aboutsummaryrefslogtreecommitdiff
path: root/gdb/tm-symmetry.h
blob: 0030b61abb5c5fd9ea378c9518aa3d18b553ef98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/* Definitions to make GDB run on a Sequent Symmetry under dynix 3.0,
   with Weitek 1167 and i387 support.
   Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.

This file is part of GDB.

GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Symmetry version by Jay Vosburgh (uunet!sequent!fubar) */

/* I don't know if this will work for cross-debugging, even if you do get
   a copy of the right include file.  */
#include <machine/reg.h>

#define TARGET_BYTE_ORDER LITTLE_ENDIAN

/* Define this if the C compiler puts an underscore at the front
   of external names before giving them to the linker.  */

#define NAMES_HAVE_UNDERSCORE

/* Debugger information will be in DBX format.  */

#define READ_DBX_FORMAT

/* Offset from address of function to start of its code.
   Zero on most machines.  */

#define FUNCTION_START_OFFSET 0

/* Advance PC across any function entry prologue instructions
   to reach some "real" code.  From m-i386.h */

#define SKIP_PROLOGUE(frompc)   {(frompc) = i386_skip_prologue((frompc));}

/* Immediately after a function call, return the saved pc.
   Can't always go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   some instructions.  */

#define SAVED_PC_AFTER_CALL(frame) \
  read_memory_integer(read_register(SP_REGNUM), 4)

/* I don't know the real values for these.  */
#define TARGET_UPAGES UPAGES
#define TARGET_NBPG NBPG

/* Address of end of stack space.  */

#define STACK_END_ADDR (0x40000000 - (TARGET_UPAGES * TARGET_NBPG))

/* Stack grows downward.  */

#define INNER_THAN <

/* Sequence of bytes for breakpoint instruction.  */

#define BREAKPOINT {0xcc}

/* Amount PC must be decremented by after a breakpoint.
   This is often the number of bytes in BREAKPOINT
   but not always.  */

#define DECR_PC_AFTER_BREAK 0

/* Nonzero if instruction at PC is a return instruction.  */
/* For Symmetry, this is really the 'leave' instruction, which */
/* is right before the ret */

#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc9)

/* Return 1 if P points to an invalid floating point value.
*/

#define INVALID_FLOAT(p, len) (0)

/* code for 80387 fpu.  Functions are from i386-dep.c, copied into
 * symm-dep.c.
 */
#define FLOAT_INFO { i386_float_info(); }

/* Say how long (ordinary) registers are.  */

#define REGISTER_TYPE long

/* Number of machine registers */
#define NUM_REGS 49

/* Initializer for an array of names of registers.
   There should be NUM_REGS strings in this initializer.  */

/* Symmetry registers are in this weird order to match the register
   numbers in the symbol table entries.  If you change the order,
   things will probably break mysteriously for no apparent reason.
   Also note that the st(0)...st(7) 387 registers are represented as
   st0...st7.  */

#define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
			     "ebx", "esi", "edi", "st2", "st3", \
			     "st4", "st5", "st6", "st7", "esp", \
			     "ebp", "eip", "eflags", "fp1", "fp2", \
			     "fp3", "fp4", "fp5", "fp6", "fp7", \
			     "fp8", "fp9", "fp10", "fp11", "fp12", \
			     "fp13", "fp14", "fp15", "fp16", "fp17", \
			     "fp18", "fp19", "fp20", "fp21", "fp22", \
			     "fp23", "fp24", "fp25", "fp26", "fp27", \
			     "fp28", "fp29", "fp30", "fp31" }

/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

#define FP1_REGNUM 18		/* first 1167 register */
#define SP_REGNUM 14		/* Contains address of top of stack */
#define FP_REGNUM 15		/* Contains address of executing stack frame */
#define PC_REGNUM 16		/* Contains program counter */
#define PS_REGNUM 17		/* Contains processor status */

/* The magic numbers below are offsets into u_ar0 in the user struct.
 * They live in <machine/reg.h>.  Gdb calls this macro with blockend
 * holding u.u_ar0 - KERNEL_U_ADDR.  Only the registers listed are
 * saved in the u area (along with a few others that aren't useful
 * here.  See <machine/reg.h>).
 */

#define REGISTER_U_ADDR(addr, blockend, regno) \
{ struct user foo;	/* needed for finding fpu regs */ \
switch (regno) { \
    case 0: \
      addr = blockend + EAX * sizeof(int); break; \
  case 1: \
      addr = blockend + EDX * sizeof(int); break; \
  case 2: \
      addr = blockend + ECX * sizeof(int); break; \
  case 3:			/* st(0) */ \
      addr = blockend - \
	  ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
      break; \
  case 4:			/* st(1) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
      break; \
  case 5: \
      addr = blockend + EBX * sizeof(int); break; \
  case 6: \
      addr = blockend + ESI * sizeof(int); break; \
  case 7: \
      addr = blockend + EDI * sizeof(int); break; \
  case 8:			/* st(2) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
      break; \
  case 9:			/* st(3) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
      break; \
  case 10:			/* st(4) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
      break; \
  case 11:			/* st(5) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
      break; \
  case 12:			/* st(6) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
      break; \
  case 13:			/* st(7) */ \
      addr = blockend - \
	  ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
      break; \
  case 14: \
      addr = blockend + ESP * sizeof(int); break; \
  case 15: \
      addr = blockend + EBP * sizeof(int); break; \
  case 16: \
      addr = blockend + EIP * sizeof(int); break; \
  case 17: \
      addr = blockend + FLAGS * sizeof(int); break; \
  case 18:			/* fp1 */ \
  case 19:			/* fp2 */ \
  case 20:			/* fp3 */ \
  case 21:			/* fp4 */ \
  case 22:			/* fp5 */ \
  case 23:			/* fp6 */ \
  case 24:			/* fp7 */ \
  case 25:			/* fp8 */ \
  case 26:			/* fp9 */ \
  case 27:			/* fp10 */ \
  case 28:			/* fp11 */ \
  case 29:			/* fp12 */ \
  case 30:			/* fp13 */ \
  case 31:			/* fp14 */ \
  case 32:			/* fp15 */ \
  case 33:			/* fp16 */ \
  case 34:			/* fp17 */ \
  case 35:			/* fp18 */ \
  case 36:			/* fp19 */ \
  case 37:			/* fp20 */ \
  case 38:			/* fp21 */ \
  case 39:			/* fp22 */ \
  case 40:			/* fp23 */ \
  case 41:			/* fp24 */ \
  case 42:			/* fp25 */ \
  case 43:			/* fp26 */ \
  case 44:			/* fp27 */ \
  case 45:			/* fp28 */ \
  case 46:			/* fp29 */ \
  case 47:			/* fp30 */ \
  case 48:			/* fp31 */ \
     addr = blockend - \
	 ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
  } \
}

/* Total amount of space needed to store our copies of the machine's
   register state, the array `registers'.  */
/* 10 i386 registers, 8 i387 registers, and 31 Weitek 1167 registers */
#define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))

/* Index within `registers' of the first byte of the space for
   register N.  */

#define REGISTER_BYTE(N) 		\
((N < 3) ? (N * 4) :			\
(N < 5) ? (((N - 2) * 10) + 2) :	\
(N < 8) ? (((N - 5) * 4) + 32) :	\
(N < 14) ? (((N - 8) * 10) + 44) :	\
    (((N - 14) * 4) + 104))

/* Number of bytes of storage in the actual machine representation
 * for register N.  All registers are 4 bytes, except 387 st(0) - st(7),
 * which are 80 bits each. 
 */

#define REGISTER_RAW_SIZE(N) \
((N < 3) ? 4 :	\
(N < 5) ? 10 :	\
(N < 8) ? 4 :	\
(N < 14) ? 10 :	\
    4)

/* Number of bytes of storage in the program's representation
   for register N.  On the vax, all regs are 4 bytes.  */

#define REGISTER_VIRTUAL_SIZE(N) 4

/* Largest value REGISTER_RAW_SIZE can have.  */

#define MAX_REGISTER_RAW_SIZE 10

/* Largest value REGISTER_VIRTUAL_SIZE can have.  */

#define MAX_REGISTER_VIRTUAL_SIZE 4

/* Nonzero if register N requires conversion
   from raw format to virtual format.  */

#define REGISTER_CONVERTIBLE(N) \
((N < 3) ? 0 : \
(N < 5) ? 1  : \
(N < 8) ? 0  : \
(N < 14) ? 1 : \
    0)

/* Convert data from raw format for register REGNUM
   to virtual format for register REGNUM.  */

#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO)	\
((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
(REGNUM < 5) ? i387_to_double((FROM), (TO)) : \
(REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
(REGNUM < 14) ? i387_to_double((FROM), (TO)) : \
    bcopy ((FROM), (TO), 4))

/* Convert data from virtual format for register REGNUM
   to raw format for register REGNUM.  */

#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO)	\
((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
(REGNUM < 5) ? double_to_i387((FROM), (TO)) : \
(REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
(REGNUM < 14) ? double_to_i387((FROM), (TO)) : \
    bcopy ((FROM), (TO), 4))

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

#define REGISTER_VIRTUAL_TYPE(N) \
((N < 3) ? builtin_type_int : \
(N < 5) ? builtin_type_double : \
(N < 8) ? builtin_type_int : \
(N < 14) ? builtin_type_double : \
    builtin_type_int)

/* from m-i386.h */
/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. */

#define STORE_STRUCT_RETURN(ADDR, SP) \
  { (SP) -= sizeof (ADDR);		\
    write_memory ((SP), &(ADDR), sizeof (ADDR)); \
    write_register(0, (ADDR)); }

/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
  symmetry_extract_return_value(TYPE, REGBUF, VALBUF)

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  */

#define STORE_RETURN_VALUE(TYPE,VALBUF) \
  write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))


/* Describe the pointer in each stack frame to the previous stack frame
   (its caller).  */

/* FRAME_CHAIN takes a frame's nominal address
   and produces the frame's chain-pointer.

   FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
   and produces the nominal address of the caller frame.

   However, if FRAME_CHAIN_VALID returns zero,
   it means the given frame is the outermost one and has no caller.
   In that case, FRAME_CHAIN_COMBINE is not used.  */

/* On Symmetry, %ebp points to caller's %ebp, and the return address
   is right on top of that.
*/

#define FRAME_CHAIN(thisframe)  \
  (outside_startup_file ((thisframe)->pc) ? \
   read_memory_integer((thisframe)->frame, 4) :\
   0)

#define FRAME_CHAIN_VALID(chain, thisframe) \
  (chain != 0)

#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)

/* Define other aspects of the stack frame.  */

/* A macro that tells us whether the function invocation represented
   by FI does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
  (FRAMELESS) = frameless_look_for_prologue(FI)

#define FRAME_SAVED_PC(fi) (read_memory_integer((fi)->frame + 4, 4))

#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)

#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)

/* Return number of args passed to a frame.
   Can return -1, meaning no way to tell.
  
   The weirdness in the "addl $imm8" case is due to gcc sometimes
   issuing "addl $-int" after function call returns; this would
   produce ridiculously huge arg counts.  */

#define FRAME_NUM_ARGS(numargs, fi)  \
{ \
  int op = read_memory_integer(FRAME_SAVED_PC((fi)), 4); \
  int narg; \
  if ((op & 0xff) == 0x59) /* 0x59  'popl %ecx' */ \
    { \
      numargs = 1; \
    } \
  else if ((op & 0xffff) == 0xc483) /* 0xc483 'addl $imm8' */ \
    { \
      narg = ((op >> 16) & 0xff); \
      numargs = (narg >= 128) ? -1 : narg / 4; \
    } \
  else if ((op & 0xffff) == 0xc481) /* 0xc481 'addl $imm32' */ \
    { \
      narg = read_memory_integer(FRAME_SAVED_PC((fi))+2,4); \
      numargs = (narg < 0) ? -1 : narg / 4; \
    } \
  else \
    { \
      numargs = -1; \
    } \
}

/* Return number of bytes at start of arglist that are not really args.  */

#define FRAME_ARGS_SKIP 8

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ i386_frame_find_saved_regs ((frame_info), &(frame_saved_regs)); }


/* Things needed for making the inferior call functions.  */

#define PUSH_DUMMY_FRAME \
{  CORE_ADDR sp = read_register (SP_REGNUM); \
  int regnum; \
  sp = push_word (sp, read_register (PC_REGNUM)); \
  sp = push_word (sp, read_register (FP_REGNUM)); \
  write_register (FP_REGNUM, sp); \
  for (regnum = 0; regnum < NUM_REGS; regnum++) \
    sp = push_word (sp, read_register (regnum)); \
  write_register (SP_REGNUM, sp); \
}

#define POP_FRAME  \
{ \
  FRAME frame = get_current_frame (); \
  CORE_ADDR fp; \
  int regnum; \
  struct frame_saved_regs fsr; \
  struct frame_info *fi; \
  fi = get_frame_info (frame); \
  fp = fi->frame; \
  get_frame_saved_regs (fi, &fsr); \
  for (regnum = 0; regnum < NUM_REGS; regnum++) { \
      CORE_ADDR adr; \
      adr = fsr.regs[regnum]; \
      if (adr) \
	write_register (regnum, read_memory_integer (adr, 4)); \
  } \
  write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
  write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
  write_register (SP_REGNUM, fp + 8); \
  flush_cached_frames (); \
  set_current_frame ( create_new_frame (read_register (FP_REGNUM), \
					read_pc ())); \
}

/* from i386-dep.c, worked better than my original... */
/* This sequence of words is the instructions
 * call (32-bit offset)
 * int 3
 * This is 6 bytes.
 */

#define CALL_DUMMY { 0x223344e8, 0xcc11 }

#define CALL_DUMMY_LENGTH 8

#define CALL_DUMMY_START_OFFSET 0  /* Start execution at beginning of dummy */

/* Insert the specified number of args and function address
   into a call sequence of the above form stored at DUMMYNAME.  */

#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p)   \
{ \
	int from, to, delta, loc; \
	loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH); \
	from = loc + 5; \
	to = (int)(fun); \
	delta = to - from; \
	*(int *)((char *)(dummyname) + 1) = delta; \
}