1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
/* Parameters for execution on a 68000 series machine.
Copyright (C) 1986, 1987, 1989, 1990 Free Software Foundation, Inc.
This file is part of GDB.
GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Generic 68000 stuff, to be included by other m-*.h files.
Define HAVE_68881 if that is the case. */
#if defined (HAVE_68881)
#define IEEE_FLOAT 1
#endif
/* Define the bit, byte, and word ordering of the machine. */
#define TARGET_BYTE_ORDER BIG_ENDIAN
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) \
{ register int op = read_memory_integer (pc, 2); \
if (op == 0047126) \
pc += 4; /* Skip link #word */ \
else if (op == 0044016) \
pc += 6; /* Skip link #long */ \
/* Not sure why branches are here. */ \
/* From m-isi.h, m-altos.h */ \
else if (op == 0060000) \
pc += 4; /* Skip bra #word */ \
else if (op == 00600377) \
pc += 6; /* skip bra #long */ \
else if ((op & 0177400) == 0060000) \
pc += 2; /* skip bra #char */ \
}
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) \
read_memory_integer (read_register (SP_REGNUM), 4)
/* Stack grows downward. */
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction.
This is a TRAP instruction. The last 4 bits (0xf below) is the
vector. Systems which don't use 0xf should define BREAKPOINT
themselves before including this file. */
#if !defined (BREAKPOINT)
#define BREAKPOINT {0x4e, 0x4f}
#endif
/* If your kernel resets the pc after the trap happens you may need to
define this in m-68k.h. */
#if !defined (DECR_PC_AFTER_BREAK)
#define DECR_PC_AFTER_BREAK 2
#endif
/* Nonzero if instruction at PC is a return instruction. */
/* Allow any of the return instructions, including a trapv and a return
from interupt. */
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 2) & ~0x3) == 0x4e74)
/* Return 1 if P points to an invalid floating point value. */
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
/* Say how long registers are. */
#define REGISTER_TYPE long
#if defined (HAVE_68881)
# if defined (GDB_TARGET_IS_SUN3)
/* Sun3 status includes fpflags, which shows whether the FPU has been used
by the process, and whether the FPU was done with an instruction or
was interrupted in the middle of a long instruction. See
<machine/reg.h>. */
/* a&d, pc,sr, fp, fpstat, fpflags */
# define NUM_REGS 31
# define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4 + 4)
# else /* Not sun3. */
# define NUM_REGS 29
# define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4)
# endif /* Not sun3. */
#else /* No 68881. */
# define NUM_REGS 18
# define REGISTER_BYTES (16*4 + 8)
#endif /* No 68881. */
/* Index within `registers' of the first byte of the space for
register N. */
#if defined (HAVE_68881)
#define REGISTER_BYTE(N) \
((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
: (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
: (N) * 4)
/* Number of bytes of storage in the actual machine representation
for register N. On the 68000, all regs are 4 bytes
except the floating point regs which are 12 bytes. */
/* Note that the unsigned cast here forces the result of the
subtraction to very high positive values if N < FP0_REGNUM */
#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
/* Number of bytes of storage in the program's representation
for register N. On the 68000, all regs are 4 bytes
except the floating point regs which are 8-byte doubles. */
#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 12
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 8
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
/* Put the declaration out here because if it's in the macros, PCC
will complain. */
extern struct ext_format ext_format_68881 [];
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
{ \
if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
ieee_extended_to_double (ext_format_68881, (FROM), (TO)); \
else \
bcopy ((FROM), (TO), 4); \
}
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
{ \
if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
double_to_ieee_extended (ext_format_68881, (FROM), (TO)); \
else \
bcopy ((FROM), (TO), 4); \
}
/* Return the GDB type object for the "standard" data type
of data in register N. */
/* Note, for registers which contain addresses return
pointer to void, not pointer to char, because we don't
want to attempt to print the string after printing the address. */
#define REGISTER_VIRTUAL_TYPE(N) \
(((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : \
(N) == PC_REGNUM || (N) == FP_REGNUM || (N) == SP_REGNUM ? \
lookup_pointer_type (builtin_type_void) : builtin_type_int)
#else /* no 68881. */
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) * 4)
/* Number of bytes of storage in the actual machine representation
for register N. On the 68000, all regs are 4 bytes. */
#define REGISTER_RAW_SIZE(N) 4
/* Number of bytes of storage in the program's representation
for register N. On the 68000, all regs are 4 bytes. */
#define REGISTER_VIRTUAL_SIZE(N) 4
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 4
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 4
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) 0
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
#endif /* No 68881. */
/* Initializer for an array of names of registers.
Entries beyond the first NUM_REGS are ignored. */
#define REGISTER_NAMES \
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
"ps", "pc", \
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
"fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags" }
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define A1_REGNUM 9
#define FP_REGNUM 14 /* Contains address of executing stack frame */
#define SP_REGNUM 15 /* Contains address of top of stack */
#define PS_REGNUM 16 /* Contains processor status */
#define PC_REGNUM 17 /* Contains program counter */
#if defined (HAVE_68881)
#define FP0_REGNUM 18 /* Floating point register 0 */
#define FPC_REGNUM 26 /* 68881 control register */
#define FPS_REGNUM 27 /* 68881 status register */
#endif /* 68881. */
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function. */
#define STORE_STRUCT_RETURN(ADDR, SP) \
{ write_register (A1_REGNUM, (ADDR)); }
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. This is assuming that floating point values are returned
as doubles in d0/d1. */
#if !defined (EXTRACT_RETURN_VALUE)
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
#endif
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. Assumes floats are passed
in d0/d1. */
#if !defined (STORE_RETURN_VALUE)
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
#endif
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer.
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
and produces the nominal address of the caller frame.
However, if FRAME_CHAIN_VALID returns zero,
it means the given frame is the outermost one and has no caller.
In that case, FRAME_CHAIN_COMBINE is not used. */
/* In the case of the 68000, the frame's nominal address
is the address of a 4-byte word containing the calling frame's address. */
#define FRAME_CHAIN(thisframe) \
(outside_startup_file ((thisframe)->pc) ? \
read_memory_integer ((thisframe)->frame, 4) :\
0)
#define FRAME_CHAIN_VALID(chain, thisframe) \
(chain != 0 && outside_startup_file (FRAME_SAVED_PC (thisframe)))
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
/* Define other aspects of the stack frame. */
/* A macro that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. If it
does not, FRAMELESS is set to 1, else 0. */
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
(FRAMELESS) = frameless_look_for_prologue(FI)
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Set VAL to the number of args passed to frame described by FI.
Can set VAL to -1, meaning no way to tell. */
/* We can't tell how many args there are
now that the C compiler delays popping them. */
#if !defined (FRAME_NUM_ARGS)
#define FRAME_NUM_ARGS(val,fi) (val = -1)
#endif
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 8
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#if !defined (FRAME_FIND_SAVED_REGS)
#if defined (HAVE_68881)
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ register int regnum; \
register int regmask; \
register CORE_ADDR next_addr; \
register CORE_ADDR pc; \
int nextinsn; \
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 8*12 - 4 \
&& (frame_info)->pc <= (frame_info)->frame) \
{ next_addr = (frame_info)->frame; \
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 8*12 - 4; }\
else \
{ pc = get_pc_function_start ((frame_info)->pc); \
/* Verify we have a link a6 instruction next; \
if not we lose. If we win, find the address above the saved \
regs using the amount of storage from the link instruction. */\
if (044016 == read_memory_integer (pc, 2)) \
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
else if (047126 == read_memory_integer (pc, 2)) \
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
else goto lose; \
/* If have an addal #-n, sp next, adjust next_addr. */ \
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
} \
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
regmask = read_memory_integer (pc + 2, 2); \
/* But before that can come an fmovem. Check for it. */ \
nextinsn = 0xffff & read_memory_integer (pc, 2); \
if (0xf227 == nextinsn \
&& (regmask & 0xff00) == 0xe000) \
{ pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ \
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr -= 12); \
regmask = read_memory_integer (pc + 2, 2); } \
if (0044327 == read_memory_integer (pc, 2)) \
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
else if (0044347 == read_memory_integer (pc, 2)) \
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) \
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
/* fmovemx to index of sp may follow. */ \
regmask = read_memory_integer (pc + 2, 2); \
nextinsn = 0xffff & read_memory_integer (pc, 2); \
if (0xf236 == nextinsn \
&& (regmask & 0xff00) == 0xf000) \
{ pc += 10; /* Regmask's low bit is for register fp0, the first written */ \
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr += 12) - 12; \
regmask = read_memory_integer (pc + 2, 2); } \
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
if (0x426742e7 == read_memory_integer (pc, 4)) \
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
lose: ; \
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
}
#else /* no 68881. */
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ register int regnum; \
register int regmask; \
register CORE_ADDR next_addr; \
register CORE_ADDR pc; \
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4 \
&& (frame_info)->pc <= (frame_info)->frame) \
{ next_addr = (frame_info)->frame; \
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; }\
else \
{ pc = get_pc_function_start ((frame_info)->pc); \
/* Verify we have a link a6 instruction next; \
if not we lose. If we win, find the address above the saved \
regs using the amount of storage from the link instruction. */\
if (044016 == read_memory_integer (pc, 2)) \
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
else if (047126 == read_memory_integer (pc, 2)) \
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
else goto lose; \
/* If have an addal #-n, sp next, adjust next_addr. */ \
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
} \
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
regmask = read_memory_integer (pc + 2, 2); \
if (0044327 == read_memory_integer (pc, 2)) \
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
else if (0044347 == read_memory_integer (pc, 2)) \
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
if (regmask & 1) \
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
else if (0x2f00 == 0xfff0 & read_memory_integer (pc, 2)) \
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
if (0x426742e7 == read_memory_integer (pc, 4)) \
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
lose: ; \
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
}
#endif /* no 68881. */
#endif /* no FIND_FRAME_SAVED_REGS. */
/* Note that stuff for calling inferior functions is not in this file
because the call dummy is different for different breakpoint
instructions, which are different on different systems. Perhaps
they could be merged, but I haven't bothered. */
|