1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
# Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This file was written by Wu Zhou. (woodzltc@cn.ibm.com)
# This file is part of the gdb testsuite. It is intended to test that
# gdb could correctly handle decimal floating point introduced in IEEE 754R.
if $tracelevel then {
strace $tracelevel
}
set testfile "dfp-test"
set srcfile ${testfile}.c
set binfile ${objdir}/${subdir}/${testfile}
# Try to compile the test case. If we can't, assume the
# toolchain does not yet provide DFP support and bail out.
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {quiet debug}] != "" } {
verbose "Skipping DFP tests."
return -1
}
gdb_exit
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
if ![runto_main] then {
perror "couldn't run to breakpoint"
continue
}
set sizeof_long [get_sizeof "long" 4]
proc d32_set_tests {} {
gdb_test "p d32=123.45df" " = 123.45"
gdb_test "p d32=12345.df" " = 12345"
gdb_test "p d32=12345.67df" " = 12345.67"
gdb_test "p d32=1234567.df" " = 1234567"
gdb_test "p d32=1.234567E0df" " = 1.234567"
gdb_test "p d32=1.234567E10df" " = 1.234567E\\+10"
gdb_test "p d32=1.234567E+96df" " = 1.234567E\\+96"
# Test that gdb could handle the max, normalized min and subnormalized min.
gdb_test "p d32=9.999999E96df" " = 9.999999E\\+96"
gdb_test "p d32=1.0E-95df" " = 1.0E\\-95"
gdb_test "p d32=1.E-101df" " = 1E\\-101"
gdb_test "p d32=0.000001E-95df" " = 1E\\-101"
# Test that gdb could detect coefficient/exponent out of range.
# The coefficient out of range will be rounded to its nearest value.
# And the exponent out of range will be handled as infinity.
gdb_test "p d32=1.2345678df" " = 1.234568" "1.2345678 is rounded to 1.234568"
gdb_test "p d32=1.0E-101df" " = 1E-101" "1.0E-101 is rounded to 1E-101"
gdb_test "p d32=1.234567E+97df" " = Infinity" "1.234567E+97 is Infinity"
# Test that gdb could detect the errors in the string representation of _Decimal32
gdb_test "p d32=12345.df" " = 12345" "12345. is a valid number"
gdb_test "p d32=12345df" ".*Invalid number.*" "12345 is an invalid number"
gdb_test "p d32=1.23Edf" ".*Conversion syntax.*" "1.23E is an invalid number"
gdb_test "p d32=1.23E45Adf" ".*Conversion syntax.*" "1.23E45A is an invalid number"
}
proc d64_set_tests {} {
gdb_test "p d64=123.45dd" " = 123.45"
gdb_test "p d64=12345.dd" " = 12345"
gdb_test "p d64=12345.67dd" " = 12345.67"
gdb_test "p d64=1.234567890123456dd" " = 1.234567890123456"
gdb_test "p d64=1.234567890123456E10dd" " = 12345678901.23456"
gdb_test "p d64=1.234567890123456E100dd" " = 1.234567890123456E\\+100"
gdb_test "p d64=1.234567890123456E384dd" " = 1.234567890123456E\\+384"
# Test that gdb could handle the max, normalized min and subnormalized min.
gdb_test "p d64=9.999999999999999E384dd" " = 9.999999999999999E\\+384"
gdb_test "p d64=1.E-383dd" " = 1E\\-383"
gdb_test "p d64=1.E-398dd" " = 1E\\-398"
gdb_test "p d64=0.000000000000001E-383dd" " = 1E\\-398"
# Test that gdb could detect coefficient/exponent out of range.
# The coefficient out of range will be rounded to its nearest value.
# And the exponent out of range will be handled as infinity.
gdb_test "p d64=1.2345678901234567dd" " = 1.234567890123457" "1.2345678901234567 is rounded to 1.234567890123457"
gdb_test "p d64=9.9999999999999999E384dd" " = Infinity" "d64=9.9999999999999999E384 is Infinity"
gdb_test "p d64=1.234567890123456E385dd" " = Infinity" "d64=1.234567890123456E385 is Infinity"
# Test that gdb could detect the errors in the string representation of _Decimal64
gdb_test "p d64=12345dd" ".*Invalid number.*" "12345dd is an invalid number"
gdb_test "p d64=1.23Edd" ".*Conversion syntax.*" "1.23E is an invalid number"
gdb_test "p d64=1.23E45Add" ".*Conversion syntax.*" "1.23E45A is an invalid number"
}
proc d128_set_tests {} {
gdb_test "p d128=123.45dl" " = 123.45"
gdb_test "p d128=12345.dl" " = 12345"
gdb_test "p d128=12345.67dl" " = 12345.67"
gdb_test "p d128=1.234567890123456789012345678901234dl" " = 1.234567890123456789012345678901234"
gdb_test "p d128=1.234567890123456E10dl" " = 12345678901.23456"
gdb_test "p d128=1.234567890123456E100dl" " = 1.234567890123456E\\+100"
gdb_test "p d128=1.234567890123456E1000dl" " = 1.234567890123456E\\+1000"
# Test that gdb could handle the max, normalized min and subnormalized min.
gdb_test "p d128=9.999999999999999999999999999999999E6144dl" " = 9.999999999999999999999999999999999E\\+6144"
gdb_test "p d128=1.E-6143dl" " = 1E\\-6143"
gdb_test "p d128=1.E-6176dl" " = 1E\\-6176"
gdb_test "p d128=0.000000000000000000000000000000001E-6143dl" " = 1E\\-6176"
# Test that gdb could detect coefficient/exponent out of range.
# The coefficient out of range will be rounded to its nearest value.
# And the exponent out of range will be handled as infinity.
gdb_test "p d128=1.2345678901234567890123456789012345dl" "1.234567890123456789012345678901234" "1.2345678901234567890123456789012345 is rounded to 1.234567890123456789012345678901234"
gdb_test "p d128=1.234567890123456E6145dl" "Infinity" "d128=1.234567890123456E6145 is Infinity"
# Test that gdb could detect the errors in the string representation of _Decimal128
gdb_test "p d128=12345dl" ".*Invalid number.*" "12345dl is an invalid number"
gdb_test "p d128=1.23Edl" ".*Conversion syntax.*" "1.23E is an invalid number"
gdb_test "p d128=1.23E45Adl" ".*Conversion syntax.*" "1.23E45A is an invalid number"
}
# Different tests on 32-bits decimal floating point, including the printing
# of finite numbers, infinite and NaN, and also the setting of different
# decimal value.
if [gdb_test "next" \
".*Positive infd32.*" \
"next after initializing d32"] then { gdb_suppress_tests }
gdb_test "print d32" "1.2345" "d32 is initialized to 1.2345"
if [gdb_test "next" \
".*Negative infd32.*" \
"next after assigning builtin infinity to d32"] then { gdb_suppress_tests }
gdb_test "print d32" "Infinity" "d32 is positive Infinity"
if [gdb_test "next" \
".*__builtin_nand32.*" \
"next after assigning negative builtin infinity to d32"] then { gdb_suppress_tests }
gdb_test "print d32" "-Infinity" "d32 is negative Infinity"
if [gdb_test "next" \
".*d64 = 1.2345.*" \
"next after assigning builtin NaN to d32"] then { gdb_suppress_tests }
gdb_test "print d32" "NaN" "d32 is NaN"
d32_set_tests
# Different tests on 64-bits decimal floating point, including the display
# of finite number, infinite and NaN, and also the setting of different
# decimal value.
if [gdb_test "next" \
".*Positive infd64.*" \
"next after initializing d64"] then { gdb_suppress_tests }
gdb_test "print d64" "1.2345" "d64 is initialized to 1.2345"
if [gdb_test "next" \
".*Negative infd64.*" \
"next after assigning builtin infinity to d64"] then { gdb_suppress_tests }
gdb_test "print d64" "Infinity" "d64 is positive Infinity"
if [gdb_test "next" \
".*__builtin_nand64.*" \
"next after assigning negative builtin infinity to d64"] then { gdb_suppress_tests }
gdb_test "print d64" "-Infinity" "d64 is negative Infinity"
if [gdb_test "next" \
".*d128 = 1.2345.*" \
"next after assigning builtin NaN to d64"] then { gdb_suppress_tests }
gdb_test "print d64" "NaN" "d64 is NaN"
d64_set_tests
# Different tests on 128-bits decimal floating point, including the display
# of finite number, infinite and NaN, and also the setting of different
# decimal value.
if [gdb_test "next" \
".*Positive infd128.*" \
"next after initializing d128"] then { gdb_suppress_tests }
gdb_test "print d128" "1.2345" "d128 is initialized to 1.2345"
d128_set_tests
if [gdb_test "next" \
".*Negative infd128.*" \
"next after assigning builtin infinity to d128"] then { gdb_suppress_tests }
gdb_test "print d128" "Infinity" "d128 is positive Infinity"
if [gdb_test "next" \
".*__builtin_nand128.*" \
"next after assigning negative builtin infinity to d128"] then { gdb_suppress_tests }
gdb_test "print d128" "-Infinity" "d128 is negative Infinity"
if [gdb_test "next" \
".*arg0_32.*" \
"next after assigning builtin NaN to d128"] then { gdb_suppress_tests }
gdb_test "print d128" "NaN" "d128 is NaN"
# The following tests are intended to verify that gdb can correctly handle
# DFP types in function arguments.
gdb_breakpoint arg0_32
gdb_continue_to_breakpoint "entry to arg0_32"
gdb_test "backtrace" ".*arg0_32 \\(arg0=0.1, arg1=1.0, arg2=2.0, arg3=3.0, arg4=4.0, arg5=5.0\\).*" "backtrace at arg0_32"
gdb_breakpoint arg0_64
gdb_continue_to_breakpoint "entry to arg0_64"
gdb_test "backtrace" ".*arg0_64 \\(arg0=0.1, arg1=1.0, arg2=2.0, arg3=3.0, arg4=4.0, arg5=5.0\\).*" "backtrace at arg0_64"
gdb_breakpoint arg0_128
gdb_continue_to_breakpoint "entry to arg0_128"
gdb_test "backtrace" ".*arg0_128 \\(arg0=0.1, arg1=1.0, arg2=2.0, arg3=3.0, arg4=4.0, arg5=5.0\\).*" "backtrace at arg0_128"
# Test calling inferior function with DFP arguments or return value.
gdb_test "call arg0_32 (1.2df, 2.2df, 3.2df, 4.2df, 5.2df, 6.2df)" "Breakpoint.*arg0_32.*" "Call function with correct _Decimal32 arguments."
gdb_test "backtrace 1" "\n#\[0-9\]+ arg0_32 \\(arg0=1.2, arg1=2.2, arg2=3.2, arg3=4.2, arg4=5.2, arg5=6.2\\).*" "Backtrace function with correct _Decimal32 arguments."
gdb_test "finish" " = 1.2" "Correct _Decimal32 return value from called function."
gdb_test "call arg0_64 (1.2dd, 2.2dd, 3.2dd, 4.2dd, 5.2dd, 6.2dd)" "Breakpoint.*arg0_64.*" "Call function with correct _Decimal64 arguments."
gdb_test "backtrace 1" "\n#\[0-9\]+ arg0_64 \\(arg0=1.2, arg1=2.2, arg2=3.2, arg3=4.2, arg4=5.2, arg5=6.2\\).*" "Backtrace function with correct _Decimal64 arguments."
gdb_test "finish" " = 1.2" "Correct _Decimal64 return value from called function."
gdb_test "call arg0_128 (1.2dl, 2.2dl, 3.2dl, 4.2dl, 5.2dl, 6.2dl)" "Breakpoint.*arg0_128.*" "Call function with correct _Decimal128 arguments."
gdb_test "backtrace 1" "\n#\[0-9\]+ arg0_128 \\(arg0=1.2, arg1=2.2, arg2=3.2, arg3=4.2, arg4=5.2, arg5=6.2\\).*" "Backtrace function with correct _Decimal128 arguments."
gdb_test "finish" " = 1.2" "Correct _Decimal128 return value from called function."
gdb_test "call decimal_dec128_align (double_val1, dec128_val2, double_val3, double_val4, double_val5, double_val6, double_val7, double_val8, double_val9, double_val10, double_val11, double_val12, double_val13, double_val14)" " = 1" \
"Call function with mixed decimal float arguments TEST."
gdb_test "call decimal_mixed (dec32_val1, dec64_val1, dec128_val1)" " = 1" \
"Call function with mixed decimal float arguments."
gdb_test "call decimal_many_args_dec32 (dec32_val1, dec32_val2, dec32_val3, dec32_val4, dec32_val5, dec32_val6, dec32_val7, dec32_val8, dec32_val9, dec32_val10, dec32_val11, dec32_val12, dec32_val13, dec32_val14, dec32_val15, dec32_val16)" " = 1" \
"Call function with many _Decimal32 arguments."
gdb_test "call decimal_many_args_dec64 (dec64_val1, dec64_val2, dec64_val3, dec64_val4, dec64_val5, dec64_val6, dec64_val7, dec64_val8, dec64_val9, dec64_val10, dec64_val11, dec64_val12, dec64_val13, dec64_val14, dec64_val15, dec64_val16)" " = 1" \
"Call function with many _Decimal64 arguments."
gdb_test "call decimal_many_args_dec128 (dec128_val1, dec128_val2, dec128_val3, dec128_val4, dec128_val5, dec128_val6, dec128_val7, dec128_val8, dec128_val9, dec128_val10, dec128_val11, dec128_val12, dec128_val13, dec128_val14, dec128_val15, dec128_val16)" " = 1" \
"Call function with many _Decimal128 arguments."
gdb_test "call decimal_many_args_mixed (dec32_val1, dec32_val2, dec32_val3, dec64_val4, dec64_val5, dec64_val6, dec64_val7, dec128_val8, dec128_val9, dec128_val10, dec32_val11, dec64_val12, dec32_val13, dec64_val14, dec128_val15)" " = 1" \
"Call function with many mixed decimal float arguments."
# The following tests are intended to verify that gdb can handle DFP types
# correctly in struct.
gdb_breakpoint [gdb_get_line_number "Exit point"]
gdb_continue_to_breakpoint "Setting a decimal struct"
gdb_test "print ds.dec32" " = 1.2345"
gdb_test "print ds.dec64" " = 1.2345"
gdb_test "print ds.dec128" " = 1.2345"
# Test expressions with DFP variables.
gdb_test "print d32 + ds.dec32" " = 1.3345"
gdb_test "print d64 + ds.dec64" " = 1.3345"
gdb_test "print d128 + ds.dec128" " = 1.3345"
# Test conversion between different _Decimal sizes.
gdb_test "ptype d64 + ds.dec32" " = volatile _Decimal64"
gdb_test "ptype d128 + ds.dec32" " = volatile _Decimal128"
gdb_test "ptype d128 + ds.dec64" " = volatile _Decimal128"
# Mixture of Decimal and integral operands
gdb_test "p d32 + 1" " = 1.1"
gdb_test "p 2 + d64" " = 2.1"
gdb_test "p ds.int4 + d128" " = 1.1"
gdb_test "ptype d32 + 1" " = volatile _Decimal32"
gdb_test "ptype ds.int4 + d128" " = volatile _Decimal128"
# Test other operations with DFP operands
gdb_test "p !d32" " = 0"
gdb_test "p !d64" " = 0"
gdb_test "p !d128" " = 0"
gdb_test "p +d32" " = 0.1"
gdb_test "p +d64" " = 0.1"
gdb_test "p +d128" " = 0.1"
gdb_test "p d64 == d128" " = 1"
gdb_test "p d128 == ds.dec32" " = 0"
gdb_test "p d128 == d32" " = 1"
gdb_test "p ds.dec32 == ds.dec64" " = 1"
gdb_test "p d32 < ds.dec32" " = 1"
gdb_test "p d64 < ds.dec64" " = 1"
gdb_test "p d128 < ds.dec128" " = 1"
gdb_test "p ds.dec32 < d32" " = 0"
gdb_test "p d64 > ds.dec64" " = 0"
gdb_test "p ds.dec128 > d128 " " = 1"
gdb_test "p d32 < ds.int4" " = 1"
gdb_test "p ds.int4 > d32" " = 1"
gdb_test "p ds.dec32 < ds.int4" " = 0"
gdb_test "p ds.int4 > ds.dec64" " = 0"
gdb_test "p ds.dec128 > ds.int4" " = 1"
# Reject operation with integral larger than 32-bits
if { ${sizeof_long} > 4 } {
gdb_test "p d32 + ds.long8" "Conversion of large integer to a decimal floating type is not supported."
}
# Reject operation with DFP and Binary FP
gdb_test "p d64 + ds.float4" "Mixing decimal floating types with other floating types is not allowed."
gdb_test "p ds.double8 + d128" "Mixing decimal floating types with other floating types is not allowed."
# The following tests are intended to verify that gdb can handle "d1=d2"
# and "d1=-d2" correctly.
gdb_test "print ds.dec32=d32" " = 0.1"
gdb_test "print ds.dec64=d64" " = 0.1"
gdb_test "print ds.dec128=d128" " = 0.1"
gdb_test "print ds.dec32 = -d32" " = -0.1"
gdb_test "print ds.dec64 = -d64" " = -0.1"
gdb_test "print ds.dec128 = -d128" " = -0.1"
# Test cast to and from DFP values
gdb_test "print ds.double8 = ds.dec64" " = -0.(0999.*|1000.*)"
gdb_test "print ds.dec64 = ds.float4" " = 3.(0999.*|1000.*)"
gdb_test "print ds.dec128 = -ds.double8" " = 0.(0999.*|1000.*)"
gdb_test "print ds.dec128 = ds.dec32" " = -0.1"
gdb_test "print ds.dec32 = ds.int4" " = 1"
gdb_test "print ds.int4 = 7.3dl" " = 7"
|