR number here> 0x4e4?
nop 0x4e71
Note this is CALL_DUMMY_LENGTH bytes (28 for the above example).
We actually start executing at the jsr, since the pushing of the
registers is done by PUSH_DUMMY_FRAME. If this were real code,
the arguments for the function called by the jsr would be pushed
between the moveml and the jsr, and we could allow it to execute through.
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is
done, and we cannot allow the moveml to push the registers again lest
they be taken for the arguments. */
#define CALL_DUMMY { 0 }
#define CALL_DUMMY_LENGTH 24 /* Size of CALL_DUMMY */
#define CALL_DUMMY_START_OFFSET 8 /* Offset to jsr instruction*/
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME.
We use the BFD routines to store a big-endian value of known size. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
{ _do_putb32 (fun, (char *) dummyname + CALL_DUMMY_START_OFFSET + 2); \
_do_putb32 (nargs*4, (char *) dummyname + CALL_DUMMY_START_OFFSET + 8); }
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME { z8k_push_dummy_frame (); }
extern void z8k_push_dummy_frame PARAMS ((void));
extern void z8k_pop_frame PARAMS ((void));
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME { z8k_pop_frame (); }
/* Offset from SP to first arg on stack at first instruction of a function */
#define SP_ARG0 (1 * 4)
#define ADDR_BITS_REMOVE(x) addr_bits_remove(x)
#define ADDR_BITS_SET(x) addr_bits_set(x)
int z8001_mode;
#define BIG (z8001_mode)
#define read_memory_short(x) (read_memory_integer(x,2) & 0xffff)
#define NO_STD_REGS
#define PRINT_REGISTER_HOOK(regno) print_register_hook(regno)
/* Define this if the C compiler puts an underscore at the front
of external names before giving them to the linker. */
#define NAMES_HAVE_UNDERSCORE
#define ADDITIONAL_OPTIONS {"z8001",no_argument,&z8001_mode, 1},
|