aboutsummaryrefslogtreecommitdiff
path: root/gdb/tilegx-tdep.c
blob: c25933be558563c5b00e6e8cdb0440a2accd914a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
/* Target-dependent code for the Tilera TILE-Gx processor.

   Copyright (C) 2012-2024 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "dwarf2/frame.h"
#include "trad-frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "dis-asm.h"
#include "inferior.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "osabi.h"
#include "linux-tdep.h"
#include "objfiles.h"
#include "solib-svr4.h"
#include "tilegx-tdep.h"
#include "opcode/tilegx.h"
#include <algorithm>
#include "gdbsupport/byte-vector.h"

struct tilegx_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  /* Function start.  */
  CORE_ADDR start_pc;

  /* Table of saved registers.  */
  trad_frame_saved_reg *saved_regs;
};

/* Register state values used by analyze_prologue.  */
enum reverse_state
  {
    REVERSE_STATE_REGISTER,
    REVERSE_STATE_VALUE,
    REVERSE_STATE_UNKNOWN
  };

/* Register state used by analyze_prologue().  */
struct tilegx_reverse_regs
{
  LONGEST value;
  enum reverse_state state;
};

static const struct tilegx_reverse_regs
template_reverse_regs[TILEGX_NUM_PHYS_REGS] =
  {
    { TILEGX_R0_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R1_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R2_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R3_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R4_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R5_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R6_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R7_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R8_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R9_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_R10_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R11_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R12_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R13_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R14_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R15_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R16_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R17_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R18_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R19_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R20_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R21_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R22_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R23_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R24_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R25_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R26_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R27_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R28_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R29_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R30_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R31_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R32_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R33_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R34_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R35_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R36_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R37_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R38_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R39_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R40_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R41_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R42_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R43_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R44_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R45_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R46_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R47_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R48_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R49_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R50_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R51_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_R52_REGNUM, REVERSE_STATE_REGISTER },
    { TILEGX_TP_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_SP_REGNUM,  REVERSE_STATE_REGISTER },
    { TILEGX_LR_REGNUM,  REVERSE_STATE_REGISTER },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { 0, REVERSE_STATE_UNKNOWN },
    { TILEGX_ZERO_REGNUM, REVERSE_STATE_VALUE }
  };

/* Implement the "register_name" gdbarch method.  */

static const char *
tilegx_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *const register_names[] =
    {
      "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
      "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
      "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",
      "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",
      "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",
      "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",
      "r48",  "r49",  "r50",  "r51",  "r52",  "tp",   "sp",   "lr",
      "sn",   "idn0", "idn1", "udn0", "udn1", "udn2", "udn3", "zero",
      "pc",   "faultnum",
    };

  static_assert (TILEGX_NUM_REGS == ARRAY_SIZE (register_names));
  return register_names[regnum];
}

/* This is the implementation of gdbarch method register_type.  */

static struct type *
tilegx_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum == TILEGX_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else
    return builtin_type (gdbarch)->builtin_uint64;
}

/* This is the implementation of gdbarch method dwarf2_reg_to_regnum.  */

static int
tilegx_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  return num;
}

/* Makes the decision of whether a given type is a scalar type.
   Scalar types are returned in the registers r2-r11 as they fit.  */

static int
tilegx_type_is_scalar (struct type *t)
{
  return (t->code () != TYPE_CODE_STRUCT
	  && t->code () != TYPE_CODE_UNION
	  && t->code () != TYPE_CODE_ARRAY);
}

/* Returns non-zero if the given struct type will be returned using
   a special convention, rather than the normal function return method.
   Used in the context of the "return" command, and target function
   calls from the debugger.  */

static int
tilegx_use_struct_convention (struct type *type)
{
  /* Only scalars which fit in R0 - R9 can be returned in registers.
     Otherwise, they are returned via a pointer passed in R0.  */
  return (!tilegx_type_is_scalar (type)
	  && (type->length () > (1 + TILEGX_R9_REGNUM - TILEGX_R0_REGNUM)
	      * tilegx_reg_size));
}

/* Find a function's return value in the appropriate registers (in
   REGCACHE), and copy it into VALBUF.  */

static void
tilegx_extract_return_value (struct type *type, struct regcache *regcache,
			     gdb_byte *valbuf)
{
  int len = type->length ();
  int i, regnum = TILEGX_R0_REGNUM;

  for (i = 0; i < len; i += tilegx_reg_size)
    regcache->raw_read (regnum++, valbuf + i);
}

/* Copy the function return value from VALBUF into the proper
   location for a function return.
   Called only in the context of the "return" command.  */

static void
tilegx_store_return_value (struct type *type, struct regcache *regcache,
			   const void *valbuf)
{
  if (type->length () < tilegx_reg_size)
    {
      /* Add leading zeros to the (little-endian) value.  */
      gdb_byte buf[tilegx_reg_size] = { 0 };

      memcpy (buf, valbuf, type->length ());
      regcache->raw_write (TILEGX_R0_REGNUM, buf);
    }
  else
    {
      int len = type->length ();
      int i, regnum = TILEGX_R0_REGNUM;

      for (i = 0; i < len; i += tilegx_reg_size)
	regcache->raw_write (regnum++, (gdb_byte *) valbuf + i);
    }
}

/* This is the implementation of gdbarch method return_value.  */

static enum return_value_convention
tilegx_return_value (struct gdbarch *gdbarch, struct value *function,
		     struct type *type, struct regcache *regcache,
		     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (tilegx_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
    tilegx_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    tilegx_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* This is the implementation of gdbarch method frame_align.  */

static CORE_ADDR
tilegx_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return addr & -8;
}


/* Implement the "push_dummy_call" gdbarch method.  */

static CORE_ADDR
tilegx_push_dummy_call (struct gdbarch *gdbarch,
			struct value *function,
			struct regcache *regcache,
			CORE_ADDR bp_addr, int nargs,
			struct value **args,
			CORE_ADDR sp, function_call_return_method return_method,
			CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR stack_dest = sp;
  int argreg = TILEGX_R0_REGNUM;
  int i, j;
  int typelen, slacklen;
  static const gdb_byte four_zero_words[16] = { 0 };

  /* If struct_return is 1, then the struct return address will
     consume one argument-passing register.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);

  /* Arguments are passed in R0 - R9, and as soon as an argument
     will not fit completely in the remaining registers, then it,
     and all remaining arguments, are put on the stack.  */
  for (i = 0; i < nargs && argreg <= TILEGX_R9_REGNUM; i++)
    {
      const gdb_byte *val;
      typelen = args[i]->enclosing_type ()->length ();

      if (typelen > (TILEGX_R9_REGNUM - argreg + 1) * tilegx_reg_size)
	break;

      /* Put argument into registers wordwise.	*/
      val = args[i]->contents ().data ();
      for (j = 0; j < typelen; j += tilegx_reg_size)
	{
	  /* ISSUE: Why special handling for "typelen = 4x + 1"?
	     I don't ever see "typelen" values except 4 and 8.	*/
	  int n = (typelen - j == 1) ? 1 : tilegx_reg_size;
	  ULONGEST w = extract_unsigned_integer (val + j, n, byte_order);

	  regcache_cooked_write_unsigned (regcache, argreg++, w);
	}
    }

  /* Align SP.  */
  stack_dest = tilegx_frame_align (gdbarch, stack_dest);

  /* Loop backwards through remaining arguments and push them on
     the stack, word aligned.  */
  for (j = nargs - 1; j >= i; j--)
    {
      const gdb_byte *contents = args[j]->contents ().data ();

      typelen = args[j]->enclosing_type ()->length ();
      slacklen = align_up (typelen, 8) - typelen;
      gdb::byte_vector val (typelen + slacklen);
      memcpy (val.data (), contents, typelen);
      memset (val.data () + typelen, 0, slacklen);

      /* Now write data to the stack.  The stack grows downwards.  */
      stack_dest -= typelen + slacklen;
      write_memory (stack_dest, val.data (), typelen + slacklen);
    }

  /* Add 16 bytes for linkage space to the stack.  */
  stack_dest = stack_dest - 16;
  write_memory (stack_dest, four_zero_words, 16);

  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, TILEGX_SP_REGNUM, stack_dest);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_unsigned (regcache, TILEGX_LR_REGNUM, bp_addr);

  return stack_dest;
}


/* Decode the instructions within the given address range.
   Decide when we must have reached the end of the function prologue.
   If a frame_info pointer is provided, fill in its saved_regs etc.
   Returns the address of the first instruction after the prologue.
   NOTE: This is often called with start_addr being the start of some
   function, and end_addr being the current PC.  */

static CORE_ADDR
tilegx_analyze_prologue (struct gdbarch* gdbarch,
			 CORE_ADDR start_addr, CORE_ADDR end_addr,
			 struct tilegx_frame_cache *cache,
			 const frame_info_ptr &next_frame)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR next_addr;
  CORE_ADDR prolog_end = end_addr;
  gdb_byte instbuf[32 * TILEGX_BUNDLE_SIZE_IN_BYTES];
  CORE_ADDR instbuf_start;
  unsigned int instbuf_size;
  int status;
  uint64_t bundle;
  struct tilegx_decoded_instruction
    decoded[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
  int num_insns;
  struct tilegx_reverse_regs reverse_frame[TILEGX_NUM_PHYS_REGS];
  struct tilegx_reverse_regs
    new_reverse_frame[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
  int dest_regs[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
  int reverse_frame_valid, prolog_done, branch_seen, lr_saved_on_stack_p;
  LONGEST prev_sp_value;
  int i, j;

  if (start_addr >= end_addr
      || (start_addr % TILEGX_BUNDLE_ALIGNMENT_IN_BYTES) != 0)
    return end_addr;

  /* Initialize the reverse frame.  This maps the CURRENT frame's
     registers to the outer frame's registers (the frame on the
     stack goes the other way).  */
  memcpy (&reverse_frame, &template_reverse_regs, sizeof (reverse_frame));

  prolog_done = 0;
  branch_seen = 0;
  prev_sp_value = 0;
  lr_saved_on_stack_p = 0;

  /* To cut down on round-trip overhead, we fetch multiple bundles
     at once.  These variables describe the range of memory we have
     prefetched.  */
  instbuf_start = 0;
  instbuf_size = 0;

  for (next_addr = start_addr;
       next_addr < end_addr;
       next_addr += TILEGX_BUNDLE_SIZE_IN_BYTES)
    {
      /* Retrieve the next instruction.  */
      if (next_addr - instbuf_start >= instbuf_size)
	{
	  /* Figure out how many bytes to fetch.  Don't span a page
	     boundary since that might cause an unnecessary memory
	     error.  */
	  unsigned int size_on_same_page = 4096 - (next_addr & 4095);

	  instbuf_size = sizeof instbuf;

	  if (instbuf_size > size_on_same_page)
	    instbuf_size = size_on_same_page;

	  instbuf_size = std::min ((CORE_ADDR) instbuf_size,
				   (end_addr - next_addr));
	  instbuf_start = next_addr;

	  status = safe_frame_unwind_memory (next_frame, instbuf_start,
					     {instbuf, instbuf_size});
	  if (status == 0)
	    memory_error (TARGET_XFER_E_IO, next_addr);
	}

      reverse_frame_valid = 0;

      bundle = extract_unsigned_integer (&instbuf[next_addr - instbuf_start],
					 8, byte_order);

      num_insns = parse_insn_tilegx (bundle, next_addr, decoded);

      for (i = 0; i < num_insns; i++)
	{
	  struct tilegx_decoded_instruction *this_insn = &decoded[i];
	  long long *operands = this_insn->operand_values;
	  const struct tilegx_opcode *opcode = this_insn->opcode;

	  switch (opcode->mnemonic)
	    {
	    case TILEGX_OPC_ST:
	      if (cache
		  && reverse_frame[operands[0]].state == REVERSE_STATE_VALUE
		  && reverse_frame[operands[1]].state
		  == REVERSE_STATE_REGISTER)
		{
		  LONGEST saved_address = reverse_frame[operands[0]].value;
		  unsigned saved_register
		    = (unsigned) reverse_frame[operands[1]].value;

		  cache->saved_regs[saved_register].set_addr (saved_address);
		} 
	      else if (cache
		       && (operands[0] == TILEGX_SP_REGNUM) 
		       && (operands[1] == TILEGX_LR_REGNUM))
		lr_saved_on_stack_p = 1;
	      break;
	    case TILEGX_OPC_ADDI:
	    case TILEGX_OPC_ADDLI:
	      if (cache
		  && operands[0] == TILEGX_SP_REGNUM
		  && operands[1] == TILEGX_SP_REGNUM
		  && reverse_frame[operands[1]].state == REVERSE_STATE_REGISTER)
		{
		  /* Special case.  We're fixing up the stack frame.  */
		  uint64_t hopefully_sp
		    = (unsigned) reverse_frame[operands[1]].value;
		  short op2_as_short = (short) operands[2];
		  signed char op2_as_char = (signed char) operands[2];

		  /* Fix up the sign-extension.  */
		  if (opcode->mnemonic == TILEGX_OPC_ADDI)
		    op2_as_short = op2_as_char;
		  prev_sp_value = (cache->saved_regs[hopefully_sp].addr ()
				   - op2_as_short);

		  new_reverse_frame[i].state = REVERSE_STATE_VALUE;
		  new_reverse_frame[i].value
		    = cache->saved_regs[hopefully_sp].addr ();
		  cache->saved_regs[hopefully_sp].set_value (prev_sp_value);
		}
	      else
		{
		  short op2_as_short = (short) operands[2];
		  signed char op2_as_char = (signed char) operands[2];

		  /* Fix up the sign-extension.  */
		  if (opcode->mnemonic == TILEGX_OPC_ADDI)
		    op2_as_short = op2_as_char;

		  new_reverse_frame[i] = reverse_frame[operands[1]];
		  if (new_reverse_frame[i].state == REVERSE_STATE_VALUE)
		    new_reverse_frame[i].value += op2_as_short;
		  else
		    new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		}
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_ADD:
	      if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
		  && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
		{
		  /* We have values -- we can do this.  */
		  new_reverse_frame[i] = reverse_frame[operands[2]];
		  new_reverse_frame[i].value
		    += reverse_frame[operands[i]].value;
		}
	      else
		{
		  /* We don't know anything about the values.  Punt.  */
		  new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		}
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_MOVE:
	      new_reverse_frame[i] = reverse_frame[operands[1]];
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_MOVEI:
	    case TILEGX_OPC_MOVELI:
	      new_reverse_frame[i].state = REVERSE_STATE_VALUE;
	      new_reverse_frame[i].value = operands[1];
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_ORI:
	      if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE)
		{
		  /* We have a value in A -- we can do this.  */
		  new_reverse_frame[i] = reverse_frame[operands[1]];
		  new_reverse_frame[i].value
		    = reverse_frame[operands[1]].value | operands[2];
		}
	      else if (operands[2] == 0)
		{
		  /* This is a move.  */
		  new_reverse_frame[i] = reverse_frame[operands[1]];
		}
	      else
		{
		  /* We don't know anything about the values.  Punt.  */
		  new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		}
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_OR:
	      if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
		  && reverse_frame[operands[1]].value == 0)
		{
		  /* This is a move.  */
		  new_reverse_frame[i] = reverse_frame[operands[2]];
		}
	      else if (reverse_frame[operands[2]].state == REVERSE_STATE_VALUE
		       && reverse_frame[operands[2]].value == 0)
		{
		  /* This is a move.  */
		  new_reverse_frame[i] = reverse_frame[operands[1]];
		}
	      else
		{
		  /* We don't know anything about the values.  Punt.  */
		  new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		}
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;
	    case TILEGX_OPC_SUB:
	      if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
		  && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
		{
		  /* We have values -- we can do this.  */
		  new_reverse_frame[i] = reverse_frame[operands[1]];
		  new_reverse_frame[i].value
		    -= reverse_frame[operands[2]].value;
		}
	      else
		{
		  /* We don't know anything about the values.  Punt.  */
		  new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		}
	      reverse_frame_valid |= 1 << i;
	      dest_regs[i] = operands[0];
	      break;

	    case TILEGX_OPC_FNOP:
	    case TILEGX_OPC_INFO:
	    case TILEGX_OPC_INFOL:
	      /* Nothing to see here, move on.
		 Note that real NOP is treated as a 'real' instruction
		 because someone must have intended that it be there.
		 It therefore terminates the prolog.  */
	      break;

	    case TILEGX_OPC_J:
	    case TILEGX_OPC_JAL:

	    case TILEGX_OPC_BEQZ:
	    case TILEGX_OPC_BEQZT:
	    case TILEGX_OPC_BGEZ:
	    case TILEGX_OPC_BGEZT:
	    case TILEGX_OPC_BGTZ:
	    case TILEGX_OPC_BGTZT:
	    case TILEGX_OPC_BLBC:
	    case TILEGX_OPC_BLBCT:
	    case TILEGX_OPC_BLBS:
	    case TILEGX_OPC_BLBST:
	    case TILEGX_OPC_BLEZ:
	    case TILEGX_OPC_BLEZT:
	    case TILEGX_OPC_BLTZ:
	    case TILEGX_OPC_BLTZT:
	    case TILEGX_OPC_BNEZ:
	    case TILEGX_OPC_BNEZT:

	    case TILEGX_OPC_IRET:
	    case TILEGX_OPC_JALR:
	    case TILEGX_OPC_JALRP:
	    case TILEGX_OPC_JR:
	    case TILEGX_OPC_JRP:
	    case TILEGX_OPC_SWINT0:
	    case TILEGX_OPC_SWINT1:
	    case TILEGX_OPC_SWINT2:
	    case TILEGX_OPC_SWINT3:
	      /* We're really done -- this is a branch.  */
	      branch_seen = 1;
	      prolog_done = 1;
	      break;
	    default:
	      /* We don't know or care what this instruction is.
		 All we know is that it isn't part of a prolog, and if
		 there's a destination register, we're trashing it.  */
	      prolog_done = 1;
	      for (j = 0; j < opcode->num_operands; j++)
		{
		  if (this_insn->operands[j]->is_dest_reg)
		    {
		      dest_regs[i] = operands[j];
		      new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
		      reverse_frame_valid |= 1 << i;
		      break;
		    }
		}
	      break;
	    }
	}

      /* Now update the reverse frames.  */
      for (i = 0; i < num_insns; i++)
	{
	  /* ISSUE: Does this properly handle "network" registers?  */
	  if ((reverse_frame_valid & (1 << i))
	      && dest_regs[i] != TILEGX_ZERO_REGNUM)
	    reverse_frame[dest_regs[i]] = new_reverse_frame[i];
	}

      if (prev_sp_value != 0)
	{
	  /* GCC uses R52 as a frame pointer.  Have we seen "move r52, sp"?  */
	  if (reverse_frame[TILEGX_R52_REGNUM].state == REVERSE_STATE_REGISTER
	      && reverse_frame[TILEGX_R52_REGNUM].value == TILEGX_SP_REGNUM)
	  {
	    reverse_frame[TILEGX_R52_REGNUM].state = REVERSE_STATE_VALUE;
	    reverse_frame[TILEGX_R52_REGNUM].value = prev_sp_value;
	  }

	  prev_sp_value = 0;
	}

      if (prolog_done && prolog_end == end_addr)
	{
	  /* We found non-prolog code.	As such, _this_ instruction
	     is the one after the prolog.  We keep processing, because
	     there may be more prolog code in there, but this is what
	     we'll return.  */
	  /* ISSUE: There may not have actually been a prologue, and
	     we may have simply skipped some random instructions.  */
	  prolog_end = next_addr;
	}
      if (branch_seen)
	{
	  /* We saw a branch.  The prolog absolutely must be over.  */
	  break;
	}
    }

  if (prolog_end == end_addr && cache)
    {
      /* We may have terminated the prolog early, and we're certainly
	 at THIS point right now.  It's possible that the values of
	 registers we need are currently actually in other registers
	 (and haven't been written to memory yet).  Go find them.  */
      for (i = 0; i < TILEGX_NUM_PHYS_REGS; i++)
	{
	  if (reverse_frame[i].state == REVERSE_STATE_REGISTER
	      && reverse_frame[i].value != i)
	    {
	      unsigned saved_register = (unsigned) reverse_frame[i].value;

	      cache->saved_regs[saved_register].set_realreg (i);
	    }
	}
    }

  if (lr_saved_on_stack_p)
    {
      CORE_ADDR addr = cache->saved_regs[TILEGX_SP_REGNUM].addr ();
      cache->saved_regs[TILEGX_LR_REGNUM].set_addr (addr);
    }

  return prolog_end;
}

/* This is the implementation of gdbarch method skip_prologue.  */

static CORE_ADDR
tilegx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  CORE_ADDR func_start, end_pc;
  struct obj_section *s;

  /* This is the preferred method, find the end of the prologue by
     using the debugging information.  */
  if (find_pc_partial_function (start_pc, NULL, &func_start, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_start);

      if (post_prologue_pc != 0)
	return std::max (start_pc, post_prologue_pc);
    }

  /* Don't straddle a section boundary.  */
  s = find_pc_section (start_pc);
  end_pc = start_pc + 8 * TILEGX_BUNDLE_SIZE_IN_BYTES;
  if (s != NULL)
    end_pc = std::min (end_pc, s->endaddr ());

  /* Otherwise, try to skip prologue the hard way.  */
  return tilegx_analyze_prologue (gdbarch,
				  start_pc,
				  end_pc,
				  NULL, NULL);
}

/* This is the implementation of gdbarch method stack_frame_destroyed_p.  */

static int
tilegx_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      CORE_ADDR addr = func_end - TILEGX_BUNDLE_SIZE_IN_BYTES;

      /* FIXME: Find the actual epilogue.  */
      /* HACK: Just assume the final bundle is the "ret" instruction".  */
      if (pc > addr)
	return 1;
    }
  return 0;
}

/* This is the implementation of gdbarch method get_longjmp_target.  */

static int
tilegx_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR jb_addr;
  gdb_byte buf[8];

  jb_addr = get_frame_register_unsigned (frame, TILEGX_R0_REGNUM);

  /* TileGX jmp_buf contains 32 elements of type __uint_reg_t which
     has a size of 8 bytes.  The return address is stored in the 25th
     slot.  */
  if (target_read_memory (jb_addr + 25 * 8, buf, 8))
    return 0;

  *pc = extract_unsigned_integer (buf, 8, byte_order);

  return 1;
}

/* by assigning the 'faultnum' reg in kernel pt_regs with this value,
   kernel do_signal will not check r0. see tilegx kernel/signal.c
   for details.  */
#define INT_SWINT_1_SIGRETURN (~0)

/* Implement the "write_pc" gdbarch method.  */

static void
tilegx_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  regcache_cooked_write_unsigned (regcache, TILEGX_PC_REGNUM, pc);

  /* We must be careful with modifying the program counter.  If we
     just interrupted a system call, the kernel might try to restart
     it when we resume the inferior.  On restarting the system call,
     the kernel will try backing up the program counter even though it
     no longer points at the system call.  This typically results in a
     SIGSEGV or SIGILL.  We can prevent this by writing INT_SWINT_1_SIGRETURN
     in the "faultnum" pseudo-register.

     Note that "faultnum" is saved when setting up a dummy call frame.
     This means that it is properly restored when that frame is
     popped, and that the interrupted system call will be restarted
     when we resume the inferior on return from a function call from
     within GDB.  In all other cases the system call will not be
     restarted.  */
  regcache_cooked_write_unsigned (regcache, TILEGX_FAULTNUM_REGNUM,
				  INT_SWINT_1_SIGRETURN);
}

/* 64-bit pattern for a { bpt ; nop } bundle.  */
constexpr gdb_byte tilegx_break_insn[] =
  { 0x00, 0x50, 0x48, 0x51, 0xae, 0x44, 0x6a, 0x28 };

typedef BP_MANIPULATION (tilegx_break_insn) tilegx_breakpoint;

/* Normal frames.  */

static struct tilegx_frame_cache *
tilegx_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct tilegx_frame_cache *cache;
  CORE_ADDR current_pc;

  if (*this_cache)
    return (struct tilegx_frame_cache *) *this_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct tilegx_frame_cache);
  *this_cache = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->base = 0;
  cache->start_pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);

  cache->base = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM);
  cache->saved_regs[TILEGX_SP_REGNUM].set_value (cache->base);

  if (cache->start_pc)
    tilegx_analyze_prologue (gdbarch, cache->start_pc, current_pc,
			     cache, this_frame);

  cache->saved_regs[TILEGX_PC_REGNUM] = cache->saved_regs[TILEGX_LR_REGNUM];

  return cache;
}

/* Retrieve the value of REGNUM in FRAME.  */

static struct value*
tilegx_frame_prev_register (const frame_info_ptr &this_frame,
			    void **this_cache,
			    int regnum)
{
  struct tilegx_frame_cache *info =
    tilegx_frame_cache (this_frame, this_cache);

  return trad_frame_get_prev_register (this_frame, info->saved_regs,
				       regnum);
}

/* Build frame id.  */

static void
tilegx_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
		      struct frame_id *this_id)
{
  struct tilegx_frame_cache *info =
    tilegx_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;

  (*this_id) = frame_id_build (info->base, info->start_pc);
}

static CORE_ADDR
tilegx_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
{
  struct tilegx_frame_cache *cache =
    tilegx_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_unwind tilegx_frame_unwind = {
  "tilegx prologue",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  tilegx_frame_this_id,
  tilegx_frame_prev_register,
  NULL,                        /* const struct frame_data *unwind_data  */
  default_frame_sniffer,       /* frame_sniffer_ftype *sniffer  */
  NULL                         /* frame_prev_pc_ftype *prev_pc  */
};

static const struct frame_base tilegx_frame_base = {
  &tilegx_frame_unwind,
  tilegx_frame_base_address,
  tilegx_frame_base_address,
  tilegx_frame_base_address
};

/* We cannot read/write the "special" registers.  */

static int
tilegx_cannot_reference_register (struct gdbarch *gdbarch, int regno)
{
  if (regno >= 0 && regno < TILEGX_NUM_EASY_REGS)
    return 0;
  else if (regno == TILEGX_PC_REGNUM
	   || regno == TILEGX_FAULTNUM_REGNUM)
    return 0;
  else
    return 1;
}

static struct gdbarch *
tilegx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  int arch_size = 64;

  /* Handle arch_size == 32 or 64.  Default to 64.  */
  if (info.abfd)
    arch_size = bfd_get_arch_size (info.abfd);

  /* Try to find a pre-existing architecture.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* We only have two flavors -- just make sure arch_size matches.  */
      if (gdbarch_ptr_bit (arches->gdbarch) == arch_size)
	return (arches->gdbarch);
    }

  gdbarch = gdbarch_alloc (&info, NULL);

  /* Basic register fields and methods, datatype sizes and stuff.  */

  /* There are 64 physical registers which can be referenced by
     instructions (although only 56 of them can actually be
     debugged) and 1 magic register (the PC).  The other three
     magic registers (ex1, syscall, orig_r0) which are known to
     "ptrace" are ignored by "gdb".  Note that we simply pretend
     that there are 65 registers, and no "pseudo registers".  */
  set_gdbarch_num_regs (gdbarch, TILEGX_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);

  set_gdbarch_sp_regnum (gdbarch, TILEGX_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, TILEGX_PC_REGNUM);

  set_gdbarch_register_name (gdbarch, tilegx_register_name);
  set_gdbarch_register_type (gdbarch, tilegx_register_type);

  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, arch_size);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_ptr_bit (gdbarch, arch_size);
  set_gdbarch_addr_bit (gdbarch, arch_size);

  set_gdbarch_cannot_fetch_register (gdbarch,
				     tilegx_cannot_reference_register);
  set_gdbarch_cannot_store_register (gdbarch,
				     tilegx_cannot_reference_register);

  /* Stack grows down.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  /* Frame Info.  */
  set_gdbarch_frame_align (gdbarch, tilegx_frame_align);
  frame_base_set_default (gdbarch, &tilegx_frame_base);

  set_gdbarch_skip_prologue (gdbarch, tilegx_skip_prologue);

  set_gdbarch_stack_frame_destroyed_p (gdbarch, tilegx_stack_frame_destroyed_p);

  /* Map debug registers into internal register numbers.  */
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, tilegx_dwarf2_reg_to_regnum);

  /* These values and methods are used when gdb calls a target function.  */
  set_gdbarch_push_dummy_call (gdbarch, tilegx_push_dummy_call);
  set_gdbarch_get_longjmp_target (gdbarch, tilegx_get_longjmp_target);
  set_gdbarch_write_pc (gdbarch, tilegx_write_pc);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       tilegx_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       tilegx_breakpoint::bp_from_kind);
  set_gdbarch_return_value (gdbarch, tilegx_return_value);

  gdbarch_init_osabi (info, gdbarch);

  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &tilegx_frame_unwind);

  return gdbarch;
}

void _initialize_tilegx_tdep ();
void
_initialize_tilegx_tdep ()
{
  gdbarch_register (bfd_arch_tilegx, tilegx_gdbarch_init);
}