aboutsummaryrefslogtreecommitdiff
path: root/gdb/tic6x-tdep.c
blob: b1711bad29339b5c3fea6c18c597088dbc60867b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/* Target dependent code for GDB on TI C6x systems.

   Copyright (C) 2010-2018 Free Software Foundation, Inc.
   Contributed by Andrew Jenner <andrew@codesourcery.com>
   Contributed by Yao Qi <yao@codesourcery.com>

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dwarf2-frame.h"
#include "symtab.h"
#include "inferior.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "dis-asm.h"
#include "regcache.h"
#include "value.h"
#include "symfile.h"
#include "arch-utils.h"
#include "glibc-tdep.h"
#include "infcall.h"
#include "regset.h"
#include "tramp-frame.h"
#include "linux-tdep.h"
#include "solib.h"
#include "objfiles.h"
#include "osabi.h"
#include "tic6x-tdep.h"
#include "language.h"
#include "target-descriptions.h"
#include <algorithm>

#define TIC6X_OPCODE_SIZE 4
#define TIC6X_FETCH_PACKET_SIZE 32

#define INST_S_BIT(INST) ((INST >> 1) & 1)
#define INST_X_BIT(INST) ((INST >> 12) & 1)

const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };

struct tic6x_unwind_cache
{
  /* The frame's base, optionally used by the high-level debug info.  */
  CORE_ADDR base;

  /* The previous frame's inner most stack address.  Used as this
     frame ID's stack_addr.  */
  CORE_ADDR cfa;

  /* The address of the first instruction in this function */
  CORE_ADDR pc;

  /* Which register holds the return address for the frame.  */
  int return_regnum;

  /* The offset of register saved on stack.  If register is not saved, the
     corresponding element is -1.  */
  CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
};


/* Name of TI C6x core registers.  */
static const char *const tic6x_register_names[] =
{
  "A0",  "A1",  "A2",  "A3",  /*  0  1  2  3 */
  "A4",  "A5",  "A6",  "A7",  /*  4  5  6  7 */
  "A8",  "A9",  "A10", "A11", /*  8  9 10 11 */
  "A12", "A13", "A14", "A15", /* 12 13 14 15 */
  "B0",  "B1",  "B2",  "B3",  /* 16 17 18 19 */
  "B4",  "B5",  "B6",  "B7",  /* 20 21 22 23 */
  "B8",  "B9",  "B10", "B11", /* 24 25 26 27 */
  "B12", "B13", "B14", "B15", /* 28 29 30 31 */
  "CSR", "PC",                /* 32 33       */
};

/* This array maps the arguments to the register number which passes argument
   in function call according to C6000 ELF ABI.  */
static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };

/* This is the implementation of gdbarch method register_name.  */

static const char *
tic6x_register_name (struct gdbarch *gdbarch, int regno)
{
  if (regno < 0)
    return NULL;

  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, regno);
  else if (regno >= ARRAY_SIZE (tic6x_register_names))
    return "";
  else
    return tic6x_register_names[regno];
}

/* This is the implementation of gdbarch method register_type.  */

static struct type *
tic6x_register_type (struct gdbarch *gdbarch, int regno)
{

  if (regno == TIC6X_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else
    return builtin_type (gdbarch)->builtin_uint32;
}

static void
tic6x_setup_default (struct tic6x_unwind_cache *cache)
{
  int i;

  for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
    cache->reg_saved[i] = -1;
}

static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
static int tic6x_register_number (int reg, int side, int crosspath);

/* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
   Bail out early if CURRENT_PC is reached.  Returns the address of the first
   instruction after the prologue.  */

static CORE_ADDR
tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
			const CORE_ADDR current_pc,
			struct tic6x_unwind_cache *cache,
			struct frame_info *this_frame)
{
  unsigned long inst;
  unsigned int src_reg, base_reg, dst_reg;
  int i;
  CORE_ADDR pc = start_pc;
  CORE_ADDR return_pc = start_pc;
  int frame_base_offset_to_sp = 0;
  /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'.  */
  int non_stw_insn_counter = 0;

  if (start_pc >= current_pc)
    return_pc = current_pc;

  cache->base = 0;

  /* The landmarks in prologue is one or two SUB instructions to SP.
     Instructions on setting up dsbt are in the last part of prologue, if
     needed.  In maxim, prologue can be divided to three parts by two
     `sub sp, xx, sp' insns.  */

  /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp',  in which, the
     2nd one is optional.  */
  while (pc < current_pc)
    {
      unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);

      if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
	  || (inst & 0x0ffc) == 0x9c0)
	{
	  /* SUBAW/SUBAH/SUB, and src1 is ucst 5.  */
	  unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
						     INST_S_BIT (inst), 0);
	  unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
						    INST_S_BIT (inst), 0);

	  if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
	    {
	      /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
		 offset.  The constant offset is decoded in bit 13-17 in all
		 these three kinds of instructions.  */
	      unsigned int ucst5 = (inst >> 13) & 0x1f;

	      if ((inst & 0x1ffc) == 0x1dc0)	/* SUBAW */
		frame_base_offset_to_sp += ucst5 << 2;
	      else if ((inst & 0x1ffc) == 0x1bc0)	/* SUBAH */
		frame_base_offset_to_sp += ucst5 << 1;
	      else if ((inst & 0x0ffc) == 0x9c0)	/* SUB */
		frame_base_offset_to_sp += ucst5;
	      else
		gdb_assert_not_reached ("unexpected instruction");

	      return_pc = pc + 4;
	    }
	}
      else if ((inst & 0x174) == 0x74)	/* stw SRC, *+b15(uconst) */
	{
	  /* The y bit determines which file base is read from.  */
	  base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
					    (inst >> 7) & 1, 0);

	  if (base_reg == TIC6X_SP_REGNUM)
	    {
	      src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
					       INST_S_BIT (inst), 0);

	      cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;

	      return_pc = pc + 4;
	    }
	  non_stw_insn_counter = 0;
	}
      else
	{
	  non_stw_insn_counter++;
	  /* Following instruction sequence may be emitted in prologue:

	     <+0>: subah .D2 b15,28,b15
	     <+4>: or .L2X 0,a4,b0
	     <+8>: || stw .D2T2 b14,*+b15(56)
	     <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
	     <+16>:|| stw .D2T1 a10,*+b15(48)
	     <+20>:stw .D2T2 b3,*+b15(52)
	     <+24>:stw .D2T1 a4,*+b15(40)

	     we should look forward for next instruction instead of breaking loop
	     here.  So far, we allow almost two sequential non-stw instructions
	     in prologue.  */
	  if (non_stw_insn_counter >= 2)
	    break;
	}


      pc += 4;
    }
  /* Step 2: Skip insn on setting up dsbt if it is.  Usually, it looks like,
     ldw .D2T2 *+b14(0),b14 */
  inst = tic6x_fetch_instruction (gdbarch, pc);
  /* The s bit determines which file dst will be loaded into, same effect as
     other places.  */
  dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
  /* The y bit (bit 7), instead of s bit, determines which file base be
     used.  */
  base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);

  if ((inst & 0x164) == 0x64	/* ldw */
      && dst_reg == TIC6X_DP_REGNUM	/* dst is B14 */
      && base_reg == TIC6X_DP_REGNUM)	/* baseR is B14 */
    {
      return_pc = pc + 4;
    }

  if (this_frame)
    {
      cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);

      if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
	{
	  /* If the FP now holds an offset from the CFA then this is a frame
	     which uses the frame pointer.  */

	  cache->cfa = get_frame_register_unsigned (this_frame,
						    TIC6X_FP_REGNUM);
	}
      else
	{
	  /* FP doesn't hold an offset from the CFA.  If SP still holds an
	     offset from the CFA then we might be in a function which omits
	     the frame pointer.  */

	  cache->cfa = cache->base + frame_base_offset_to_sp;
	}
    }

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
    if (cache->reg_saved[i] != -1)
      cache->reg_saved[i] = cache->base + cache->reg_saved[i];

  return return_pc;
}

/* This is the implementation of gdbarch method skip_prologue.  */

static CORE_ADDR
tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  CORE_ADDR func_addr;
  struct tic6x_unwind_cache cache;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever is
     greater.  */
  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return std::max (start_pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */
  return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
				 NULL);
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  return 4;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  *size = kind;

  if (tdep == NULL || tdep->breakpoint == NULL)
    {
      if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
	return tic6x_bkpt_illegal_opcode_be;
      else
	return tic6x_bkpt_illegal_opcode_le;
    }
  else
    return tdep->breakpoint;
}

static void
tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			     struct dwarf2_frame_state_reg *reg,
			     struct frame_info *this_frame)
{
  /* Mark the PC as the destination for the return address.  */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_RA;

  /* Mark the stack pointer as the call frame address.  */
  else if (regnum == gdbarch_sp_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_CFA;

  /* The above was taken from the default init_reg in dwarf2-frame.c
     while the below is c6x specific.  */

  /* Callee save registers.  The ABI designates A10-A15 and B10-B15 as
     callee-save.  */
  else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
    reg->how = DWARF2_FRAME_REG_SAME_VALUE;
  else
    /* All other registers are caller-save.  */
    reg->how = DWARF2_FRAME_REG_UNDEFINED;
}

/* This is the implementation of gdbarch method unwind_pc.  */

static CORE_ADDR
tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  gdb_byte buf[8];

  frame_unwind_register (next_frame,  TIC6X_PC_REGNUM, buf);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}

/* This is the implementation of gdbarch method unwind_sp.  */

static CORE_ADDR
tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
}


/* Frame base handling.  */

static struct tic6x_unwind_cache*
tic6x_frame_unwind_cache (struct frame_info *this_frame,
			  void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR current_pc;
  struct tic6x_unwind_cache *cache;

  if (*this_prologue_cache)
    return (struct tic6x_unwind_cache *) *this_prologue_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
  (*this_prologue_cache) = cache;

  cache->return_regnum = TIC6X_RA_REGNUM;

  tic6x_setup_default (cache);

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);

  /* Prologue analysis does the rest...  */
  if (cache->pc != 0)
    tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);

  return cache;
}

static void
tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
		     struct frame_id *this_id)
{
  struct tic6x_unwind_cache *cache =
    tic6x_frame_unwind_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->cfa, cache->pc);
}

static struct value *
tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			   int regnum)
{
  struct tic6x_unwind_cache *cache =
    tic6x_frame_unwind_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  /* The PC of the previous frame is stored in the RA register of
     the current frame.  Frob regnum so that we pull the value from
     the correct place.  */
  if (regnum == TIC6X_PC_REGNUM)
    regnum = cache->return_regnum;

  if (regnum == TIC6X_SP_REGNUM && cache->cfa)
    return frame_unwind_got_constant (this_frame, regnum, cache->cfa);

  /* If we've worked out where a register is stored then load it from
     there.  */
  if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->reg_saved[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static CORE_ADDR
tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct tic6x_unwind_cache *info
    = tic6x_frame_unwind_cache (this_frame, this_cache);
  return info->base;
}

static const struct frame_unwind tic6x_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  tic6x_frame_this_id,
  tic6x_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static const struct frame_base tic6x_frame_base =
{
  &tic6x_frame_unwind,
  tic6x_frame_base_address,
  tic6x_frame_base_address,
  tic6x_frame_base_address
};


static struct tic6x_unwind_cache *
tic6x_make_stub_cache (struct frame_info *this_frame)
{
  struct tic6x_unwind_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);

  cache->return_regnum = TIC6X_RA_REGNUM;

  tic6x_setup_default (cache);

  cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);

  return cache;
}

static void
tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct tic6x_unwind_cache *cache;

  if (*this_cache == NULL)
    *this_cache = tic6x_make_stub_cache (this_frame);
  cache = (struct tic6x_unwind_cache *) *this_cache;

  *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
}

static int
tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame,
			   void **this_prologue_cache)
{
  CORE_ADDR addr_in_block;

  addr_in_block = get_frame_address_in_block (this_frame);
  if (in_plt_section (addr_in_block))
    return 1;

  return 0;
}

static const struct frame_unwind tic6x_stub_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  tic6x_stub_this_id,
  tic6x_frame_prev_register,
  NULL,
  tic6x_stub_unwind_sniffer
};

/* Return the instruction on address PC.  */

static unsigned long
tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
}

/* Compute the condition of INST if it is a conditional instruction.  Always
   return 1 if INST is not a conditional instruction.  */

static int
tic6x_condition_true (struct regcache *regcache, unsigned long inst)
{
  int register_number;
  int register_value;
  static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };

  register_number = register_numbers[(inst >> 29) & 7];
  if (register_number == -1)
    return 1;

  register_value = regcache_raw_get_signed (regcache, register_number);
  if ((inst & 0x10000000) != 0)
    return register_value == 0;
  return register_value != 0;
}

/* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
   instruction.  */

static int
tic6x_register_number (int reg, int side, int crosspath)
{
  int r = (reg & 15) | ((crosspath ^ side) << 4);
  if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
    r += 37;
  return r;
}

static int
tic6x_extract_signed_field (int value, int low_bit, int bits)
{
  int mask = (1 << bits) - 1;
  int r = (value >> low_bit) & mask;
  if ((r & (1 << (bits - 1))) != 0)
    r -= mask + 1;
  return r;
}

/* Determine where to set a single step breakpoint.  */

static CORE_ADDR
tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = regcache->arch ();
  unsigned long inst;
  int register_number;
  int last = 0;

  do
    {
      inst = tic6x_fetch_instruction (gdbarch, pc);

      last = !(inst & 1);

      if (inst == TIC6X_INST_SWE)
	{
	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

	  if (tdep->syscall_next_pc != NULL)
	    return tdep->syscall_next_pc (get_current_frame ());
	}

      if (tic6x_condition_true (regcache, inst))
	{
	  if ((inst & 0x0000007c) == 0x00000010)
	    {
	      /* B with displacement */
	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
	      break;
	    }
	  if ((inst & 0x0f83effc) == 0x00000360)
	    {
	      /* B with register */

	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
						       INST_S_BIT (inst),
						       INST_X_BIT (inst));
	      pc = regcache_raw_get_unsigned (regcache, register_number);
	      break;
	    }
	  if ((inst & 0x00001ffc) == 0x00001020)
	    {
	      /* BDEC */
	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
						       INST_S_BIT (inst), 0);
	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
		{
		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
		  pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
		}
	      break;
	    }
	  if ((inst & 0x00001ffc) == 0x00000120)
	    {
	      /* BNOP with displacement */
	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
	      pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
	      break;
	    }
	  if ((inst & 0x0f830ffe) == 0x00800362)
	    {
	      /* BNOP with register */
	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
						       1, INST_X_BIT (inst));
	      pc = regcache_raw_get_unsigned (regcache, register_number);
	      break;
	    }
	  if ((inst & 0x00001ffc) == 0x00000020)
	    {
	      /* BPOS */
	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
						       INST_S_BIT (inst), 0);
	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
		{
		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
		  pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
		}
	      break;
	    }
	  if ((inst & 0xf000007c) == 0x10000010)
	    {
	      /* CALLP */
	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
	      break;
	    }
	}
      pc += TIC6X_OPCODE_SIZE;
    }
  while (!last);
  return pc;
}

/* This is the implementation of gdbarch method software_single_step.  */

static std::vector<CORE_ADDR>
tic6x_software_single_step (struct regcache *regcache)
{
  CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));

  return {next_pc};
}

/* This is the implementation of gdbarch method frame_align.  */

static CORE_ADDR
tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 8);
}

/* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
   value into VALBUF.  */

static void
tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
			    enum bfd_endian byte_order, gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (valtype);

  /* pointer types are returned in register A4,
     up to 32-bit types in A4
     up to 64-bit types in A5:A4  */
  if (len <= 4)
    {
      /* In big-endian,
	 - one-byte structure or union occupies the LSB of single even register.
	 - for two-byte structure or union, the first byte occupies byte 1 of
	 register and the second byte occupies byte 0.
	 so, we read the contents in VAL from the LSBs of register.  */
      if (len < 3 && byte_order == BFD_ENDIAN_BIG)
	regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
      else
	regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
    }
  else if (len <= 8)
    {
      /* For a 5-8 byte structure or union in big-endian, the first byte
	 occupies byte 3 (the MSB) of the upper (odd) register and the
	 remaining bytes fill the decreasingly significant bytes.  5-7
	 byte structures or unions have padding in the LSBs of the
	 lower (even) register.  */
      if (byte_order == BFD_ENDIAN_BIG)
	{
	  regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
	  regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
	}
      else
	{
	  regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
	  regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
	}
    }
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  */

static void
tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
			  enum bfd_endian byte_order, const gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (valtype);

  /* return values of up to 8 bytes are returned in A5:A4 */

  if (len <= 4)
    {
      if (len < 3 && byte_order == BFD_ENDIAN_BIG)
	regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
      else
	regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
    }
  else if (len <= 8)
    {
      if (byte_order == BFD_ENDIAN_BIG)
	{
	  regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
	  regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
	}
      else
	{
	  regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
	  regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
	}
    }
}

/* This is the implementation of gdbarch method return_value.  */

static enum return_value_convention
tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
		    struct type *type, struct regcache *regcache,
		    gdb_byte *readbuf, const gdb_byte *writebuf)
{
  /* In C++, when function returns an object, even its size is small
     enough, it stii has to be passed via reference, pointed by register
     A3.  */
  if (current_language->la_language == language_cplus)
    {
      if (type != NULL)
	{
	  type = check_typedef (type);
	  if (language_pass_by_reference (type))
	    return RETURN_VALUE_STRUCT_CONVENTION;
	}
    }

  if (TYPE_LENGTH (type) > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    tic6x_extract_return_value (type, regcache,
				gdbarch_byte_order (gdbarch), readbuf);
  if (writebuf)
    tic6x_store_return_value (type, regcache,
			      gdbarch_byte_order (gdbarch), writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* This is the implementation of gdbarch method dummy_id.  */

static struct frame_id
tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build
    (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
     get_frame_pc (this_frame));
}

/* Get the alignment requirement of TYPE.  */

static int
tic6x_arg_type_alignment (struct type *type)
{
  int len = TYPE_LENGTH (check_typedef (type));
  enum type_code typecode = TYPE_CODE (check_typedef (type));

  if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
    {
      /* The stack alignment of a structure (and union) passed by value is the
	 smallest power of two greater than or equal to its size.
	 This cannot exceed 8 bytes, which is the largest allowable size for
	 a structure passed by value.  */

      if (len <= 2)
	return len;
      else if (len <= 4)
	return 4;
      else if (len <= 8)
	return 8;
      else
	gdb_assert_not_reached ("unexpected length of data");
    }
  else
    {
      if (len <= 4)
	return 4;
      else if (len == 8)
	{
	  if (typecode == TYPE_CODE_COMPLEX)
	    return 4;
	  else
	    return 8;
	}
      else if (len == 16)
	{
	  if (typecode == TYPE_CODE_COMPLEX)
	    return 8;
	  else
	    return 16;
	}
      else
	internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
			len);
    }
}

/* This is the implementation of gdbarch method push_dummy_call.  */

static CORE_ADDR
tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		       struct regcache *regcache, CORE_ADDR bp_addr,
		       int nargs, struct value **args, CORE_ADDR sp,
		       int struct_return, CORE_ADDR struct_addr)
{
  int argreg = 0;
  int argnum;
  int stack_offset = 4;
  int references_offset = 4;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct type *func_type = value_type (function);
  /* The first arg passed on stack.  Mostly the first 10 args are passed by
     registers.  */
  int first_arg_on_stack = 10;

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);

  /* The caller must pass an argument in A3 containing a destination address
     for the returned value.  The callee returns the object by copying it to
     the address in A3.  */
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, 3, struct_addr);

  /* Determine the type of this function.  */
  func_type = check_typedef (func_type);
  if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
    func_type = check_typedef (TYPE_TARGET_TYPE (func_type));

  gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);

  /* For a variadic C function, the last explicitly declared argument and all
     remaining arguments are passed on the stack.  */
  if (TYPE_VARARGS (func_type))
    first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
      if (argnum >= 10 - argreg)
	references_offset += len;
      stack_offset += len;
    }
  sp -= stack_offset;
  /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
     Stack Alignment.  */
  sp = align_down (sp, 8);
  stack_offset = 4;

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop through args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      val = value_contents (arg);

      /* Copy the argument to general registers or the stack in
         register-sized pieces.  */
      if (argreg < first_arg_on_stack)
	{
	  if (len <= 4)
	    {
	      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
		{
		  /* In big-endian,
		     - one-byte structure or union occupies the LSB of single
		     even register.
		     - for two-byte structure or union, the first byte
		     occupies byte 1 of register and the second byte occupies
		     byte 0.
		     so, we write the contents in VAL to the lsp of
		     register.  */
		  if (len < 3 && byte_order == BFD_ENDIAN_BIG)
		    regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
						 val);
		  else
		    regcache->cooked_write (arg_regs[argreg], val);
		}
	      else
		{
		  /* The argument is being passed by value in a single
		     register.  */
		  CORE_ADDR regval = extract_unsigned_integer (val, len,
							       byte_order);

		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
						  regval);
		}
	    }
	  else
	    {
	      if (len <= 8)
		{
		  if (typecode == TYPE_CODE_STRUCT
		      || typecode == TYPE_CODE_UNION)
		    {
		      /* For a 5-8 byte structure or union in big-endian, the
		         first byte occupies byte 3 (the MSB) of the upper (odd)
		         register and the remaining bytes fill the decreasingly
		         significant bytes.  5-7 byte structures or unions have
		         padding in the LSBs of the lower (even) register.  */
		      if (byte_order == BFD_ENDIAN_BIG)
			{
			  regcache->cooked_write (arg_regs[argreg] + 1, val);
			  regcache->cooked_write_part (arg_regs[argreg], 0,
						       len - 4, val + 4);
			}
		      else
			{
			  regcache->cooked_write (arg_regs[argreg], val);
			  regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
						       len - 4, val + 4);
			}
		    }
		  else
		    {
		      /* The argument is being passed by value in a pair of
		         registers.  */
		      ULONGEST regval = extract_unsigned_integer (val, len,
								  byte_order);

		      regcache_cooked_write_unsigned (regcache,
						      arg_regs[argreg],
						      regval);
		      regcache_cooked_write_unsigned (regcache,
						      arg_regs[argreg] + 1,
						      regval >> 32);
		    }
		}
	      else
		{
		  /* The argument is being passed by reference in a single
		     register.  */
		  CORE_ADDR addr;

		  /* It is not necessary to adjust REFERENCES_OFFSET to
		     8-byte aligned in some cases, in which 4-byte alignment
		     is sufficient.  For simplicity, we adjust
		     REFERENCES_OFFSET to 8-byte aligned.  */
		  references_offset = align_up (references_offset, 8);

		  addr = sp + references_offset;
		  write_memory (addr, val, len);
		  references_offset += align_up (len, 4);
		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
						  addr);
		}
	    }
	  argreg++;
	}
      else
	{
	  /* The argument is being passed on the stack.  */
	  CORE_ADDR addr;

	  /* There are six different cases of alignment, and these rules can
	     be found in tic6x_arg_type_alignment:

	     1) 4-byte aligned if size is less than or equal to 4 byte, such
	     as short, int, struct, union etc.
	     2) 8-byte aligned if size is less than or equal to 8-byte, such
	     as double, long long,
	     3) 4-byte aligned if it is of type _Complex float, even its size
	     is 8-byte.
	     4) 8-byte aligned if it is of type _Complex double or _Complex
	     long double, even its size is 16-byte.  Because, the address of
	     variable is passed as reference.
	     5) struct and union larger than 8-byte are passed by reference, so
	     it is 4-byte aligned.
	     6) struct and union of size between 4 byte and 8 byte varies.
	     alignment of struct variable is the alignment of its first field,
	     while alignment of union variable is the max of all its fields'
	     alignment.  */

	  if (len <= 4)
	    ; /* Default is 4-byte aligned.  Nothing to be done.  */
	  else if (len <= 8)
	    stack_offset = align_up (stack_offset,
				     tic6x_arg_type_alignment (arg_type));
	  else if (len == 16)
	    {
	      /* _Complex double or _Complex long double */
	      if (typecode == TYPE_CODE_COMPLEX)
		{
		  /* The argument is being passed by reference on stack.  */
		  CORE_ADDR addr;
		  references_offset = align_up (references_offset, 8);

		  addr = sp + references_offset;
		  /* Store variable on stack.  */
		  write_memory (addr, val, len);

		  references_offset += align_up (len, 4);

		  /* Pass the address of variable on stack as reference.  */
		  store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
					  addr);
		  len = 4;

		}
	      else
		internal_error (__FILE__, __LINE__,
				_("unexpected type %d of arg %d"),
				typecode, argnum);
	    }
	  else
	    internal_error (__FILE__, __LINE__,
			    _("unexpected length %d of arg %d"), len, argnum);

	  addr = sp + stack_offset;
	  write_memory (addr, val, len);
	  stack_offset += align_up (len, 4);
	}
    }

  regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

/* This is the implementation of gdbarch method stack_frame_destroyed_p.  */

static int
tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
  /* Normally, the epilogue is composed by instruction `b .S2 b3'.  */
  if ((inst & 0x0f83effc) == 0x360)
    {
      unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
						 INST_S_BIT (inst),
						 INST_X_BIT (inst));
      if (src2 == TIC6X_RA_REGNUM)
	return 1;
    }

  return 0;
}

/* This is the implementation of gdbarch method get_longjmp_target.  */

static int
tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR jb_addr;
  gdb_byte buf[4];

  /* JMP_BUF is passed by reference in A4.  */
  jb_addr = get_frame_register_unsigned (frame, 4);

  /* JMP_BUF contains 13 elements of type int, and return address is stored
     in the last slot.  */
  if (target_read_memory (jb_addr + 12 * 4, buf, 4))
    return 0;

  *pc = extract_unsigned_integer (buf, 4, byte_order);

  return 1;
}

/* This is the implementation of gdbarch method
   return_in_first_hidden_param_p.  */

static int
tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
				      struct type *type)
{
  return 0;
}

static struct gdbarch *
tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct tdesc_arch_data *tdesc_data = NULL;
  const struct target_desc *tdesc = info.target_desc;
  int has_gp = 0;

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      const struct tdesc_feature *feature;
      int valid_p, i;

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");

      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      for (i = 0; i < 32; i++)	/* A0 - A15, B0 - B15 */
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					    tic6x_register_names[i]);

      /* CSR */
      valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
					  tic6x_register_names[TIC6X_CSR_REGNUM]);
      valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
					  tic6x_register_names[TIC6X_PC_REGNUM]);

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
      if (feature)
	{
	  int j = 0;
	  static const char *const gp[] =
	    {
	      "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
	      "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
	      "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
	      "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
	    };

	  has_gp = 1;
	  valid_p = 1;
	  for (j = 0; j < 32; j++)	/* A16 - A31, B16 - B31 */
	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
						gp[j]);

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	}

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
      if (feature)
	{
	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	}

    }

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      tdep = gdbarch_tdep (arches->gdbarch);

      if (has_gp != tdep->has_gp)
	continue;

      if (tdep && tdep->breakpoint)
	return arches->gdbarch;
    }

  tdep = XCNEW (struct gdbarch_tdep);

  tdep->has_gp = has_gp;
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Data type sizes.  */
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);

  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);

  /* The register set.  */
  set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);

  set_gdbarch_register_name (gdbarch, tic6x_register_name);
  set_gdbarch_register_type (gdbarch, tic6x_register_type);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       tic6x_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       tic6x_sw_breakpoint_from_kind);

  set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);

  /* Unwinding.  */
  dwarf2_append_unwinders (gdbarch);

  frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
  frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
  frame_base_set_default (gdbarch, &tic6x_frame_base);

  dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);

  /* Single stepping.  */
  set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);

  /* Call dummy code.  */
  set_gdbarch_frame_align (gdbarch, tic6x_frame_align);

  set_gdbarch_return_value (gdbarch, tic6x_return_value);

  set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);

  /* Enable inferior call support.  */
  set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);

  set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);

  set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);

  set_gdbarch_return_in_first_hidden_param_p (gdbarch,
					      tic6x_return_in_first_hidden_param_p);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  if (tdesc_data)
    tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  return gdbarch;
}

void
_initialize_tic6x_tdep (void)
{
  register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
}