1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
/* Interface between GDB and target environments, including files and processes
Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by John Gilmore.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#if !defined (TARGET_H)
#define TARGET_H
/* This include file defines the interface between the main part
of the debugger, and the part which is target-specific, or
specific to the communications interface between us and the
target.
A TARGET is an interface between the debugger and a particular
kind of file or process. Targets can be STACKED in STRATA,
so that more than one target can potentially respond to a request.
In particular, memory accesses will walk down the stack of targets
until they find a target that is interested in handling that particular
address. STRATA are artificial boundaries on the stack, within
which particular kinds of targets live. Strata exist so that
people don't get confused by pushing e.g. a process target and then
a file target, and wondering why they can't see the current values
of variables any more (the file target is handling them and they
never get to the process target). So when you push a file target,
it goes into the file stratum, which is always below the process
stratum. */
#include "bfd.h"
enum strata {
dummy_stratum, /* The lowest of the low */
file_stratum, /* Executable files, etc */
core_stratum, /* Core dump files */
process_stratum /* Executing processes */
};
/* Stuff for target_wait. */
/* Generally, what has the program done? */
enum target_waitkind {
/* The program has exited. The exit status is in value.integer. */
TARGET_WAITKIND_EXITED,
/* The program has stopped with a signal. Which signal is in value.sig. */
TARGET_WAITKIND_STOPPED,
/* The program has terminated with a signal. Which signal is in
value.sig. */
TARGET_WAITKIND_SIGNALLED,
/* The program is letting us know that it dynamically loaded something
(e.g. it called load(2) on AIX). */
TARGET_WAITKIND_LOADED,
/* Nothing happened, but we stopped anyway. This perhaps should be handled
within target_wait, but I'm not sure target_wait should be resuming the
inferior. */
TARGET_WAITKIND_SPURIOUS
};
/* The numbering of these signals is chosen to match traditional unix
signals (insofar as various unices use the same numbers, anyway).
It is also the numbering of the GDB remote protocol. Other remote
protocols, if they use a different numbering, should make sure to
translate appropriately. */
/* This is based strongly on Unix/POSIX signals for several reasons:
(1) This set of signals represents a widely-accepted attempt to
represent events of this sort in a portable fashion, (2) we want a
signal to make it from wait to child_wait to the user intact, (3) many
remote protocols use a similar encoding. However, it is
recognized that this set of signals has limitations (such as not
distinguishing between various kinds of SIGSEGV, or not
distinguishing hitting a breakpoint from finishing a single step).
So in the future we may get around this either by adding additional
signals for breakpoint, single-step, etc., or by adding signal
codes; the latter seems more in the spirit of what BSD, System V,
etc. are doing to address these issues. */
/* For an explanation of what each signal means, see
target_signal_to_string. */
enum target_signal {
/* Used some places (e.g. stop_signal) to record the concept that
there is no signal. */
TARGET_SIGNAL_0 = 0,
TARGET_SIGNAL_FIRST = 0,
TARGET_SIGNAL_HUP = 1,
TARGET_SIGNAL_INT = 2,
TARGET_SIGNAL_QUIT = 3,
TARGET_SIGNAL_ILL = 4,
TARGET_SIGNAL_TRAP = 5,
TARGET_SIGNAL_ABRT = 6,
TARGET_SIGNAL_EMT = 7,
TARGET_SIGNAL_FPE = 8,
TARGET_SIGNAL_KILL = 9,
TARGET_SIGNAL_BUS = 10,
TARGET_SIGNAL_SEGV = 11,
TARGET_SIGNAL_SYS = 12,
TARGET_SIGNAL_PIPE = 13,
TARGET_SIGNAL_ALRM = 14,
TARGET_SIGNAL_TERM = 15,
TARGET_SIGNAL_URG = 16,
TARGET_SIGNAL_STOP = 17,
TARGET_SIGNAL_TSTP = 18,
TARGET_SIGNAL_CONT = 19,
TARGET_SIGNAL_CHLD = 20,
TARGET_SIGNAL_TTIN = 21,
TARGET_SIGNAL_TTOU = 22,
TARGET_SIGNAL_IO = 23,
TARGET_SIGNAL_XCPU = 24,
TARGET_SIGNAL_XFSZ = 25,
TARGET_SIGNAL_VTALRM = 26,
TARGET_SIGNAL_PROF = 27,
TARGET_SIGNAL_WINCH = 28,
TARGET_SIGNAL_LOST = 29,
TARGET_SIGNAL_USR1 = 30,
TARGET_SIGNAL_USR2 = 31,
TARGET_SIGNAL_PWR = 32,
/* Similar to SIGIO. Perhaps they should have the same number. */
TARGET_SIGNAL_POLL = 33,
TARGET_SIGNAL_WIND = 34,
TARGET_SIGNAL_PHONE = 35,
TARGET_SIGNAL_WAITING = 36,
TARGET_SIGNAL_LWP = 37,
TARGET_SIGNAL_DANGER = 38,
TARGET_SIGNAL_GRANT = 39,
TARGET_SIGNAL_RETRACT = 40,
TARGET_SIGNAL_MSG = 41,
TARGET_SIGNAL_SOUND = 42,
TARGET_SIGNAL_SAK = 43,
/* Some signal we don't know about. */
TARGET_SIGNAL_UNKNOWN,
/* Use whatever signal we use when one is not specifically specified
(for passing to proceed and so on). */
TARGET_SIGNAL_DEFAULT,
/* Last and unused enum value, for sizing arrays, etc. */
TARGET_SIGNAL_LAST
};
struct target_waitstatus {
enum target_waitkind kind;
/* Exit status or signal number. */
union {
int integer;
enum target_signal sig;
} value;
};
/* Return the string for a signal. */
extern char *target_signal_to_string PARAMS ((enum target_signal));
/* Return the name (SIGHUP, etc.) for a signal. */
extern char *target_signal_to_name PARAMS ((enum target_signal));
/* Given a name (SIGHUP, etc.), return its signal. */
enum target_signal target_signal_from_name PARAMS ((char *));
struct target_ops
{
char *to_shortname; /* Name this target type */
char *to_longname; /* Name for printing */
char *to_doc; /* Documentation. Does not include trailing
newline, and starts with a one-line descrip-
tion (probably similar to to_longname). */
void (*to_open) PARAMS ((char *, int));
void (*to_close) PARAMS ((int));
void (*to_attach) PARAMS ((char *, int));
void (*to_detach) PARAMS ((char *, int));
void (*to_resume) PARAMS ((int, int, enum target_signal));
int (*to_wait) PARAMS ((int, struct target_waitstatus *));
void (*to_fetch_registers) PARAMS ((int));
void (*to_store_registers) PARAMS ((int));
void (*to_prepare_to_store) PARAMS ((void));
/* Transfer LEN bytes of memory between GDB address MYADDR and
target address MEMADDR. If WRITE, transfer them to the target, else
transfer them from the target. TARGET is the target from which we
get this function.
Return value, N, is one of the following:
0 means that we can't handle this. If errno has been set, it is the
error which prevented us from doing it (FIXME: What about bfd_error?).
positive (call it N) means that we have transferred N bytes
starting at MEMADDR. We might be able to handle more bytes
beyond this length, but no promises.
negative (call its absolute value N) means that we cannot
transfer right at MEMADDR, but we could transfer at least
something at MEMADDR + N. */
int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
int len, int write,
struct target_ops * target));
#if 0
/* Enable this after 4.12. */
/* Search target memory. Start at STARTADDR and take LEN bytes of
target memory, and them with MASK, and compare to DATA. If they
match, set *ADDR_FOUND to the address we found it at, store the data
we found at LEN bytes starting at DATA_FOUND, and return. If
not, add INCREMENT to the search address and keep trying until
the search address is outside of the range [LORANGE,HIRANGE).
If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
void (*to_search) PARAMS ((int len, char *data, char *mask,
CORE_ADDR startaddr, int increment,
CORE_ADDR lorange, CORE_ADDR hirange,
CORE_ADDR *addr_found, char *data_found));
#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
(*current_target->to_search) (len, data, mask, startaddr, increment, \
lorange, hirange, addr_found, data_found)
#endif /* 0 */
void (*to_files_info) PARAMS ((struct target_ops *));
int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
void (*to_terminal_init) PARAMS ((void));
void (*to_terminal_inferior) PARAMS ((void));
void (*to_terminal_ours_for_output) PARAMS ((void));
void (*to_terminal_ours) PARAMS ((void));
void (*to_terminal_info) PARAMS ((char *, int));
void (*to_kill) PARAMS ((void));
void (*to_load) PARAMS ((char *, int));
int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
void (*to_create_inferior) PARAMS ((char *, char *, char **));
void (*to_mourn_inferior) PARAMS ((void));
int (*to_can_run) PARAMS ((void));
void (*to_notice_signals) PARAMS ((int pid));
enum strata to_stratum;
struct target_ops
*to_next;
int to_has_all_memory;
int to_has_memory;
int to_has_stack;
int to_has_registers;
int to_has_execution;
struct section_table
*to_sections;
struct section_table
*to_sections_end;
int to_magic;
/* Need sub-structure for target machine related rather than comm related? */
};
/* Magic number for checking ops size. If a struct doesn't end with this
number, somebody changed the declaration but didn't change all the
places that initialize one. */
#define OPS_MAGIC 3840
/* The ops structure for our "current" target process. This should
never be NULL. If there is no target, it points to the dummy_target. */
extern struct target_ops *current_target;
/* Define easy words for doing these operations on our current target. */
#define target_shortname (current_target->to_shortname)
#define target_longname (current_target->to_longname)
/* The open routine takes the rest of the parameters from the command,
and (if successful) pushes a new target onto the stack.
Targets should supply this routine, if only to provide an error message. */
#define target_open(name, from_tty) \
(*current_target->to_open) (name, from_tty)
/* Does whatever cleanup is required for a target that we are no longer
going to be calling. Argument says whether we are quitting gdb and
should not get hung in case of errors, or whether we want a clean
termination even if it takes a while. This routine is automatically
always called just before a routine is popped off the target stack.
Closing file descriptors and freeing memory are typical things it should
do. */
#define target_close(quitting) \
(*current_target->to_close) (quitting)
/* Attaches to a process on the target side. Arguments are as passed
to the `attach' command by the user. This routine can be called
when the target is not on the target-stack, if the target_can_run
routine returns 1; in that case, it must push itself onto the stack.
Upon exit, the target should be ready for normal operations, and
should be ready to deliver the status of the process immediately
(without waiting) to an upcoming target_wait call. */
#define target_attach(args, from_tty) \
(*current_target->to_attach) (args, from_tty)
/* Takes a program previously attached to and detaches it.
The program may resume execution (some targets do, some don't) and will
no longer stop on signals, etc. We better not have left any breakpoints
in the program or it'll die when it hits one. ARGS is arguments
typed by the user (e.g. a signal to send the process). FROM_TTY
says whether to be verbose or not. */
extern void
target_detach PARAMS ((char *, int));
/* Resume execution of the target process PID. STEP says whether to
single-step or to run free; SIGGNAL is the signal to be given to
the target, or TARGET_SIGNAL_0 for no signal. The caller may not
pass TARGET_SIGNAL_DEFAULT. */
#define target_resume(pid, step, siggnal) \
(*current_target->to_resume) (pid, step, siggnal)
/* Wait for process pid to do something. Pid = -1 to wait for any pid
to do something. Return pid of child, or -1 in case of error;
store status through argument pointer STATUS. Note that it is
*not* OK to return_to_top_level out of target_wait without popping
the debugging target from the stack; GDB isn't prepared to get back
to the prompt with a debugging target but without the frame cache,
stop_pc, etc., set up. */
#define target_wait(pid, status) \
(*current_target->to_wait) (pid, status)
/* Fetch register REGNO, or all regs if regno == -1. No result. */
#define target_fetch_registers(regno) \
(*current_target->to_fetch_registers) (regno)
/* Store at least register REGNO, or all regs if REGNO == -1.
It can store as many registers as it wants to, so target_prepare_to_store
must have been previously called. Calls error() if there are problems. */
#define target_store_registers(regs) \
(*current_target->to_store_registers) (regs)
/* Get ready to modify the registers array. On machines which store
individual registers, this doesn't need to do anything. On machines
which store all the registers in one fell swoop, this makes sure
that REGISTERS contains all the registers from the program being
debugged. */
#define target_prepare_to_store() \
(*current_target->to_prepare_to_store) ()
extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
extern int
target_read_memory PARAMS ((CORE_ADDR, char *, int));
extern int
target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
extern int
target_write_memory PARAMS ((CORE_ADDR, char *, int));
extern int
xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
extern int
child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
/* Transfer LEN bytes between target address MEMADDR and GDB address MYADDR.
Returns 0 for success, errno code for failure (which includes partial
transfers--if you want a more useful response to partial transfers, try
target_read_memory_partial). */
extern int target_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr,
int len, int write));
/* From exec.c */
extern void
print_section_info PARAMS ((struct target_ops *, bfd *));
/* Print a line about the current target. */
#define target_files_info() \
(*current_target->to_files_info) (current_target)
/* Insert a breakpoint at address ADDR in the target machine.
SAVE is a pointer to memory allocated for saving the
target contents. It is guaranteed by the caller to be long enough
to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
an errno value. */
#define target_insert_breakpoint(addr, save) \
(*current_target->to_insert_breakpoint) (addr, save)
/* Remove a breakpoint at address ADDR in the target machine.
SAVE is a pointer to the same save area
that was previously passed to target_insert_breakpoint.
Result is 0 for success, or an errno value. */
#define target_remove_breakpoint(addr, save) \
(*current_target->to_remove_breakpoint) (addr, save)
/* Initialize the terminal settings we record for the inferior,
before we actually run the inferior. */
#define target_terminal_init() \
(*current_target->to_terminal_init) ()
/* Put the inferior's terminal settings into effect.
This is preparation for starting or resuming the inferior. */
#define target_terminal_inferior() \
(*current_target->to_terminal_inferior) ()
/* Put some of our terminal settings into effect,
enough to get proper results from our output,
but do not change into or out of RAW mode
so that no input is discarded.
After doing this, either terminal_ours or terminal_inferior
should be called to get back to a normal state of affairs. */
#define target_terminal_ours_for_output() \
(*current_target->to_terminal_ours_for_output) ()
/* Put our terminal settings into effect.
First record the inferior's terminal settings
so they can be restored properly later. */
#define target_terminal_ours() \
(*current_target->to_terminal_ours) ()
/* Print useful information about our terminal status, if such a thing
exists. */
#define target_terminal_info(arg, from_tty) \
(*current_target->to_terminal_info) (arg, from_tty)
/* Kill the inferior process. Make it go away. */
#define target_kill() \
(*current_target->to_kill) ()
/* Load an executable file into the target process. This is expected to
not only bring new code into the target process, but also to update
GDB's symbol tables to match. */
#define target_load(arg, from_tty) \
(*current_target->to_load) (arg, from_tty)
/* Look up a symbol in the target's symbol table. NAME is the symbol
name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
should be returned. The result is 0 if successful, nonzero if the
symbol does not exist in the target environment. This function should
not call error() if communication with the target is interrupted, since
it is called from symbol reading, but should return nonzero, possibly
doing a complain(). */
#define target_lookup_symbol(name, addrp) \
(*current_target->to_lookup_symbol) (name, addrp)
/* Start an inferior process and set inferior_pid to its pid.
EXEC_FILE is the file to run.
ALLARGS is a string containing the arguments to the program.
ENV is the environment vector to pass. Errors reported with error().
On VxWorks and various standalone systems, we ignore exec_file. */
#define target_create_inferior(exec_file, args, env) \
(*current_target->to_create_inferior) (exec_file, args, env)
/* The inferior process has died. Do what is right. */
#define target_mourn_inferior() \
(*current_target->to_mourn_inferior) ()
/* Does target have enough data to do a run or attach command? */
#define target_can_run(t) \
((t)->to_can_run) ()
/* post process changes to signal handling in the inferior. */
#define target_notice_signals(pid) \
(*current_target->to_notice_signals) (pid)
/* Pointer to next target in the chain, e.g. a core file and an exec file. */
#define target_next \
(current_target->to_next)
/* Does the target include all of memory, or only part of it? This
determines whether we look up the target chain for other parts of
memory if this target can't satisfy a request. */
#define target_has_all_memory \
(current_target->to_has_all_memory)
/* Does the target include memory? (Dummy targets don't.) */
#define target_has_memory \
(current_target->to_has_memory)
/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
we start a process.) */
#define target_has_stack \
(current_target->to_has_stack)
/* Does the target have registers? (Exec files don't.) */
#define target_has_registers \
(current_target->to_has_registers)
/* Does the target have execution? Can we make it jump (through
hoops), or pop its stack a few times? FIXME: If this is to work that
way, it needs to check whether an inferior actually exists.
remote-udi.c and probably other targets can be the current target
when the inferior doesn't actually exist at the moment. Right now
this just tells us whether this target is *capable* of execution. */
#define target_has_execution \
(current_target->to_has_execution)
extern void target_link PARAMS ((char *, CORE_ADDR *));
/* Converts a process id to a string. Usually, the string just contains
`process xyz', but on some systems it may contain
`process xyz thread abc'. */
#ifndef target_pid_to_str
#define target_pid_to_str(PID) \
normal_pid_to_str (PID)
extern char *normal_pid_to_str PARAMS ((int pid));
#endif
/* Routines for maintenance of the target structures...
add_target: Add a target to the list of all possible targets.
push_target: Make this target the top of the stack of currently used
targets, within its particular stratum of the stack. Result
is 0 if now atop the stack, nonzero if not on top (maybe
should warn user).
unpush_target: Remove this from the stack of currently used targets,
no matter where it is on the list. Returns 0 if no
change, 1 if removed from stack.
pop_target: Remove the top thing on the stack of current targets. */
extern void
add_target PARAMS ((struct target_ops *));
extern int
push_target PARAMS ((struct target_ops *));
extern int
unpush_target PARAMS ((struct target_ops *));
extern void
target_preopen PARAMS ((int));
extern void
pop_target PARAMS ((void));
/* Struct section_table maps address ranges to file sections. It is
mostly used with BFD files, but can be used without (e.g. for handling
raw disks, or files not in formats handled by BFD). */
struct section_table {
CORE_ADDR addr; /* Lowest address in section */
CORE_ADDR endaddr; /* 1+highest address in section */
sec_ptr the_bfd_section;
bfd *bfd; /* BFD file pointer */
};
/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
Returns 0 if OK, 1 on error. */
extern int
build_section_table PARAMS ((bfd *, struct section_table **,
struct section_table **));
/* From mem-break.c */
extern int
memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
extern int
memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
/* From target.c */
void
noprocess PARAMS ((void));
void
find_default_attach PARAMS ((char *, int));
void
find_default_create_inferior PARAMS ((char *, char *, char **));
struct target_ops *
find_core_target PARAMS ((void));
/* Stuff that should be shared among the various remote targets. */
/* Debugging level. 0 is off, and non-zero values mean to print some debug
information (higher values, more information). */
extern int remote_debug;
/* Speed in bits per second, or -1 which means don't mess with the speed. */
extern int baud_rate;
/* Functions for helping to write a native target. */
/* This is for native targets which use a unix/POSIX-style waitstatus. */
extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
/* Convert between host signal numbers and enum target_signal's. */
extern enum target_signal target_signal_from_host PARAMS ((int));
extern int target_signal_to_host PARAMS ((enum target_signal));
#endif /* !defined (TARGET_H) */
|