1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
# Copyright 1997, 1999, 2007-2008, 2010-2012 Free Software Foundation,
# Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This program tests the 'catch syscall' functionality.
#
# It was written by Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
# on September/2008.
if { [is_remote target] || ![isnative] } then {
continue
}
# Until "catch syscall" is implemented on other targets...
if {![istarget "hppa*-hp-hpux*"] && ![istarget "*-linux*"]} then {
continue
}
# This shall be updated whenever 'catch syscall' is implemented
# on some architecture.
#if { ![istarget "i\[34567\]86-*-linux*"]
if { ![istarget "x86_64-*-linux*"] && ![istarget "i\[34567\]86-*-linux*"]
&& ![istarget "powerpc-*-linux*"] && ![istarget "powerpc64-*-linux*"]
&& ![istarget "sparc-*-linux*"] && ![istarget "sparc64-*-linux*"]
&& ![istarget "mips*-linux*"] } {
continue
}
global srcfile
set testfile "catch-syscall"
set srcfile ${testfile}.c
set binfile ${objdir}/${subdir}/${testfile}
# All (but the last) syscalls from the example code
# They are ordered according to the file, so do not change this.
set all_syscalls { "close" "chroot" }
set all_syscalls_numbers { }
# The last syscall (exit()) does not return, so
# we cannot expect the catchpoint to be triggered
# twice. It is a special case.
set last_syscall "exit_group"
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {debug}] != "" } {
untested catch-syscall.exp
return -1
}
# Internal procedure used to check if, after issuing a 'catch syscall'
# command (without arguments), the 'info breakpoints' command displays
# that '"any syscall"' is to be caught.
proc check_info_bp_any_syscall {} {
global gdb_prompt
# Verifying that the catchpoint appears in the 'info breakpoints'
# command, but with "<any syscall>".
set thistest "catch syscall appears in 'info breakpoints'"
gdb_test "info breakpoints" ".*catchpoint.*keep y.*syscall \"<any syscall>\".*" $thistest
}
# Internal procedure used to check if, after issuing a 'catch syscall X'
# command (with arguments), the 'info breakpoints' command displays
# that the syscall 'X' is to be caught.
proc check_info_bp_specific_syscall { syscall } {
global gdb_prompt
set thistest "syscall(s) $syscall appears in 'info breakpoints'"
gdb_test "info breakpoints" ".*catchpoint.*keep y.*syscall(\[(\]s\[)\])? (.)?${syscall}(.)?.*" $thistest
}
# Internal procedure used to check if, after issuing a 'catch syscall X'
# command (with many arguments), the 'info breakpoints' command displays
# that the syscalls 'X' are to be caught.
proc check_info_bp_many_syscalls { syscalls } {
global gdb_prompt
set filter_str ""
foreach name $syscalls {
set filter_str "${filter_str}${name}, "
}
set filter_str [ string trimright $filter_str ", " ]
set thistest "syscalls $filter_str appears in 'info breakpoints'"
gdb_test "info breakpoints" ".*catchpoint.*keep y.*syscalls (.)?${filter_str}(.)?.*" $thistest
}
# This procedure checks if there was a call to a syscall.
proc check_call_to_syscall { syscall } {
global gdb_prompt
set thistest "program has called $syscall"
gdb_test "continue" "Catchpoint .*(call to syscall .?${syscall}.?).*" $thistest
}
# This procedure checks if the syscall returned.
proc check_return_from_syscall { syscall } {
global gdb_prompt
set thistest "syscall $syscall has returned"
gdb_test "continue" "Catchpoint .*(returned from syscall (.)?${syscall}(.)?).*" $thistest
}
# Internal procedure that performs two 'continue' commands and checks if
# a syscall call AND return occur.
proc check_continue { syscall } {
global gdb_prompt
# Testing if the 'continue' stops at the
# specified syscall_name. If it does, then it should
# first print that the infeior has called the syscall,
# and after print that the syscall has returned.
# Testing if the inferiorr has called the syscall.
check_call_to_syscall $syscall
# And now, that the syscall has returned.
check_return_from_syscall $syscall
}
# Inserts a syscall catchpoint with an argument.
proc insert_catch_syscall_with_arg { syscall } {
global gdb_prompt
# Trying to set the catchpoint
set thistest "catch syscall with arguments ($syscall)"
gdb_test "catch syscall $syscall" "Catchpoint .*(syscall (.)?${syscall}(.)?( \[\[0-9\]+\])?).*" $thistest
check_info_bp_specific_syscall $syscall
}
# Inserts a syscall catchpoint with many arguments.
proc insert_catch_syscall_with_many_args { syscalls numbers } {
global gdb_prompt
set catch [ join $syscalls " " ]
set filter_str ""
foreach name $syscalls number $numbers {
set filter_str "${filter_str}'${name}' \[${number}\] "
}
set filter_str [ string trimright $filter_str " " ]
# Trying to set the catchpoint
set thistest "catch syscall with arguments ($filter_str)"
gdb_test "catch syscall $catch" "Catchpoint .*(syscalls (.)?${filter_str}(.)?).*" $thistest
check_info_bp_many_syscalls $syscalls
}
proc check_for_program_end {} {
global gdb_prompt
# Deleting the catchpoints
delete_breakpoints
gdb_continue_to_end
}
proc test_catch_syscall_without_args {} {
global gdb_prompt all_syscalls last_syscall
# Trying to set the syscall
set thistest "setting catch syscall without arguments"
gdb_test "catch syscall" "Catchpoint .*(syscall).*" $thistest
check_info_bp_any_syscall
# We have to check every syscall
foreach name $all_syscalls {
check_continue $name
}
# At last but not least, we check if the inferior
# has called the last (exit) syscall.
check_call_to_syscall $last_syscall
# Now let's see if the inferior correctly finishes.
check_for_program_end
}
proc test_catch_syscall_with_args {} {
global gdb_prompt
set syscall_name "close"
insert_catch_syscall_with_arg $syscall_name
# Can we continue until we catch the syscall?
check_continue $syscall_name
# Now let's see if the inferior correctly finishes.
check_for_program_end
}
proc test_catch_syscall_with_many_args {} {
global gdb_prompt all_syscalls all_syscalls_numbers
insert_catch_syscall_with_many_args $all_syscalls $all_syscalls_numbers
# Can we continue until we catch the syscalls?
foreach name $all_syscalls {
check_continue $name
}
# Now let's see if the inferior correctly finishes.
check_for_program_end
}
proc test_catch_syscall_with_wrong_args {} {
global gdb_prompt
# mlock is not called from the source
set syscall_name "mlock"
insert_catch_syscall_with_arg $syscall_name
# Now, we must verify if the program stops with a continue.
# If it doesn't, everything is right (since we don't have
# a syscall named "mlock" in it). Otherwise, this is a failure.
set thistest "catch syscall with unused syscall ($syscall_name)"
gdb_continue_to_end $thistest
}
proc test_catch_syscall_restarting_inferior {} {
global gdb_prompt
set syscall_name "chroot"
insert_catch_syscall_with_arg $syscall_name
# Let's first reach the call of the syscall.
check_call_to_syscall $syscall_name
# Now, restart the program
rerun_to_main
# And check for call/return
check_continue $syscall_name
# Can we finish?
check_for_program_end
}
proc test_catch_syscall_fail_nodatadir {} {
global gdb_prompt
# Sanitizing.
delete_breakpoints
# Make sure GDB doesn't load the syscalls xml from the system data
# directory.
gdb_test_no_output "set data-directory /the/path/to/nowhere"
# Testing to see if we receive a warning when calling "catch syscall"
# without XML support (without datadir).
set thistest "Catch syscall displays a warning when there is no XML support (no datadir set)"
gdb_test "catch syscall" "warning: Could not load the syscall XML file.*warning: GDB will not be able to display syscall names nor to verify if.*any provided syscall numbers are valid.*Catchpoint .*(syscall).*" $thistest
# Since the catchpoint was set, we must check if it's present at
# "info breakpoints"
check_info_bp_any_syscall
# Sanitizing.
delete_breakpoints
}
proc do_syscall_tests {} {
global gdb_prompt srcdir
# NOTE: We don't have to point gdb at the correct data-directory.
# For the build tree that is handled by INTERNAL_GDBFLAGS.
# Verify that the 'catch syscall' help is available
set thistest "help catch syscall"
gdb_test "help catch syscall" "Catch system calls.*" $thistest
# Try to set a catchpoint to a nonsense syscall
set thistest "catch syscall to a nonsense syscall is prohibited"
gdb_test "catch syscall nonsense_syscall" "Unknown syscall name .*" $thistest
# Testing the 'catch syscall' command without arguments.
# This test should catch any syscalls.
if [runto_main] then { test_catch_syscall_without_args }
# Testing the 'catch syscall' command with arguments.
# This test should only catch the specified syscall.
if [runto_main] then { test_catch_syscall_with_args }
# Testing the 'catch syscall' command with many arguments.
# This test should catch $all_syscalls.
if [runto_main] then { test_catch_syscall_with_many_args }
# Testing the 'catch syscall' command with WRONG arguments.
# This test should not trigger any catchpoints.
if [runto_main] then { test_catch_syscall_with_wrong_args }
# Testing the 'catch' syscall command during a restart of
# the inferior.
if [runto_main] then { test_catch_syscall_restarting_inferior }
}
proc test_catch_syscall_without_args_noxml {} {
# We will need the syscall names even not using it
# because we need to know know many syscalls are in
# the example file.
global gdb_prompt all_syscalls last_syscall
delete_breakpoints
set thistest "Catch syscall without arguments and without XML support"
gdb_test "catch syscall" "Catchpoint .*(syscall).*"
# Now, we should be able to set a catchpoint,
# and GDB shall not display the warning anymore.
foreach name $all_syscalls {
# Unfortunately, we don't know the syscall number
# that will be caught because this information is
# arch-dependent. Thus, we try to catch anything
# similar to a number.
check_continue "\[0-9\]*"
}
# At last but not least, we check if the inferior
# has called the last (exit) syscall.
check_call_to_syscall "\[0-9\]*"
delete_breakpoints
}
proc test_catch_syscall_with_args_noxml {} {
global gdb_prompt
# The number of the "close" syscall. This is our
# option for a "long-estabilished" syscall in all
# Linux architectures, but unfortunately x86_64 and
# a few other platforms don't "follow the convention".
# Because of this, we need this ugly check :-(.
set close_number ""
if { [istarget "x86_64-*-linux*"] } {
set close_number "3"
} else {
set close_number "6"
}
delete_breakpoints
insert_catch_syscall_with_arg $close_number
check_continue $close_number
delete_breakpoints
}
proc test_catch_syscall_with_wrong_args_noxml {} {
global gdb_prompt
delete_breakpoints
# Even without XML support, GDB should not accept unknown
# syscall names for the catchpoint.
set thistest "Catch a nonsense syscall without XML support"
gdb_test "catch syscall nonsense_syscall" "Unknown syscall name .nonsense_syscall.*" $thistest
delete_breakpoints
}
proc do_syscall_tests_without_xml {} {
global gdb_prompt srcdir
# Make sure GDB doesn't load the syscalls xml from the system data
# directory.
gdb_test_no_output "set data-directory /the/path/to/nowhere"
# Let's test if we can catch syscalls without XML support.
# We should succeed, but GDB is not supposed to print syscall names.
if [runto_main] then { test_catch_syscall_without_args_noxml }
# The only valid argument "catch syscall" should accept is the
# syscall number, and not the name (since it can't translate a
# name to a number).
#
# It's worth mentioning that we only try to catch the syscall
# close(). This is because the syscall number is an arch-dependent
# information, so we can't assume that we know every syscall number
# in this system. Therefore, we have decided to use a "long-estabilished"
# system call, and close() just sounded the right choice :-).
if [runto_main] then { test_catch_syscall_with_args_noxml }
# Now, we'll try to provide a syscall name (valid or not) to the command,
# and expect it to fail.
if [runto_main] then { test_catch_syscall_with_wrong_args_noxml }
}
# This procedure fills the vector "all_syscalls_numbers" with the proper
# numbers for the used syscalls according to the architecture.
proc fill_all_syscalls_numbers {} {
global all_syscalls_numbers
# For Linux on x86, PPC, PPC64, SPARC and SPARC64, the numbers for the syscalls
# "close" and "chroot" are the same.
if { [istarget "i\[34567\]86-*-linux*"]
|| [istarget "powerpc-*-linux*"] || [istarget "powerpc64-*-linux*"]
|| [istarget "sparc-*-linux*"] || [istarget "sparc64-*-linux*"] } {
set all_syscalls_numbers { "6" "61" }
}
}
# Start with a fresh gdb
gdb_exit
set do_xml_test ![gdb_skip_xml_test]
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
# Execute the tests, using XML support
if $do_xml_test {
do_syscall_tests
# Now, we have to see if GDB displays a warning when we
# don't set the data-directory but try to use catch syscall
# anyway. For that, we must restart GDB first.
gdb_exit
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
test_catch_syscall_fail_nodatadir
}
# Restart gdb
gdb_exit
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
# Execute the tests, without XML support. In this case, GDB will
# only display syscall numbers, and not syscall names.
do_syscall_tests_without_xml
|