aboutsummaryrefslogtreecommitdiff
path: root/gdb/target.h
blob: 0e45d042dd50336033289066c1428f3bdd5fcf4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
/* Interface between GDB and target environments, including files and processes

   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   Contributed by Cygnus Support.  Written by John Gilmore.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#if !defined (TARGET_H)
#define TARGET_H

struct objfile;
struct ui_file;
struct mem_attrib;
struct target_ops;

/* This include file defines the interface between the main part
   of the debugger, and the part which is target-specific, or
   specific to the communications interface between us and the
   target.

   A TARGET is an interface between the debugger and a particular
   kind of file or process.  Targets can be STACKED in STRATA,
   so that more than one target can potentially respond to a request.
   In particular, memory accesses will walk down the stack of targets
   until they find a target that is interested in handling that particular
   address.  STRATA are artificial boundaries on the stack, within
   which particular kinds of targets live.  Strata exist so that
   people don't get confused by pushing e.g. a process target and then
   a file target, and wondering why they can't see the current values
   of variables any more (the file target is handling them and they
   never get to the process target).  So when you push a file target,
   it goes into the file stratum, which is always below the process
   stratum.  */

#include "bfd.h"
#include "symtab.h"
#include "dcache.h"
#include "memattr.h"

enum strata
  {
    dummy_stratum,		/* The lowest of the low */
    file_stratum,		/* Executable files, etc */
    core_stratum,		/* Core dump files */
    download_stratum,		/* Downloading of remote targets */
    process_stratum,		/* Executing processes */
    thread_stratum		/* Executing threads */
  };

enum thread_control_capabilities
  {
    tc_none = 0,		/* Default: can't control thread execution.  */
    tc_schedlock = 1,		/* Can lock the thread scheduler.  */
    tc_switch = 2		/* Can switch the running thread on demand.  */
  };

/* Stuff for target_wait.  */

/* Generally, what has the program done?  */
enum target_waitkind
  {
    /* The program has exited.  The exit status is in value.integer.  */
    TARGET_WAITKIND_EXITED,

    /* The program has stopped with a signal.  Which signal is in
       value.sig.  */
    TARGET_WAITKIND_STOPPED,

    /* The program has terminated with a signal.  Which signal is in
       value.sig.  */
    TARGET_WAITKIND_SIGNALLED,

    /* The program is letting us know that it dynamically loaded something
       (e.g. it called load(2) on AIX).  */
    TARGET_WAITKIND_LOADED,

    /* The program has forked.  A "related" process' ID is in
       value.related_pid.  I.e., if the child forks, value.related_pid
       is the parent's ID.  */

    TARGET_WAITKIND_FORKED,

    /* The program has vforked.  A "related" process's ID is in
       value.related_pid.  */

    TARGET_WAITKIND_VFORKED,

    /* The program has exec'ed a new executable file.  The new file's
       pathname is pointed to by value.execd_pathname.  */

    TARGET_WAITKIND_EXECD,

    /* The program has entered or returned from a system call.  On
       HP-UX, this is used in the hardware watchpoint implementation.
       The syscall's unique integer ID number is in value.syscall_id */

    TARGET_WAITKIND_SYSCALL_ENTRY,
    TARGET_WAITKIND_SYSCALL_RETURN,

    /* Nothing happened, but we stopped anyway.  This perhaps should be handled
       within target_wait, but I'm not sure target_wait should be resuming the
       inferior.  */
    TARGET_WAITKIND_SPURIOUS,

    /* An event has occured, but we should wait again.
       Remote_async_wait() returns this when there is an event
       on the inferior, but the rest of the world is not interested in
       it. The inferior has not stopped, but has just sent some output
       to the console, for instance. In this case, we want to go back
       to the event loop and wait there for another event from the
       inferior, rather than being stuck in the remote_async_wait()
       function. This way the event loop is responsive to other events,
       like for instance the user typing.  */
    TARGET_WAITKIND_IGNORE
  };

struct target_waitstatus
  {
    enum target_waitkind kind;

    /* Forked child pid, execd pathname, exit status or signal number.  */
    union
      {
	int integer;
	enum target_signal sig;
	int related_pid;
	char *execd_pathname;
	int syscall_id;
      }
    value;
  };

/* Possible types of events that the inferior handler will have to
   deal with.  */
enum inferior_event_type
  {
    /* There is a request to quit the inferior, abandon it.  */
    INF_QUIT_REQ,
    /* Process a normal inferior event which will result in target_wait
       being called.  */
    INF_REG_EVENT,
    /* Deal with an error on the inferior.  */
    INF_ERROR,
    /* We are called because a timer went off.  */
    INF_TIMER,
    /* We are called to do stuff after the inferior stops.  */
    INF_EXEC_COMPLETE,
    /* We are called to do some stuff after the inferior stops, but we
       are expected to reenter the proceed() and
       handle_inferior_event() functions. This is used only in case of
       'step n' like commands.  */
    INF_EXEC_CONTINUE
  };

/* Return the string for a signal.  */
extern char *target_signal_to_string (enum target_signal);

/* Return the name (SIGHUP, etc.) for a signal.  */
extern char *target_signal_to_name (enum target_signal);

/* Given a name (SIGHUP, etc.), return its signal.  */
enum target_signal target_signal_from_name (char *);

/* Request the transfer of up to LEN 8-bit bytes of the target's
   OBJECT.  The OFFSET, for a seekable object, specifies the starting
   point.  The ANNEX can be used to provide additional data-specific
   information to the target.

   Return the number of bytes actually transfered, zero when no
   further transfer is possible, and -1 when the transfer is not
   supported.

   NOTE: cagney/2003-10-17: The current interface does not support a
   "retry" mechanism.  Instead it assumes that at least one byte will
   be transfered on each call.

   NOTE: cagney/2003-10-17: The current interface can lead to
   fragmented transfers.  Lower target levels should not implement
   hacks, such as enlarging the transfer, in an attempt to compensate
   for this.  Instead, the target stack should be extended so that it
   implements supply/collect methods and a look-aside object cache.
   With that available, the lowest target can safely and freely "push"
   data up the stack.

   NOTE: cagney/2003-10-17: Unlike the old query and the memory
   transfer mechanisms, these methods are explicitly parameterized by
   the target that it should be applied to.

   NOTE: cagney/2003-10-17: Just like the old query and memory xfer
   methods, these new methods perform partial transfers.  The only
   difference is that these new methods thought to include "partial"
   in the name.  The old code's failure to do this lead to much
   confusion and duplication of effort as each target object attempted
   to locally take responsibility for something it didn't have to
   worry about.

   NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
   backward compatibility with the "target_query" method that this
   replaced, when OFFSET and LEN are both zero, return the "minimum"
   buffer size.  See "remote.c" for further information.  */

enum target_object
{
  /* Kernel Object Display transfer.  See "kod.c" and "remote.c".  */
  TARGET_OBJECT_KOD,
  /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
  TARGET_OBJECT_AVR,
  /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
  TARGET_OBJECT_MEMORY,
  /* Kernel Unwind Table.  See "ia64-tdep.c".  */
  TARGET_OBJECT_UNWIND_TABLE,
  /* Transfer auxilliary vector.  */
  TARGET_OBJECT_AUXV,
  /* StackGhost cookie.  See "sparc-tdep.c".  */
  TARGET_OBJECT_WCOOKIE

  /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
};

extern LONGEST target_read_partial (struct target_ops *ops,
				    enum target_object object,
				    const char *annex, void *buf,
				    ULONGEST offset, LONGEST len);

extern LONGEST target_write_partial (struct target_ops *ops,
				     enum target_object object,
				     const char *annex, const void *buf,
				     ULONGEST offset, LONGEST len);

/* Wrappers to perform the full transfer.  */
extern LONGEST target_read (struct target_ops *ops,
			    enum target_object object,
			    const char *annex, void *buf,
			    ULONGEST offset, LONGEST len);

extern LONGEST target_write (struct target_ops *ops,
			     enum target_object object,
			     const char *annex, const void *buf,
			     ULONGEST offset, LONGEST len);

/* Wrappers to target read/write that perform memory transfers.  They
   throw an error if the memory transfer fails.

   NOTE: cagney/2003-10-23: The naming schema is lifted from
   "frame.h".  The parameter order is lifted from get_frame_memory,
   which in turn lifted it from read_memory.  */

extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
			       void *buf, LONGEST len);
extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
					    CORE_ADDR addr, int len);


/* If certain kinds of activity happen, target_wait should perform
   callbacks.  */
/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
   on TARGET_ACTIVITY_FD.  */
extern int target_activity_fd;
/* Returns zero to leave the inferior alone, one to interrupt it.  */
extern int (*target_activity_function) (void);

struct thread_info;		/* fwd decl for parameter list below: */

struct target_ops
  {
    struct target_ops *beneath;	/* To the target under this one.  */
    char *to_shortname;		/* Name this target type */
    char *to_longname;		/* Name for printing */
    char *to_doc;		/* Documentation.  Does not include trailing
				   newline, and starts with a one-line descrip-
				   tion (probably similar to to_longname).  */
    /* Per-target scratch pad.  */
    void *to_data;
    /* The open routine takes the rest of the parameters from the
       command, and (if successful) pushes a new target onto the
       stack.  Targets should supply this routine, if only to provide
       an error message.  */
    void (*to_open) (char *, int);
    /* Old targets with a static target vector provide "to_close".
       New re-entrant targets provide "to_xclose" and that is expected
       to xfree everything (including the "struct target_ops").  */
    void (*to_xclose) (struct target_ops *targ, int quitting);
    void (*to_close) (int);
    void (*to_attach) (char *, int);
    void (*to_post_attach) (int);
    void (*to_detach) (char *, int);
    void (*to_disconnect) (char *, int);
    void (*to_resume) (ptid_t, int, enum target_signal);
    ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
    void (*to_fetch_registers) (int);
    void (*to_store_registers) (int);
    void (*to_prepare_to_store) (void);

    /* Transfer LEN bytes of memory between GDB address MYADDR and
       target address MEMADDR.  If WRITE, transfer them to the target, else
       transfer them from the target.  TARGET is the target from which we
       get this function.

       Return value, N, is one of the following:

       0 means that we can't handle this.  If errno has been set, it is the
       error which prevented us from doing it (FIXME: What about bfd_error?).

       positive (call it N) means that we have transferred N bytes
       starting at MEMADDR.  We might be able to handle more bytes
       beyond this length, but no promises.

       negative (call its absolute value N) means that we cannot
       transfer right at MEMADDR, but we could transfer at least
       something at MEMADDR + N.

       NOTE: cagney/2004-10-01: This has been entirely superseeded by
       to_xfer_partial and inferior inheritance.  */

    int (*deprecated_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
				   int len, int write,
				   struct mem_attrib *attrib,
				   struct target_ops *target);

    void (*to_files_info) (struct target_ops *);
    int (*to_insert_breakpoint) (CORE_ADDR, bfd_byte *);
    int (*to_remove_breakpoint) (CORE_ADDR, bfd_byte *);
    int (*to_can_use_hw_breakpoint) (int, int, int);
    int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
    int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
    int (*to_remove_watchpoint) (CORE_ADDR, int, int);
    int (*to_insert_watchpoint) (CORE_ADDR, int, int);
    int (*to_stopped_by_watchpoint) (void);
    int to_have_continuable_watchpoint;
    int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
    int (*to_region_size_ok_for_hw_watchpoint) (int);
    void (*to_terminal_init) (void);
    void (*to_terminal_inferior) (void);
    void (*to_terminal_ours_for_output) (void);
    void (*to_terminal_ours) (void);
    void (*to_terminal_save_ours) (void);
    void (*to_terminal_info) (char *, int);
    void (*to_kill) (void);
    void (*to_load) (char *, int);
    int (*to_lookup_symbol) (char *, CORE_ADDR *);
    void (*to_create_inferior) (char *, char *, char **, int);
    void (*to_post_startup_inferior) (ptid_t);
    void (*to_acknowledge_created_inferior) (int);
    void (*to_insert_fork_catchpoint) (int);
    int (*to_remove_fork_catchpoint) (int);
    void (*to_insert_vfork_catchpoint) (int);
    int (*to_remove_vfork_catchpoint) (int);
    int (*to_follow_fork) (int);
    void (*to_insert_exec_catchpoint) (int);
    int (*to_remove_exec_catchpoint) (int);
    int (*to_reported_exec_events_per_exec_call) (void);
    int (*to_has_exited) (int, int, int *);
    void (*to_mourn_inferior) (void);
    int (*to_can_run) (void);
    void (*to_notice_signals) (ptid_t ptid);
    int (*to_thread_alive) (ptid_t ptid);
    void (*to_find_new_threads) (void);
    char *(*to_pid_to_str) (ptid_t);
    char *(*to_extra_thread_info) (struct thread_info *);
    void (*to_stop) (void);
    void (*to_rcmd) (char *command, struct ui_file *output);
    struct symtab_and_line *(*to_enable_exception_callback) (enum
							     exception_event_kind,
							     int);
    struct exception_event_record *(*to_get_current_exception_event) (void);
    char *(*to_pid_to_exec_file) (int pid);
    enum strata to_stratum;
    int to_has_all_memory;
    int to_has_memory;
    int to_has_stack;
    int to_has_registers;
    int to_has_execution;
    int to_has_thread_control;	/* control thread execution */
    struct section_table
     *to_sections;
    struct section_table
     *to_sections_end;
    /* ASYNC target controls */
    int (*to_can_async_p) (void);
    int (*to_is_async_p) (void);
    void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
		      void *context);
    int to_async_mask_value;
    int (*to_find_memory_regions) (int (*) (CORE_ADDR,
					    unsigned long,
					    int, int, int,
					    void *),
				   void *);
    char * (*to_make_corefile_notes) (bfd *, int *);

    /* Return the thread-local address at OFFSET in the
       thread-local storage for the thread PTID and the shared library
       or executable file given by OBJFILE.  If that block of
       thread-local storage hasn't been allocated yet, this function
       may return an error.  */
    CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
					      CORE_ADDR load_module_addr,
					      CORE_ADDR offset);

    /* Perform partial transfers on OBJECT.  See target_read_partial
       and target_write_partial for details of each variant.  One, and
       only one, of readbuf or writebuf must be non-NULL.  */
    LONGEST (*to_xfer_partial) (struct target_ops *ops,
				enum target_object object, const char *annex,
				void *readbuf, const void *writebuf,
				ULONGEST offset, LONGEST len);

    int to_magic;
    /* Need sub-structure for target machine related rather than comm related?
     */
  };

/* Magic number for checking ops size.  If a struct doesn't end with this
   number, somebody changed the declaration but didn't change all the
   places that initialize one.  */

#define	OPS_MAGIC	3840

/* The ops structure for our "current" target process.  This should
   never be NULL.  If there is no target, it points to the dummy_target.  */

extern struct target_ops current_target;

/* Define easy words for doing these operations on our current target.  */

#define	target_shortname	(current_target.to_shortname)
#define	target_longname		(current_target.to_longname)

/* Does whatever cleanup is required for a target that we are no
   longer going to be calling.  QUITTING indicates that GDB is exiting
   and should not get hung on an error (otherwise it is important to
   perform clean termination, even if it takes a while).  This routine
   is automatically always called when popping the target off the
   target stack (to_beneath is undefined).  Closing file descriptors
   and freeing all memory allocated memory are typical things it
   should do.  */

void target_close (struct target_ops *targ, int quitting);

/* Attaches to a process on the target side.  Arguments are as passed
   to the `attach' command by the user.  This routine can be called
   when the target is not on the target-stack, if the target_can_run
   routine returns 1; in that case, it must push itself onto the stack.
   Upon exit, the target should be ready for normal operations, and
   should be ready to deliver the status of the process immediately
   (without waiting) to an upcoming target_wait call.  */

#define	target_attach(args, from_tty)	\
     (*current_target.to_attach) (args, from_tty)

/* The target_attach operation places a process under debugger control,
   and stops the process.

   This operation provides a target-specific hook that allows the
   necessary bookkeeping to be performed after an attach completes.  */
#define target_post_attach(pid) \
     (*current_target.to_post_attach) (pid)

/* Takes a program previously attached to and detaches it.
   The program may resume execution (some targets do, some don't) and will
   no longer stop on signals, etc.  We better not have left any breakpoints
   in the program or it'll die when it hits one.  ARGS is arguments
   typed by the user (e.g. a signal to send the process).  FROM_TTY
   says whether to be verbose or not.  */

extern void target_detach (char *, int);

/* Disconnect from the current target without resuming it (leaving it
   waiting for a debugger).  */

extern void target_disconnect (char *, int);

/* Resume execution of the target process PTID.  STEP says whether to
   single-step or to run free; SIGGNAL is the signal to be given to
   the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
   pass TARGET_SIGNAL_DEFAULT.  */

#define	target_resume(ptid, step, siggnal)				\
  do {									\
    dcache_invalidate(target_dcache);					\
    (*current_target.to_resume) (ptid, step, siggnal);			\
  } while (0)

/* Wait for process pid to do something.  PTID = -1 to wait for any
   pid to do something.  Return pid of child, or -1 in case of error;
   store status through argument pointer STATUS.  Note that it is
   _NOT_ OK to throw_exception() out of target_wait() without popping
   the debugging target from the stack; GDB isn't prepared to get back
   to the prompt with a debugging target but without the frame cache,
   stop_pc, etc., set up.  */

#define	target_wait(ptid, status)		\
     (*current_target.to_wait) (ptid, status)

/* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */

#define	target_fetch_registers(regno)	\
     (*current_target.to_fetch_registers) (regno)

/* Store at least register REGNO, or all regs if REGNO == -1.
   It can store as many registers as it wants to, so target_prepare_to_store
   must have been previously called.  Calls error() if there are problems.  */

#define	target_store_registers(regs)	\
     (*current_target.to_store_registers) (regs)

/* Get ready to modify the registers array.  On machines which store
   individual registers, this doesn't need to do anything.  On machines
   which store all the registers in one fell swoop, this makes sure
   that REGISTERS contains all the registers from the program being
   debugged.  */

#define	target_prepare_to_store()	\
     (*current_target.to_prepare_to_store) ()

extern DCACHE *target_dcache;

extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
			   struct mem_attrib *attrib);

extern int target_read_string (CORE_ADDR, char **, int, int *);

extern int target_read_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len);

extern int target_write_memory (CORE_ADDR memaddr, const bfd_byte *myaddr,
				int len);

extern int xfer_memory (CORE_ADDR, char *, int, int,
			struct mem_attrib *, struct target_ops *);

extern int child_xfer_memory (CORE_ADDR, char *, int, int,
			      struct mem_attrib *, struct target_ops *);

/* Make a single attempt at transfering LEN bytes.  On a successful
   transfer, the number of bytes actually transfered is returned and
   ERR is set to 0.  When a transfer fails, -1 is returned (the number
   of bytes actually transfered is not defined) and ERR is set to a
   non-zero error indication.  */

extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
				       int *err);

extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
					int *err);

extern char *child_pid_to_exec_file (int);

extern char *child_core_file_to_sym_file (char *);

#if defined(CHILD_POST_ATTACH)
extern void child_post_attach (int);
#endif

extern void child_post_startup_inferior (ptid_t);

extern void child_acknowledge_created_inferior (int);

extern void child_insert_fork_catchpoint (int);

extern int child_remove_fork_catchpoint (int);

extern void child_insert_vfork_catchpoint (int);

extern int child_remove_vfork_catchpoint (int);

extern void child_acknowledge_created_inferior (int);

extern int child_follow_fork (int);

extern void child_insert_exec_catchpoint (int);

extern int child_remove_exec_catchpoint (int);

extern int child_reported_exec_events_per_exec_call (void);

extern int child_has_exited (int, int, int *);

extern int child_thread_alive (ptid_t);

/* From infrun.c.  */

extern int inferior_has_forked (int pid, int *child_pid);

extern int inferior_has_vforked (int pid, int *child_pid);

extern int inferior_has_execd (int pid, char **execd_pathname);

/* From exec.c */

extern void print_section_info (struct target_ops *, bfd *);

/* Print a line about the current target.  */

#define	target_files_info()	\
     (*current_target.to_files_info) (&current_target)

/* Insert a breakpoint at address ADDR in the target machine.  SAVE is
   a pointer to memory allocated for saving the target contents.  It
   is guaranteed by the caller to be long enough to save the number of
   breakpoint bytes indicated by BREAKPOINT_FROM_PC.  Result is 0 for
   success, or an errno value.  */

#define	target_insert_breakpoint(addr, save)	\
     (*current_target.to_insert_breakpoint) (addr, save)

/* Remove a breakpoint at address ADDR in the target machine.
   SAVE is a pointer to the same save area
   that was previously passed to target_insert_breakpoint.
   Result is 0 for success, or an errno value.  */

#define	target_remove_breakpoint(addr, save)	\
     (*current_target.to_remove_breakpoint) (addr, save)

/* Initialize the terminal settings we record for the inferior,
   before we actually run the inferior.  */

#define target_terminal_init() \
     (*current_target.to_terminal_init) ()

/* Put the inferior's terminal settings into effect.
   This is preparation for starting or resuming the inferior.  */

#define target_terminal_inferior() \
     (*current_target.to_terminal_inferior) ()

/* Put some of our terminal settings into effect,
   enough to get proper results from our output,
   but do not change into or out of RAW mode
   so that no input is discarded.

   After doing this, either terminal_ours or terminal_inferior
   should be called to get back to a normal state of affairs.  */

#define target_terminal_ours_for_output() \
     (*current_target.to_terminal_ours_for_output) ()

/* Put our terminal settings into effect.
   First record the inferior's terminal settings
   so they can be restored properly later.  */

#define target_terminal_ours() \
     (*current_target.to_terminal_ours) ()

/* Save our terminal settings.
   This is called from TUI after entering or leaving the curses
   mode.  Since curses modifies our terminal this call is here
   to take this change into account.  */

#define target_terminal_save_ours() \
     (*current_target.to_terminal_save_ours) ()

/* Print useful information about our terminal status, if such a thing
   exists.  */

#define target_terminal_info(arg, from_tty) \
     (*current_target.to_terminal_info) (arg, from_tty)

/* Kill the inferior process.   Make it go away.  */

#define target_kill() \
     (*current_target.to_kill) ()

/* Load an executable file into the target process.  This is expected
   to not only bring new code into the target process, but also to
   update GDB's symbol tables to match.  */

extern void target_load (char *arg, int from_tty);

/* Look up a symbol in the target's symbol table.  NAME is the symbol
   name.  ADDRP is a CORE_ADDR * pointing to where the value of the
   symbol should be returned.  The result is 0 if successful, nonzero
   if the symbol does not exist in the target environment.  This
   function should not call error() if communication with the target
   is interrupted, since it is called from symbol reading, but should
   return nonzero, possibly doing a complain().  */

#define target_lookup_symbol(name, addrp) \
     (*current_target.to_lookup_symbol) (name, addrp)

/* Start an inferior process and set inferior_ptid to its pid.
   EXEC_FILE is the file to run.
   ALLARGS is a string containing the arguments to the program.
   ENV is the environment vector to pass.  Errors reported with error().
   On VxWorks and various standalone systems, we ignore exec_file.  */

#define	target_create_inferior(exec_file, args, env, FROM_TTY)	\
     (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))


/* Some targets (such as ttrace-based HPUX) don't allow us to request
   notification of inferior events such as fork and vork immediately
   after the inferior is created.  (This because of how gdb gets an
   inferior created via invoking a shell to do it.  In such a scenario,
   if the shell init file has commands in it, the shell will fork and
   exec for each of those commands, and we will see each such fork
   event.  Very bad.)

   Such targets will supply an appropriate definition for this function.  */

#define target_post_startup_inferior(ptid) \
     (*current_target.to_post_startup_inferior) (ptid)

/* On some targets, the sequence of starting up an inferior requires
   some synchronization between gdb and the new inferior process, PID.  */

#define target_acknowledge_created_inferior(pid) \
     (*current_target.to_acknowledge_created_inferior) (pid)

/* On some targets, we can catch an inferior fork or vfork event when
   it occurs.  These functions insert/remove an already-created
   catchpoint for such events.  */

#define target_insert_fork_catchpoint(pid) \
     (*current_target.to_insert_fork_catchpoint) (pid)

#define target_remove_fork_catchpoint(pid) \
     (*current_target.to_remove_fork_catchpoint) (pid)

#define target_insert_vfork_catchpoint(pid) \
     (*current_target.to_insert_vfork_catchpoint) (pid)

#define target_remove_vfork_catchpoint(pid) \
     (*current_target.to_remove_vfork_catchpoint) (pid)

/* If the inferior forks or vforks, this function will be called at
   the next resume in order to perform any bookkeeping and fiddling
   necessary to continue debugging either the parent or child, as
   requested, and releasing the other.  Information about the fork
   or vfork event is available via get_last_target_status ().
   This function returns 1 if the inferior should not be resumed
   (i.e. there is another event pending).  */

#define target_follow_fork(follow_child) \
     (*current_target.to_follow_fork) (follow_child)

/* On some targets, we can catch an inferior exec event when it
   occurs.  These functions insert/remove an already-created
   catchpoint for such events.  */

#define target_insert_exec_catchpoint(pid) \
     (*current_target.to_insert_exec_catchpoint) (pid)

#define target_remove_exec_catchpoint(pid) \
     (*current_target.to_remove_exec_catchpoint) (pid)

/* Returns the number of exec events that are reported when a process
   invokes a flavor of the exec() system call on this target, if exec
   events are being reported.  */

#define target_reported_exec_events_per_exec_call() \
     (*current_target.to_reported_exec_events_per_exec_call) ()

/* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
   exit code of PID, if any.  */

#define target_has_exited(pid,wait_status,exit_status) \
     (*current_target.to_has_exited) (pid,wait_status,exit_status)

/* The debugger has completed a blocking wait() call.  There is now
   some process event that must be processed.  This function should
   be defined by those targets that require the debugger to perform
   cleanup or internal state changes in response to the process event.  */

/* The inferior process has died.  Do what is right.  */

#define	target_mourn_inferior()	\
     (*current_target.to_mourn_inferior) ()

/* Does target have enough data to do a run or attach command? */

#define target_can_run(t) \
     ((t)->to_can_run) ()

/* post process changes to signal handling in the inferior.  */

#define target_notice_signals(ptid) \
     (*current_target.to_notice_signals) (ptid)

/* Check to see if a thread is still alive.  */

#define target_thread_alive(ptid) \
     (*current_target.to_thread_alive) (ptid)

/* Query for new threads and add them to the thread list.  */

#define target_find_new_threads() \
     (*current_target.to_find_new_threads) (); \

/* Make target stop in a continuable fashion.  (For instance, under
   Unix, this should act like SIGSTOP).  This function is normally
   used by GUIs to implement a stop button.  */

#define target_stop current_target.to_stop

/* Send the specified COMMAND to the target's monitor
   (shell,interpreter) for execution.  The result of the query is
   placed in OUTBUF.  */

#define target_rcmd(command, outbuf) \
     (*current_target.to_rcmd) (command, outbuf)


/* Get the symbol information for a breakpointable routine called when
   an exception event occurs.
   Intended mainly for C++, and for those
   platforms/implementations where such a callback mechanism is available,
   e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
   different mechanisms for debugging exceptions.  */

#define target_enable_exception_callback(kind, enable) \
     (*current_target.to_enable_exception_callback) (kind, enable)

/* Get the current exception event kind -- throw or catch, etc.  */

#define target_get_current_exception_event() \
     (*current_target.to_get_current_exception_event) ()

/* Does the target include all of memory, or only part of it?  This
   determines whether we look up the target chain for other parts of
   memory if this target can't satisfy a request.  */

#define	target_has_all_memory	\
     (current_target.to_has_all_memory)

/* Does the target include memory?  (Dummy targets don't.)  */

#define	target_has_memory	\
     (current_target.to_has_memory)

/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
   we start a process.)  */

#define	target_has_stack	\
     (current_target.to_has_stack)

/* Does the target have registers?  (Exec files don't.)  */

#define	target_has_registers	\
     (current_target.to_has_registers)

/* Does the target have execution?  Can we make it jump (through
   hoops), or pop its stack a few times?  FIXME: If this is to work that
   way, it needs to check whether an inferior actually exists.
   remote-udi.c and probably other targets can be the current target
   when the inferior doesn't actually exist at the moment.  Right now
   this just tells us whether this target is *capable* of execution.  */

#define	target_has_execution	\
     (current_target.to_has_execution)

/* Can the target support the debugger control of thread execution?
   a) Can it lock the thread scheduler?
   b) Can it switch the currently running thread?  */

#define target_can_lock_scheduler \
     (current_target.to_has_thread_control & tc_schedlock)

#define target_can_switch_threads \
     (current_target.to_has_thread_control & tc_switch)

/* Can the target support asynchronous execution? */
#define target_can_async_p() (current_target.to_can_async_p ())

/* Is the target in asynchronous execution mode? */
#define target_is_async_p() (current_target.to_is_async_p())

/* Put the target in async mode with the specified callback function. */
#define target_async(CALLBACK,CONTEXT) \
     (current_target.to_async((CALLBACK), (CONTEXT)))

/* This is to be used ONLY within call_function_by_hand(). It provides
   a workaround, to have inferior function calls done in sychronous
   mode, even though the target is asynchronous. After
   target_async_mask(0) is called, calls to target_can_async_p() will
   return FALSE , so that target_resume() will not try to start the
   target asynchronously. After the inferior stops, we IMMEDIATELY
   restore the previous nature of the target, by calling
   target_async_mask(1). After that, target_can_async_p() will return
   TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.

   FIXME ezannoni 1999-12-13: we won't need this once we move
   the turning async on and off to the single execution commands,
   from where it is done currently, in remote_resume().  */

#define	target_async_mask_value	\
     (current_target.to_async_mask_value)

extern int target_async_mask (int mask);

extern void target_link (char *, CORE_ADDR *);

/* Converts a process id to a string.  Usually, the string just contains
   `process xyz', but on some systems it may contain
   `process xyz thread abc'.  */

#undef target_pid_to_str
#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)

#ifndef target_tid_to_str
#define target_tid_to_str(PID) \
     target_pid_to_str (PID)
extern char *normal_pid_to_str (ptid_t ptid);
#endif

/* Return a short string describing extra information about PID,
   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
   is okay.  */

#define target_extra_thread_info(TP) \
     (current_target.to_extra_thread_info (TP))

/*
 * New Objfile Event Hook:
 *
 * Sometimes a GDB component wants to get notified whenever a new
 * objfile is loaded.  Mainly this is used by thread-debugging
 * implementations that need to know when symbols for the target
 * thread implemenation are available.
 *
 * The old way of doing this is to define a macro 'target_new_objfile'
 * that points to the function that you want to be called on every
 * objfile/shlib load.

   The new way is to grab the function pointer,
   'deprecated_target_new_objfile_hook', and point it to the function
   that you want to be called on every objfile/shlib load.

   If multiple clients are willing to be cooperative, they can each
   save a pointer to the previous value of
   deprecated_target_new_objfile_hook before modifying it, and arrange
   for their function to call the previous function in the chain.  In
   that way, multiple clients can receive this notification (something
   like with signal handlers).  */

extern void (*deprecated_target_new_objfile_hook) (struct objfile *);

#ifndef target_pid_or_tid_to_str
#define target_pid_or_tid_to_str(ID) \
     target_pid_to_str (ID)
#endif

/* Attempts to find the pathname of the executable file
   that was run to create a specified process.

   The process PID must be stopped when this operation is used.

   If the executable file cannot be determined, NULL is returned.

   Else, a pointer to a character string containing the pathname
   is returned.  This string should be copied into a buffer by
   the client if the string will not be immediately used, or if
   it must persist.  */

#define target_pid_to_exec_file(pid) \
     (current_target.to_pid_to_exec_file) (pid)

/*
 * Iterator function for target memory regions.
 * Calls a callback function once for each memory region 'mapped'
 * in the child process.  Defined as a simple macro rather than
 * as a function macro so that it can be tested for nullity.
 */

#define target_find_memory_regions(FUNC, DATA) \
     (current_target.to_find_memory_regions) (FUNC, DATA)

/*
 * Compose corefile .note section.
 */

#define target_make_corefile_notes(BFD, SIZE_P) \
     (current_target.to_make_corefile_notes) (BFD, SIZE_P)

/* Thread-local values.  */
#define target_get_thread_local_address \
    (current_target.to_get_thread_local_address)
#define target_get_thread_local_address_p() \
    (target_get_thread_local_address != NULL)

/* Hook to call target dependent code just after inferior target process has
   started.  */

#ifndef TARGET_CREATE_INFERIOR_HOOK
#define TARGET_CREATE_INFERIOR_HOOK(PID)
#endif

/* Hardware watchpoint interfaces.  */

/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
   write).  */

#ifndef STOPPED_BY_WATCHPOINT
#define STOPPED_BY_WATCHPOINT(w) \
   (*current_target.to_stopped_by_watchpoint) ()
#endif

/* Non-zero if we have continuable watchpoints  */

#ifndef HAVE_CONTINUABLE_WATCHPOINT
#define HAVE_CONTINUABLE_WATCHPOINT \
   (current_target.to_have_continuable_watchpoint)
#endif

/* Provide defaults for hardware watchpoint functions.  */

/* If the *_hw_beakpoint functions have not been defined
   elsewhere use the definitions in the target vector.  */

/* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
   one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
   bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
   (including this one?).  OTHERTYPE is who knows what...  */

#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
#endif

#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
    (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
#endif


/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
   for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
   success, non-zero for failure.  */

#ifndef target_insert_watchpoint
#define	target_insert_watchpoint(addr, len, type)	\
     (*current_target.to_insert_watchpoint) (addr, len, type)

#define	target_remove_watchpoint(addr, len, type)	\
     (*current_target.to_remove_watchpoint) (addr, len, type)
#endif

#ifndef target_insert_hw_breakpoint
#define target_insert_hw_breakpoint(addr, save) \
     (*current_target.to_insert_hw_breakpoint) (addr, save)

#define target_remove_hw_breakpoint(addr, save) \
     (*current_target.to_remove_hw_breakpoint) (addr, save)
#endif

extern int target_stopped_data_address_p (struct target_ops *);

#ifndef target_stopped_data_address
#define target_stopped_data_address(target, x) \
    (*target.to_stopped_data_address) (target, x)
#else
/* Horrible hack to get around existing macros :-(.  */
#define target_stopped_data_address_p(CURRENT_TARGET) (1)
#endif

/* This will only be defined by a target that supports catching vfork events,
   such as HP-UX.

   On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
   child process after it has exec'd, causes the parent process to resume as
   well.  To prevent the parent from running spontaneously, such targets should
   define this to a function that prevents that from happening.  */
#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
#endif

/* This will only be defined by a target that supports catching vfork events,
   such as HP-UX.

   On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
   process must be resumed when it delivers its exec event, before the parent
   vfork event will be delivered to us.  */

#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
#endif

/* Routines for maintenance of the target structures...

   add_target:   Add a target to the list of all possible targets.

   push_target:  Make this target the top of the stack of currently used
   targets, within its particular stratum of the stack.  Result
   is 0 if now atop the stack, nonzero if not on top (maybe
   should warn user).

   unpush_target: Remove this from the stack of currently used targets,
   no matter where it is on the list.  Returns 0 if no
   change, 1 if removed from stack.

   pop_target:   Remove the top thing on the stack of current targets.  */

extern void add_target (struct target_ops *);

extern int push_target (struct target_ops *);

extern int unpush_target (struct target_ops *);

extern void target_preopen (int);

extern void pop_target (void);

/* Struct section_table maps address ranges to file sections.  It is
   mostly used with BFD files, but can be used without (e.g. for handling
   raw disks, or files not in formats handled by BFD).  */

struct section_table
  {
    CORE_ADDR addr;		/* Lowest address in section */
    CORE_ADDR endaddr;		/* 1+highest address in section */

    struct bfd_section *the_bfd_section;

    bfd *bfd;			/* BFD file pointer */
  };

/* Return the "section" containing the specified address.  */
struct section_table *target_section_by_addr (struct target_ops *target,
					      CORE_ADDR addr);


/* From mem-break.c */

extern int memory_remove_breakpoint (CORE_ADDR, bfd_byte *);

extern int memory_insert_breakpoint (CORE_ADDR, bfd_byte *);

extern int default_memory_remove_breakpoint (CORE_ADDR, bfd_byte *);

extern int default_memory_insert_breakpoint (CORE_ADDR, bfd_byte *);


/* From target.c */

extern void initialize_targets (void);

extern void noprocess (void);

extern void find_default_attach (char *, int);

extern void find_default_create_inferior (char *, char *, char **, int);

extern struct target_ops *find_run_target (void);

extern struct target_ops *find_core_target (void);

extern struct target_ops *find_target_beneath (struct target_ops *);

extern int target_resize_to_sections (struct target_ops *target,
				      int num_added);

extern void remove_target_sections (bfd *abfd);


/* Stuff that should be shared among the various remote targets.  */

/* Debugging level.  0 is off, and non-zero values mean to print some debug
   information (higher values, more information).  */
extern int remote_debug;

/* Speed in bits per second, or -1 which means don't mess with the speed.  */
extern int baud_rate;
/* Timeout limit for response from target. */
extern int remote_timeout;


/* Functions for helping to write a native target.  */

/* This is for native targets which use a unix/POSIX-style waitstatus.  */
extern void store_waitstatus (struct target_waitstatus *, int);

/* Predicate to target_signal_to_host(). Return non-zero if the enum
   targ_signal SIGNO has an equivalent ``host'' representation.  */
/* FIXME: cagney/1999-11-22: The name below was chosen in preference
   to the shorter target_signal_p() because it is far less ambigious.
   In this context ``target_signal'' refers to GDB's internal
   representation of the target's set of signals while ``host signal''
   refers to the target operating system's signal.  Confused?  */

extern int target_signal_to_host_p (enum target_signal signo);

/* Convert between host signal numbers and enum target_signal's.
   target_signal_to_host() returns 0 and prints a warning() on GDB's
   console if SIGNO has no equivalent host representation.  */
/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
   refering to the target operating system's signal numbering.
   Similarly, ``enum target_signal'' is named incorrectly, ``enum
   gdb_signal'' would probably be better as it is refering to GDB's
   internal representation of a target operating system's signal.  */

extern enum target_signal target_signal_from_host (int);
extern int target_signal_to_host (enum target_signal);

/* Convert from a number used in a GDB command to an enum target_signal.  */
extern enum target_signal target_signal_from_command (int);

/* Any target can call this to switch to remote protocol (in remote.c). */
extern void push_remote_target (char *name, int from_tty);

/* Imported from machine dependent code */

/* Blank target vector entries are initialized to target_ignore. */
void target_ignore (void);

extern struct target_ops deprecated_child_ops;

#endif /* !defined (TARGET_H) */