aboutsummaryrefslogtreecommitdiff
path: root/gdb/symm-nat.c
blob: 6f235bd27ca34e683e81561525a4f6e8df0d493e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/* Sequent Symmetry host interface, for GDB when running under Unix.
   Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
   merged back in. */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"

/* FIXME: What is the _INKERNEL define for?  */
#define _INKERNEL
#include <signal.h>
#undef _INKERNEL
#include <sys/wait.h>
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dir.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#ifdef _SEQUENT_
#include <sys/ptrace.h>
#else
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h  */
/* Dynix has no mptrace call */
#define mptrace ptrace
#endif
#include "gdbcore.h"
#include <fcntl.h>
#include <sgtty.h>
#define TERMINAL struct sgttyb

#include "gdbcore.h"

void
store_inferior_registers(regno)
int regno;
{
  struct pt_regset regs;
  int i;
  extern char registers[];

  /* FIXME: Fetching the registers is a kludge to initialize all elements
     in the fpu and fpa status. This works for normal debugging, but
     might cause problems when calling functions in the inferior.
     At least fpu_control and fpa_pcr (probably more) should be added 
     to the registers array to solve this properly.  */
  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) &regs, 0);

  regs.pr_eax = *(int *)&registers[REGISTER_BYTE(0)];
  regs.pr_ebx = *(int *)&registers[REGISTER_BYTE(5)];
  regs.pr_ecx = *(int *)&registers[REGISTER_BYTE(2)];
  regs.pr_edx = *(int *)&registers[REGISTER_BYTE(1)];
  regs.pr_esi = *(int *)&registers[REGISTER_BYTE(6)];
  regs.pr_edi = *(int *)&registers[REGISTER_BYTE(7)];
  regs.pr_esp = *(int *)&registers[REGISTER_BYTE(14)];
  regs.pr_ebp = *(int *)&registers[REGISTER_BYTE(15)];
  regs.pr_eip = *(int *)&registers[REGISTER_BYTE(16)];
  regs.pr_flags = *(int *)&registers[REGISTER_BYTE(17)];
  for (i = 0; i < 31; i++)
    {
      regs.pr_fpa.fpa_regs[i] =
	*(int *)&registers[REGISTER_BYTE(FP1_REGNUM+i)];
    }
  memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE(ST0_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE(ST1_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE(ST2_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE(ST3_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE(ST4_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE(ST5_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE(ST6_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE(ST7_REGNUM)], 10);
  mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) &regs, 0);
}

void
fetch_inferior_registers (regno)
     int regno;
{
  int i;
  struct pt_regset regs;
  extern char registers[];

  registers_fetched ();

  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) &regs, 0);
  *(int *)&registers[REGISTER_BYTE(EAX_REGNUM)] = regs.pr_eax;
  *(int *)&registers[REGISTER_BYTE(EBX_REGNUM)] = regs.pr_ebx;
  *(int *)&registers[REGISTER_BYTE(ECX_REGNUM)] = regs.pr_ecx;
  *(int *)&registers[REGISTER_BYTE(EDX_REGNUM)] = regs.pr_edx;
  *(int *)&registers[REGISTER_BYTE(ESI_REGNUM)] = regs.pr_esi;
  *(int *)&registers[REGISTER_BYTE(EDI_REGNUM)] = regs.pr_edi;
  *(int *)&registers[REGISTER_BYTE(EBP_REGNUM)] = regs.pr_ebp;
  *(int *)&registers[REGISTER_BYTE(ESP_REGNUM)] = regs.pr_esp;
  *(int *)&registers[REGISTER_BYTE(EIP_REGNUM)] = regs.pr_eip;
  *(int *)&registers[REGISTER_BYTE(EFLAGS_REGNUM)] = regs.pr_flags;
  for (i = 0; i < FPA_NREGS; i++)
    {
      *(int *)&registers[REGISTER_BYTE(FP1_REGNUM+i)] =
	regs.pr_fpa.fpa_regs[i];
    }
  memcpy (&registers[REGISTER_BYTE(ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
  memcpy (&registers[REGISTER_BYTE(ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
  memcpy (&registers[REGISTER_BYTE(ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
  memcpy (&registers[REGISTER_BYTE(ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
  memcpy (&registers[REGISTER_BYTE(ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
  memcpy (&registers[REGISTER_BYTE(ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
  memcpy (&registers[REGISTER_BYTE(ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
  memcpy (&registers[REGISTER_BYTE(ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
}

/* FIXME:  This should be merged with i387-tdep.c as well. */
static
print_fpu_status(ep)
struct pt_regset ep;
{
    int i;
    int bothstatus;
    int top;
    int fpreg;
    unsigned char *p;
    
    printf_unfiltered("80387:");
    if (ep.pr_fpu.fpu_ip == 0) {
	printf_unfiltered(" not in use.\n");
	return;
    } else {
	printf_unfiltered("\n");
    }
    if (ep.pr_fpu.fpu_status != 0) {
	print_387_status_word (ep.pr_fpu.fpu_status);
    }
    print_387_control_word (ep.pr_fpu.fpu_control);
    printf_unfiltered ("last exception: ");
    printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
    printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
    printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
    
    top = (ep.pr_fpu.fpu_status >> 11) & 7;
    
    printf_unfiltered ("regno  tag  msb              lsb  value\n");
    for (fpreg = 7; fpreg >= 0; fpreg--) 
	{
	    double val;
	    
	    printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : "  ", fpreg);
	    
	    switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3) 
		{
		case 0: printf_unfiltered ("valid "); break;
		case 1: printf_unfiltered ("zero  "); break;
		case 2: printf_unfiltered ("trap  "); break;
		case 3: printf_unfiltered ("empty "); break;
		}
	    for (i = 9; i >= 0; i--)
		printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
	    
	    i387_to_double ((char *)ep.pr_fpu.fpu_stack[fpreg], (char *)&val);
	    printf_unfiltered ("  %g\n", val);
	}
    if (ep.pr_fpu.fpu_rsvd1)
	warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
    if (ep.pr_fpu.fpu_rsvd2)
	warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
    if (ep.pr_fpu.fpu_rsvd3)
	warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
    if (ep.pr_fpu.fpu_rsvd5)
	warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
}


print_1167_control_word(pcr)
unsigned int pcr;

{
    int pcr_tmp;

    pcr_tmp = pcr & FPA_PCR_MODE;
    printf_unfiltered("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
    switch (pcr_tmp & 12) {
    case 0:
	printf_unfiltered("RN (Nearest Value)");
	break;
    case 1:
	printf_unfiltered("RZ (Zero)");
	break;
    case 2:
	printf_unfiltered("RP (Positive Infinity)");
	break;
    case 3:
	printf_unfiltered("RM (Negative Infinity)");
	break;
    }
    printf_unfiltered("; IRND= %d ", pcr_tmp & 2);
    if (0 == pcr_tmp & 2) {
	printf_unfiltered("(same as RND)\n");
    } else {
	printf_unfiltered("(toward zero)\n");
    }
    pcr_tmp = pcr & FPA_PCR_EM;
    printf_unfiltered("\tEM= %#x", pcr_tmp);
    if (pcr_tmp & FPA_PCR_EM_DM) printf_unfiltered(" DM");
    if (pcr_tmp & FPA_PCR_EM_UOM) printf_unfiltered(" UOM");
    if (pcr_tmp & FPA_PCR_EM_PM) printf_unfiltered(" PM");
    if (pcr_tmp & FPA_PCR_EM_UM) printf_unfiltered(" UM");
    if (pcr_tmp & FPA_PCR_EM_OM) printf_unfiltered(" OM");
    if (pcr_tmp & FPA_PCR_EM_ZM) printf_unfiltered(" ZM");
    if (pcr_tmp & FPA_PCR_EM_IM) printf_unfiltered(" IM");
    printf_unfiltered("\n");
    pcr_tmp = FPA_PCR_CC;
    printf_unfiltered("\tCC= %#x", pcr_tmp);
    if (pcr_tmp & FPA_PCR_20MHZ) printf_unfiltered(" 20MHZ");
    if (pcr_tmp & FPA_PCR_CC_Z) printf_unfiltered(" Z");
    if (pcr_tmp & FPA_PCR_CC_C2) printf_unfiltered(" C2");

    /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
       FPA_PCR_CC_C1 to 0x100.  Use whichever is defined and assume
       the OS knows what it is doing.  */
#ifdef FPA_PCR_CC_C1
    if (pcr_tmp & FPA_PCR_CC_C1) printf_unfiltered(" C1");
#else
    if (pcr_tmp & FPA_PCR_CC_C0) printf_unfiltered(" C0");
#endif

    switch (pcr_tmp)
      {
      case FPA_PCR_CC_Z:
	printf_unfiltered(" (Equal)");
	break;
#ifdef FPA_PCR_CC_C1
      case FPA_PCR_CC_C1:
#else
      case FPA_PCR_CC_C0:
#endif
	printf_unfiltered(" (Less than)");
	break;
      case 0:
	printf_unfiltered(" (Greater than)");
	break;
      case FPA_PCR_CC_Z | 
#ifdef FPA_PCR_CC_C1
	FPA_PCR_CC_C1
#else
	FPA_PCR_CC_C0
#endif
	  | FPA_PCR_CC_C2:
	printf_unfiltered(" (Unordered)");
	break;
      default:
	printf_unfiltered(" (Undefined)");
	break;
      }
    printf_unfiltered("\n");
    pcr_tmp = pcr & FPA_PCR_AE;
    printf_unfiltered("\tAE= %#x", pcr_tmp);
    if (pcr_tmp & FPA_PCR_AE_DE) printf_unfiltered(" DE");
    if (pcr_tmp & FPA_PCR_AE_UOE) printf_unfiltered(" UOE");
    if (pcr_tmp & FPA_PCR_AE_PE) printf_unfiltered(" PE");
    if (pcr_tmp & FPA_PCR_AE_UE) printf_unfiltered(" UE");
    if (pcr_tmp & FPA_PCR_AE_OE) printf_unfiltered(" OE");
    if (pcr_tmp & FPA_PCR_AE_ZE) printf_unfiltered(" ZE");
    if (pcr_tmp & FPA_PCR_AE_EE) printf_unfiltered(" EE");
    if (pcr_tmp & FPA_PCR_AE_IE) printf_unfiltered(" IE");
    printf_unfiltered("\n");
}

print_1167_regs(regs)
long regs[FPA_NREGS];

{
    int i;

    union {
	double	d;
	long	l[2];
    } xd;
    union {
	float	f;
	long	l;
    } xf;


    for (i = 0; i < FPA_NREGS; i++) {
	xf.l = regs[i];
	printf_unfiltered("%%fp%d: raw= %#x, single= %f", i+1, regs[i], xf.f);
	if (!(i & 1)) {
	    printf_unfiltered("\n");
	} else {
	    xd.l[1] = regs[i];
	    xd.l[0] = regs[i+1];
	    printf_unfiltered(", double= %f\n", xd.d);
	}
    }
}

print_fpa_status(ep)
struct pt_regset ep;

{

    printf_unfiltered("WTL 1167:");
    if (ep.pr_fpa.fpa_pcr !=0) {
	printf_unfiltered("\n");
	print_1167_control_word(ep.pr_fpa.fpa_pcr);
	print_1167_regs(ep.pr_fpa.fpa_regs);
    } else {
	printf_unfiltered(" not in use.\n");
    }
}

#if 0 /* disabled because it doesn't go through the target vector.  */
i386_float_info ()
{
  char ubuf[UPAGES*NBPG];
  struct pt_regset regset;

  if (have_inferior_p())
    {
      PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) &regset);
    }
  else
    {
      int corechan = bfd_cache_lookup (core_bfd);
      if (lseek (corechan, 0, 0) < 0)
	{
	  perror ("seek on core file");
	}
      if (myread (corechan, ubuf, UPAGES*NBPG) < 0)
	{
	  perror ("read on core file");
	}
      /* only interested in the floating point registers */
      regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
      regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
    }
  print_fpu_status(regset);
  print_fpa_status(regset);
}
#endif

static volatile int got_sigchld;

/*ARGSUSED*/
/* This will eventually be more interesting. */
void
sigchld_handler(signo)
	int signo;
{
	got_sigchld++;
}

/*
 * Signals for which the default action does not cause the process
 * to die.  See <sys/signal.h> for where this came from (alas, we
 * can't use those macros directly)
 */
#ifndef sigmask
#define sigmask(s) (1 << ((s) - 1))
#endif
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
	sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
	sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
	sigmask(SIGURG) | sigmask(SIGPOLL)

#ifdef ATTACH_DETACH
/*
 * Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
 */
int
child_wait(pid, status)
     int pid;
     struct target_waitstatus *status;
{
  int save_errno, rv, xvaloff, saoff, sa_hand;
  struct pt_stop pt;
  struct user u;
  sigset_t set;
  /* Host signal number for a signal which the inferior terminates with, or
     0 if it hasn't terminated due to a signal.  */
  static int death_by_signal = 0;
#ifdef SVR4_SHARED_LIBS		/* use this to distinguish ptx 2 vs ptx 4 */
  prstatus_t pstatus;
#endif

  do {
    set_sigint_trap();	/* Causes SIGINT to be passed on to the
			   attached process. */
    save_errno = errno;

    got_sigchld = 0;

    sigemptyset(&set);

    while (got_sigchld == 0) {
	    sigsuspend(&set);
    }
    
    clear_sigint_trap();

    rv = mptrace(XPT_STOPSTAT, 0, (char *)&pt, 0);
    if (-1 == rv) {
	    printf("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
	    continue;
    }

    pid = pt.ps_pid;

    if (pid != inferior_pid) {
	    /* NOTE: the mystery fork in csh/tcsh needs to be ignored.
	     * We should not return new children for the initial run
	     * of a process until it has done the exec.
	     */
	    /* inferior probably forked; send it on its way */
	    rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
	    if (-1 == rv) {
		    printf("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
			   safe_strerror(errno));
	    }
	    continue;
    }
    /* FIXME: Do we deal with fork notification correctly?  */
    switch (pt.ps_reason) {
    case PTS_FORK:
	/* multi proc: treat like PTS_EXEC */
	    /*
	     * Pretend this didn't happen, since gdb isn't set up
	     * to deal with stops on fork.
	     */
	    rv = ptrace(PT_CONTSIG, pid, 1, 0);
	    if (-1 == rv) {
		    printf("PTS_FORK: PT_CONTSIG: error %d\n", errno);
	    }
	    continue;
    case PTS_EXEC:
	    /*
	     * Pretend this is a SIGTRAP.
	     */
	    status->kind = TARGET_WAITKIND_STOPPED;
	    status->value.sig = TARGET_SIGNAL_TRAP;
	    break;
    case PTS_EXIT:
	    /*
	     * Note: we stop before the exit actually occurs.  Extract
	     * the exit code from the uarea.  If we're stopped in the
	     * exit() system call, the exit code will be in
	     * u.u_ap[0].  An exit due to an uncaught signal will have
	     * something else in here, see the comment in the default:
	     * case, below.  Finally,let the process exit.
	     */
	    if (death_by_signal)
	      {
		status->kind = TARGET_WAITKIND_SIGNALED;
		status->value.sig = target_signal_from_host (death_by_signal);
		death_by_signal = 0;
		break;
	      }
	    xvaloff = (unsigned long)&u.u_ap[0] - (unsigned long)&u;
	    errno = 0;
	    rv = ptrace(PT_RUSER, pid, (char *)xvaloff, 0);
	    status->kind = TARGET_WAITKIND_EXITED;
	    status->value.integer = rv;
	    /*
	     * addr & data to mptrace() don't matter here, since
	     * the process is already dead.
	     */
	    rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
	    if (-1 == rv) {
		    printf("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
			   errno);
	    }
	    break;
    case PTS_WATCHPT_HIT:
	    fatal("PTS_WATCHPT_HIT\n");
	    break;
    default:
	    /* stopped by signal */
	    status->kind = TARGET_WAITKIND_STOPPED;
	    status->value.sig = target_signal_from_host (pt.ps_reason);
	    death_by_signal = 0;

	    if (0 == (SIGNALS_DFL_SAFE & sigmask(pt.ps_reason))) {
		    break;
	    }
	    /* else default action of signal is to die */
#ifdef SVR4_SHARED_LIBS
	    rv = ptrace(PT_GET_PRSTATUS, pid, (char *)&pstatus, 0);
	    if (-1 == rv)
		error("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
			pt.ps_reason, safe_strerror(errno));
	    if (pstatus.pr_cursig != pt.ps_reason) {
		printf("pstatus signal %d, pt signal %d\n",
			pstatus.pr_cursig, pt.ps_reason);
	    }
	    sa_hand = (int)pstatus.pr_action.sa_handler;
#else
	    saoff = (unsigned long)&u.u_sa[0] - (unsigned long)&u;
	    saoff += sizeof(struct sigaction) * (pt.ps_reason - 1);
	    errno = 0;
	    sa_hand = ptrace(PT_RUSER, pid, (char *)saoff, 0);
	    if (errno)
		    error("child_wait: signal %d: RUSER: %s\n",
			   pt.ps_reason, safe_strerror(errno));
#endif
	    if ((int)SIG_DFL == sa_hand) {
		    /* we will be dying */
		    death_by_signal = pt.ps_reason;
	    }
	    break;
    }

  } while (pid != inferior_pid); /* Some other child died or stopped */

  return pid;
}
#else /* !ATTACH_DETACH */
/*
 * Simple child_wait() based on inftarg.c child_wait() for use until
 * the MPDEBUGGER child_wait() works properly.  This will go away when
 * that is fixed.
 */
child_wait (pid, ourstatus)
     int pid;
     struct target_waitstatus *ourstatus;
{
  int save_errno;
  int status;

  do {
    pid = wait (&status);
    save_errno = errno;

    if (pid == -1)
      {
	if (save_errno == EINTR)
	  continue;
	fprintf (stderr, "Child process unexpectedly missing: %s.\n",
		 safe_strerror (save_errno));
	ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
	ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
        return -1;
      }
  } while (pid != inferior_pid); /* Some other child died or stopped */
  store_waitstatus (ourstatus, status);
  return pid;
}
#endif /* ATTACH_DETACH */



/* This function simply calls ptrace with the given arguments.  
   It exists so that all calls to ptrace are isolated in this 
   machine-dependent file. */
int
call_ptrace (request, pid, addr, data)
     int request, pid;
     PTRACE_ARG3_TYPE addr;
     int data;
{
  return ptrace (request, pid, addr, data);
}

int
call_mptrace(request, pid, addr, data)
	int request, pid;
	PTRACE_ARG3_TYPE addr;
	int data;
{
	return mptrace(request, pid, addr, data);
}

#if defined (DEBUG_PTRACE)
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#define mptrace call_mptrace
#endif

void
kill_inferior ()
{
  if (inferior_pid == 0)
    return;

  /* For MPDEBUGGER, don't use PT_KILL, since the child will stop
     again with a PTS_EXIT.  Just hit him with SIGKILL (so he stops)
     and detach. */

  kill (inferior_pid, SIGKILL);
#ifdef ATTACH_DETACH
  detach(SIGKILL);
#else /* ATTACH_DETACH */
  ptrace(PT_KILL, inferior_pid, 0, 0);
  wait((int *)NULL);
#endif /* ATTACH_DETACH */
  target_mourn_inferior ();
}

/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */

void
child_resume (pid, step, signal)
     int pid;
     int step;
     enum target_signal signal;
{
  errno = 0;

  if (pid == -1)
    pid = inferior_pid;

  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
     it was.  (If GDB wanted it to start some other way, we have already
     written a new PC value to the child.)

     If this system does not support PT_SSTEP, a higher level function will
     have called single_step() to transmute the step request into a
     continue request (by setting breakpoints on all possible successor
     instructions), so we don't have to worry about that here.  */

  if (step)
    ptrace (PT_SSTEP,     pid, (PTRACE_ARG3_TYPE) 1, signal);
  else
    ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);

  if (errno)
    perror_with_name ("ptrace");
}

#ifdef ATTACH_DETACH
/* Start debugging the process whose number is PID.  */
int
attach (pid)
     int pid;
{
	sigset_t set;
	int rv;

	rv = mptrace(XPT_DEBUG, pid, 0, 0);
	if (-1 == rv) {
		error("mptrace(XPT_DEBUG): %s", safe_strerror(errno));
	}
	rv = mptrace(XPT_SIGNAL, pid, 0, SIGSTOP);
	if (-1 == rv) {
		error("mptrace(XPT_SIGNAL): %s", safe_strerror(errno));
	}
	attach_flag = 1;
	return pid;
}

void
detach (signo)
     int signo;
{
	int rv;

	rv = mptrace(XPT_UNDEBUG, inferior_pid, 1, signo);
	if (-1 == rv) {
		error("mptrace(XPT_UNDEBUG): %s", safe_strerror(errno));
	}
	attach_flag = 0;
}

#endif /* ATTACH_DETACH */

/* Default the type of the ptrace transfer to int.  */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif


/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
   in the NEW_SUN_PTRACE case.
   It ought to be straightforward.  But it appears that writing did
   not write the data that I specified.  I cannot understand where
   it got the data that it actually did write.  */

/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.   Copy to inferior if
   WRITE is nonzero.
  
   Returns the length copied, which is either the LEN argument or zero.
   This xfer function does not do partial moves, since child_ops
   doesn't allow memory operations to cross below us in the target stack
   anyway.  */

int
child_xfer_memory (memaddr, myaddr, len, write, target)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
     int write;
     struct target_ops *target;		/* ignored */
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
      / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer
    = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));

  if (write)
    {
      /* Fill start and end extra bytes of buffer with existing memory data.  */

      if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
	/* Need part of initial word -- fetch it.  */
        buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
			    0);
      }

      if (count > 1)		/* FIXME, avoid if even boundary */
	{
	  buffer[count - 1]
	    = ptrace (PT_RTEXT, inferior_pid,
		      ((PTRACE_ARG3_TYPE)
		       (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
		      0);
	}

      /* Copy data to be written over corresponding part of buffer */

      memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
	      myaddr,
	      len);

      /* Write the entire buffer.  */

      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
	{
	  errno = 0;
	  ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
		  buffer[i]);
	  if (errno)
	    {
	      /* Using the appropriate one (I or D) is necessary for
		 Gould NP1, at least.  */
	      errno = 0;
	      ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
		      buffer[i]);
	    }
	  if (errno)
	    return 0;
	}
    }
  else
    {
      /* Read all the longwords */
      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
	{
	  errno = 0;
	  buffer[i] = ptrace (PT_RTEXT, inferior_pid,
			      (PTRACE_ARG3_TYPE) addr, 0);
	  if (errno)
	    return 0;
	  QUIT;
	}

      /* Copy appropriate bytes out of the buffer.  */
      memcpy (myaddr,
	      (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
	      len);
    }
  return len;
}


void
_initialize_symm_nat ()
{
#ifdef ATTACH_DETACH
/*
 * the MPDEBUGGER is necessary for process tree debugging and attach
 * to work, but it alters the behavior of debugged processes, so other
 * things (at least child_wait()) will have to change to accomodate
 * that.
 *
 * Note that attach is not implemented in dynix 3, and not in ptx
 * until version 2.1 of the OS.
 */
	int rv;
	sigset_t set;
	struct sigaction sact;

	rv = mptrace(XPT_MPDEBUGGER, 0, 0, 0);
	if (-1 == rv) {
		fatal("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
		      safe_strerror(errno));
	}

	/*
	 * Under MPDEBUGGER, we get SIGCLHD when a traced process does
	 * anything of interest.
	 */

	/*
	 * Block SIGCHLD.  We leave it blocked all the time, and then
	 * call sigsuspend() in child_wait() to wait for the child
	 * to do something.  None of these ought to fail, but check anyway.
	 */
	sigemptyset(&set);
	rv = sigaddset(&set, SIGCHLD);
	if (-1 == rv) {
		fatal("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
		      safe_strerror(errno));
	}
	rv = sigprocmask(SIG_BLOCK, &set, (sigset_t *)NULL);
	if (-1 == rv) {
		fatal("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
		      safe_strerror(errno));
	}

	sact.sa_handler = sigchld_handler;
	sigemptyset(&sact.sa_mask);
	sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
	rv = sigaction(SIGCHLD, &sact, (struct sigaction *)NULL);
	if (-1 == rv) {
		fatal("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
		      safe_strerror(errno));
	}
#endif
}