1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
# This testcase is part of GDB, the GNU debugger.
# Copyright 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test "return", "finish", and "call" of functions that a scalar (int,
# float, enum) and/or take a single scalar parameter.
if $tracelevel then {
strace $tracelevel
}
# Some targets can't call functions, so don't even bother with this
# test.
if [target_info exists gdb,cannot_call_functions] {
setup_xfail "*-*-*"
fail "This target can not call functions"
continue
}
set testfile "call-sc"
set srcfile ${testfile}.c
set binfile ${objdir}/${subdir}/${testfile}
# Create and source the file that provides information about the
# compiler used to compile the test case.
if [get_compiler_info ${binfile}] {
return -1;
}
# Compile a variant of scalars.c using TYPE to specify the type of the
# parameter and return-type. Run the compiled program up to "main".
# Also updates the global "testfile" to reflect the most recent build.
proc start_scalars_test { type } {
global testfile
global srcfile
global binfile
global objdir
global subdir
global srcdir
global gdb_prompt
global expect_out
# Create the additional flags
set flags "debug additional_flags=-DT=${type}"
set testfile "call-sc-${type}"
set binfile ${objdir}/${subdir}/${testfile}
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags}"] != "" } {
# built the second test case since we can't use prototypes
warning "Prototypes not supported, rebuilding with -DNO_PROTOTYPES"
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags} additional_flags=-DNO_PROTOTYPES"] != "" } {
untested call-sc.exp
return -1
}
}
# Start with a fresh gdb.
gdb_exit
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
# Make certain that the output is consistent
gdb_test_no_output "set print sevenbit-strings"
gdb_test_no_output "set print address off"
gdb_test_no_output "set width 0"
# Advance to main
if { ![runto_main] } then {
gdb_suppress_tests;
}
# Get the debug format
get_debug_format
# check that type matches what was passed in
set test "ptype; ${testfile}"
set foo_t "xxx"
gdb_test_multiple "ptype ${type}" "${test}" {
-re "type = (\[^\r\n\]*)\r\n$gdb_prompt $" {
set foo_t "$expect_out(1,string)"
pass "$test (${foo_t})"
}
}
gdb_test "ptype foo" "type = ${foo_t}" "ptype foo; ${testfile} $expect_out(1,string)"
}
# Given N (0..25), return the corresponding alphabetic letter in lower
# or upper case. This is ment to be i18n proof.
proc i2a { n } {
return [string range "abcdefghijklmnopqrstuvwxyz" $n $n]
}
proc I2A { n } {
return [string toupper [i2a $n]]
}
# Test GDB's ability to make inferior function calls to functions
# returning (or passing) in a single scalar.
# start_scalars_test() will have previously built a program with a
# specified scalar type. To ensure robustness of the output, "p/c" is
# used.
# This tests the code paths "which return-value convention?" and
# "extract return-value from registers" called by "infcall.c".
proc test_scalar_calls { } {
global testfile
global gdb_prompt
# Check that GDB can always extract a scalar-return value from an
# inferior function call. Since GDB always knows the location of
# an inferior function call's return value these should never fail
# Implemented by calling the parameterless function "fun" and then
# examining the return value printed by GDB.
set tests "call ${testfile}"
# Call fun, checking the printed return-value.
gdb_test "p/c fun()" "= 49 '1'" "p/c fun(); ${tests}"
# Check that GDB can always pass a structure to an inferior function.
# This test can never fail.
# Implemented by calling the one parameter function "Fun" which
# stores its parameter in the global variable "L". GDB then
# examining that global to confirm that the value is as expected.
gdb_test_no_output "call Fun(foo)" "call Fun(foo); ${tests}"
gdb_test "p/c L" " = 49 '1'" "p/c L; ${tests}"
}
# Test GDB's ability to both return a function (with "return" or
# "finish") and correctly extract/store any corresponding
# return-value.
# Check that GDB can consistently extract/store structure return
# values. There are two cases - returned in registers and returned in
# memory. For the latter case, the return value can't be found and a
# failure is "expected". However GDB must still both return the
# function and display the final source and line information.
# N identifies the number of elements in the struct that will be used
# for the test case. FAILS is a list of target tuples that will fail
# this test.
# This tests the code paths "which return-value convention?", "extract
# return-value from registers", and "store return-value in registers".
# Unlike "test struct calls", this test is expected to "fail" when the
# return-value is in memory (GDB can't find the location). The test
# is in three parts: test "return"; test "finish"; check that the two
# are consistent. GDB can sometimes work for one command and not the
# other.
proc test_scalar_returns { } {
global gdb_prompt
global testfile
set tests "return ${testfile}"
# Check that "return" works.
# GDB must always force the return of a function that has
# a struct result. Dependant on the ABI, it may, or may not be
# possible to store the return value in a register.
# The relevant code looks like "L{n} = fun{n}()". The test forces
# "fun{n}" to "return" with an explicit value. Since that code
# snippet will store the the returned value in "L{n}" the return
# is tested by examining "L{n}". This assumes that the
# compiler implemented this as fun{n}(&L{n}) and hence that when
# the value isn't stored "L{n}" remains unchanged. Also check for
# consistency between this and the "finish" case.
# Get into a call of fun
gdb_test "advance fun" \
"fun .*\[\r\n\]+\[0-9\].*return foo.*" \
"advance to fun for return; ${tests}"
# Check that the program invalidated the relevant global.
gdb_test "p/c L" " = 90 'Z'" "zed L for return; ${tests}"
# Force the "return". This checks that the return is always
# performed, and that GDB correctly reported this to the user.
# GDB 6.0 and earlier, when the return-value's location wasn't
# known, both failed to print a final "source and line" and misplaced
# the frame ("No frame").
# The test is writen so that it only reports one FAIL/PASS for the
# entire operation. The value returned is checked further down.
# "return_value_unknown", if non-empty, records why GDB realised
# that it didn't know where the return value was.
set test "return foo; ${tests}"
set return_value_unknown 0
set return_value_unimplemented 0
gdb_test_multiple "return foo" "${test}" {
-re "The location" {
# Ulgh, a struct return, remember this (still need prompt).
set return_value_unknown 1
exp_continue
}
-re "A structure or union" {
# Ulgh, a struct return, remember this (still need prompt).
set return_value_unknown 1
# Double ulgh. Architecture doesn't use return_value and
# hence hasn't implemented small structure return.
set return_value_unimplemented 1
exp_continue
}
-re "Make fun return now.*y or n. $" {
gdb_test_multiple "y" "${test}" {
-re "L *= fun.*${gdb_prompt} $" {
# Need to step off the function call
gdb_test "next" "zed.*" "${test}"
}
-re "zed \\(\\);.*$gdb_prompt $" {
pass "${test}"
}
}
}
}
# If the previous test did not work, the program counter might
# still be inside foo() rather than main(). Make sure the program
# counter is is main().
#
# This happens on ppc64 GNU/Linux with gcc 3.4.1 and a buggy GDB
set test "return foo; synchronize pc to main()"
for {set loop_count 0} {$loop_count < 2} {incr loop_count} {
gdb_test_multiple "backtrace 1" $test {
-re "#0.*main \\(\\).*${gdb_prompt} $" {
pass $test
set loop_count 2
}
-re "#0.*fun \\(\\).*${gdb_prompt} $" {
if {$loop_count < 1} {
gdb_test "finish" ".*" ""
} else {
fail $test
set loop_count 2
}
}
}
}
# Check that the return-value is as expected. At this stage we're
# just checking that GDB has returned a value consistent with
# "return_value_unknown" set above.
set test "value foo returned; ${tests}"
gdb_test_multiple "p/c L" "${test}" {
-re " = 49 '1'.*${gdb_prompt} $" {
if $return_value_unknown {
# This contradicts the above claim that GDB didn't
# know the location of the return-value.
fail "${test}"
} else {
pass "${test}"
}
}
-re " = 90 .*${gdb_prompt} $" {
if $return_value_unknown {
# The struct return case. Since any modification
# would be by reference, and that can't happen, the
# value should be unmodified and hence Z is expected.
# Is this a reasonable assumption?
pass "${test}"
} else {
# This contradicts the above claim that GDB knew
# the location of the return-value.
fail "${test}"
}
}
-re ".*${gdb_prompt} $" {
if $return_value_unimplemented {
# What a suprize. The architecture hasn't implemented
# return_value, and hence has to fail.
kfail "$test" gdb/1444
} else {
fail "$test"
}
}
}
# Check that a "finish" works.
# This is almost but not quite the same as "call struct funcs".
# Architectures can have subtle differences in the two code paths.
# The relevant code snippet is "L{n} = fun{n}()". The program is
# advanced into a call to "fun{n}" and then that function is
# finished. The returned value that GDB prints, reformatted using
# "p/c", is checked.
# Get into "fun()".
gdb_test "advance fun" \
"fun .*\[\r\n\]+\[0-9\].*return foo.*" \
"advance to fun for finish; ${tests}"
# Check that the program invalidated the relevant global.
gdb_test "p/c L" " = 90 'Z'" "zed L for finish; ${tests}"
# Finish the function, set 'finish_value_unknown" to non-empty if the
# return-value was not found.
set test "finish foo; ${tests}"
set finish_value_unknown 0
gdb_test_multiple "finish" "${test}" {
-re "Value returned is .*${gdb_prompt} $" {
pass "${test}"
}
-re "Cannot determine contents.*${gdb_prompt} $" {
# Expected bad value. For the moment this is ok.
set finish_value_unknown 1
pass "${test}"
}
}
# Re-print the last (return-value) using the more robust
# "p/c". If no return value was found, the 'Z' from the previous
# check that the variable was cleared, is printed.
set test "value foo finished; ${tests}"
gdb_test_multiple "p/c" "${test}" {
-re " = 49 '1'\[\r\n\]+${gdb_prompt} $" {
if $finish_value_unknown {
# This contradicts the above claim that GDB didn't
# know the location of the return-value.
fail "${test}"
} else {
pass "${test}"
}
}
-re " = 90 'Z'\[\r\n\]+${gdb_prompt} $" {
# The value didn't get found. This is "expected".
if $finish_value_unknown {
pass "${test}"
} else {
# This contradicts the above claim that GDB did
# know the location of the return-value.
fail "${test}"
}
}
}
# Finally, check that "return" and finish" have consistent
# behavior.
# Since both "return" and "finish" use equivalent "which
# return-value convention" logic, both commands should have
# identical can/can-not find return-value messages.
# Note that since "call" and "finish" use common code paths, a
# failure here is a strong indicator of problems with "store
# return-value" code paths. Suggest looking at "return_value"
# when investigating a fix.
set test "return and finish use same convention; ${tests}"
if {$finish_value_unknown == $return_value_unknown} {
pass "${test}"
} else {
kfail gdb/1444 "${test}"
}
}
# ABIs pass anything >8 or >16 bytes in memory but below that things
# randomly use register and/and structure conventions. Check all
# possible sized char scalars in that range. But only a restricted
# range of the other types.
# NetBSD/PPC returns "unnatural" (3, 5, 6, 7) sized scalars in memory.
# d10v is weird. 5/6 byte scalars go in memory. 2 or more char
# scalars go in memory. Everything else is in a register!
# Test every single char struct from 1..17 in size. This is what the
# original "scalars" test was doing.
start_scalars_test tc
test_scalar_calls
test_scalar_returns
# Let the fun begin.
# Assuming that any integer struct larger than 8 bytes goes in memory,
# come up with many and varied combinations of a return struct. For
# "struct calls" test just beyond that 8 byte boundary, for "struct
# returns" test up to that boundary.
# For floats, assumed that up to two struct elements can be stored in
# floating point registers, regardless of their size.
# The approx size of each structure it is computed assumed that tc=1,
# ts=2, ti=4, tl=4, tll=8, tf=4, td=8, tld=16, and that all fields are
# naturally aligned. Padding being added where needed. Note that
# these numbers are just approx, the d10v has ti=2, a 64-bit has has
# tl=8.
# Approx size: 2, 4, ...
start_scalars_test ts
test_scalar_calls
test_scalar_returns
# Approx size: 4, 8, ...
start_scalars_test ti
test_scalar_calls
test_scalar_returns
# Approx size: 4, 8, ...
start_scalars_test tl
test_scalar_calls
test_scalar_returns
# Approx size: 8, 16, ...
start_scalars_test tll
test_scalar_calls
test_scalar_returns
# Approx size: 4, 8, ...
start_scalars_test tf
test_scalar_calls
test_scalar_returns
# Approx size: 8, 16, ...
start_scalars_test td
test_scalar_calls
test_scalar_returns
# Approx size: 16, 32, ...
start_scalars_test tld
test_scalar_calls
test_scalar_returns
# Approx size: 4, 8, ...
start_scalars_test te
test_scalar_calls
test_scalar_returns
return 0
|