aboutsummaryrefslogtreecommitdiff
path: root/gdb/spu-tdep.c
blob: e06fc7d8a4ff9c03215e4a69755516a9de7c58c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/* SPU target-dependent code for GDB, the GNU debugger.
   Copyright (C) 2006, 2007 Free Software Foundation, Inc.

   Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
   Based on a port by Sid Manning <sid@us.ibm.com>.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

#include "defs.h"
#include "arch-utils.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "symtab.h"
#include "symfile.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "objfiles.h"
#include "language.h"
#include "regcache.h"
#include "reggroups.h"
#include "floatformat.h"

#include "spu-tdep.h"

/* SPU-specific vector type.  */
struct type *spu_builtin_type_vec128;

/* Registers.  */

static const char *
spu_register_name (int reg_nr)
{
  static char *register_names[] = 
    {
      "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
      "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
      "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
      "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
      "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
      "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
      "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
      "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
      "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
      "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
      "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
      "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
      "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
      "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
      "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
      "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
      "id", "pc", "sp"
    };

  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= sizeof register_names / sizeof *register_names)
    return NULL;

  return register_names[reg_nr];
}

static struct type *
spu_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr < SPU_NUM_GPRS)
    return spu_builtin_type_vec128;

  switch (reg_nr)
    {
    case SPU_ID_REGNUM:
      return builtin_type_uint32;

    case SPU_PC_REGNUM:
      return builtin_type_void_func_ptr;

    case SPU_SP_REGNUM:
      return builtin_type_void_data_ptr;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

/* Pseudo registers for preferred slots - stack pointer.  */

static void
spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
                          int regnum, gdb_byte *buf)
{
  gdb_byte reg[16];

  switch (regnum)
    {
    case SPU_SP_REGNUM:
      regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
      memcpy (buf, reg, 4);
      break;

    default:
      internal_error (__FILE__, __LINE__, _("invalid regnum"));
    }
}

static void
spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
                           int regnum, const gdb_byte *buf)
{
  gdb_byte reg[16];

  switch (regnum)
    {
    case SPU_SP_REGNUM:
      regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
      memcpy (reg, buf, 4);
      regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
      break;

    default:
      internal_error (__FILE__, __LINE__, _("invalid regnum"));
    }
}

/* Value conversion -- access scalar values at the preferred slot.  */

static struct value *
spu_value_from_register (struct type *type, int regnum,
			 struct frame_info *frame)
{
  struct value *value = default_value_from_register (type, regnum, frame);
  int len = TYPE_LENGTH (type);

  if (regnum < SPU_NUM_GPRS && len < 16)
    {
      int preferred_slot = len < 4 ? 4 - len : 0;
      set_value_offset (value, preferred_slot);
    }

  return value;
}

/* Register groups.  */

static int
spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			 struct reggroup *group)
{
  /* Registers displayed via 'info regs'.  */
  if (group == general_reggroup)
    return 1;

  /* Registers displayed via 'info float'.  */
  if (group == float_reggroup)
    return 0;

  /* Registers that need to be saved/restored in order to
     push or pop frames.  */
  if (group == save_reggroup || group == restore_reggroup)
    return 1;

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Decoding SPU instructions.  */

enum
  {
    op_lqd   = 0x34,
    op_lqx   = 0x3c4,
    op_lqa   = 0x61,
    op_lqr   = 0x67,
    op_stqd  = 0x24,
    op_stqx  = 0x144,
    op_stqa  = 0x41,
    op_stqr  = 0x47,

    op_il    = 0x081,
    op_ila   = 0x21,
    op_a     = 0x0c0,
    op_ai    = 0x1c,

    op_selb  = 0x4,

    op_br    = 0x64,
    op_bra   = 0x60,
    op_brsl  = 0x66,
    op_brasl = 0x62,
    op_brnz  = 0x42,
    op_brz   = 0x40,
    op_brhnz = 0x46,
    op_brhz  = 0x44,
    op_bi    = 0x1a8,
    op_bisl  = 0x1a9,
    op_biz   = 0x128,
    op_binz  = 0x129,
    op_bihz  = 0x12a,
    op_bihnz = 0x12b,
  };

static int
is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
{
  if ((insn >> 21) == op)
    {
      *rt = insn & 127;
      *ra = (insn >> 7) & 127;
      *rb = (insn >> 14) & 127;
      return 1;
    }

  return 0;
}

static int
is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
{
  if ((insn >> 28) == op)
    {
      *rt = (insn >> 21) & 127;
      *ra = (insn >> 7) & 127;
      *rb = (insn >> 14) & 127;
      *rc = insn & 127;
      return 1;
    }

  return 0;
}

static int
is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
{
  if ((insn >> 21) == op)
    {
      *rt = insn & 127;
      *ra = (insn >> 7) & 127;
      *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
      return 1;
    }

  return 0;
}

static int
is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
{
  if ((insn >> 24) == op)
    {
      *rt = insn & 127;
      *ra = (insn >> 7) & 127;
      *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
      return 1;
    }

  return 0;
}

static int
is_ri16 (unsigned int insn, int op, int *rt, int *i16)
{
  if ((insn >> 23) == op)
    {
      *rt = insn & 127;
      *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
      return 1;
    }

  return 0;
}

static int
is_ri18 (unsigned int insn, int op, int *rt, int *i18)
{
  if ((insn >> 25) == op)
    {
      *rt = insn & 127;
      *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
      return 1;
    }

  return 0;
}

static int
is_branch (unsigned int insn, int *offset, int *reg)
{
  int rt, i7, i16;

  if (is_ri16 (insn, op_br, &rt, &i16)
      || is_ri16 (insn, op_brsl, &rt, &i16)
      || is_ri16 (insn, op_brnz, &rt, &i16)
      || is_ri16 (insn, op_brz, &rt, &i16)
      || is_ri16 (insn, op_brhnz, &rt, &i16)
      || is_ri16 (insn, op_brhz, &rt, &i16))
    {
      *reg = SPU_PC_REGNUM;
      *offset = i16 << 2;
      return 1;
    }

  if (is_ri16 (insn, op_bra, &rt, &i16)
      || is_ri16 (insn, op_brasl, &rt, &i16))
    {
      *reg = -1;
      *offset = i16 << 2;
      return 1;
    }

  if (is_ri7 (insn, op_bi, &rt, reg, &i7)
      || is_ri7 (insn, op_bisl, &rt, reg, &i7)
      || is_ri7 (insn, op_biz, &rt, reg, &i7)
      || is_ri7 (insn, op_binz, &rt, reg, &i7)
      || is_ri7 (insn, op_bihz, &rt, reg, &i7)
      || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
    {
      *offset = 0;
      return 1;
    }

  return 0;
}


/* Prolog parsing.  */

struct spu_prologue_data
  {
    /* Stack frame size.  -1 if analysis was unsuccessful.  */
    int size;

    /* How to find the CFA.  The CFA is equal to SP at function entry.  */
    int cfa_reg;
    int cfa_offset;

    /* Offset relative to CFA where a register is saved.  -1 if invalid.  */
    int reg_offset[SPU_NUM_GPRS];
  };

static CORE_ADDR
spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
                      struct spu_prologue_data *data)
{
  int found_sp = 0;
  int found_fp = 0;
  int found_lr = 0;
  int reg_immed[SPU_NUM_GPRS];
  gdb_byte buf[16];
  CORE_ADDR prolog_pc = start_pc;
  CORE_ADDR pc;
  int i;


  /* Initialize DATA to default values.  */
  data->size = -1;

  data->cfa_reg = SPU_RAW_SP_REGNUM;
  data->cfa_offset = 0;

  for (i = 0; i < SPU_NUM_GPRS; i++)
    data->reg_offset[i] = -1;

  /* Set up REG_IMMED array.  This is non-zero for a register if we know its
     preferred slot currently holds this immediate value.  */
  for (i = 0; i < SPU_NUM_GPRS; i++)
      reg_immed[i] = 0;

  /* Scan instructions until the first branch.

     The following instructions are important prolog components:

	- The first instruction to set up the stack pointer.
	- The first instruction to set up the frame pointer.
	- The first instruction to save the link register.

     We return the instruction after the latest of these three,
     or the incoming PC if none is found.  The first instruction
     to set up the stack pointer also defines the frame size.

     Note that instructions saving incoming arguments to their stack
     slots are not counted as important, because they are hard to
     identify with certainty.  This should not matter much, because
     arguments are relevant only in code compiled with debug data,
     and in such code the GDB core will advance until the first source
     line anyway, using SAL data.

     For purposes of stack unwinding, we analyze the following types
     of instructions in addition:

      - Any instruction adding to the current frame pointer.
      - Any instruction loading an immediate constant into a register.
      - Any instruction storing a register onto the stack.

     These are used to compute the CFA and REG_OFFSET output.  */

  for (pc = start_pc; pc < end_pc; pc += 4)
    {
      unsigned int insn;
      int rt, ra, rb, rc, immed;

      if (target_read_memory (pc, buf, 4))
	break;
      insn = extract_unsigned_integer (buf, 4);

      /* AI is the typical instruction to set up a stack frame.
         It is also used to initialize the frame pointer.  */
      if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
	{
	  if (rt == data->cfa_reg && ra == data->cfa_reg)
	    data->cfa_offset -= immed;

	  if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
	      && !found_sp)
	    {
	      found_sp = 1;
	      prolog_pc = pc + 4;

	      data->size = -immed;
	    }
	  else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
		   && !found_fp)
	    {
	      found_fp = 1;
	      prolog_pc = pc + 4;

	      data->cfa_reg = SPU_FP_REGNUM;
	      data->cfa_offset -= immed;
	    }
	}

      /* A is used to set up stack frames of size >= 512 bytes.
         If we have tracked the contents of the addend register,
         we can handle this as well.  */
      else if (is_rr (insn, op_a, &rt, &ra, &rb))
	{
	  if (rt == data->cfa_reg && ra == data->cfa_reg)
	    {
	      if (reg_immed[rb] != 0)
		data->cfa_offset -= reg_immed[rb];
	      else
		data->cfa_reg = -1;  /* We don't know the CFA any more.  */
	    }

	  if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
	      && !found_sp)
	    {
	      found_sp = 1;
	      prolog_pc = pc + 4;

	      if (reg_immed[rb] != 0)
		data->size = -reg_immed[rb];
	    }
	}

      /* We need to track IL and ILA used to load immediate constants
         in case they are later used as input to an A instruction.  */
      else if (is_ri16 (insn, op_il, &rt, &immed))
	{
	  reg_immed[rt] = immed;

	  if (rt == SPU_RAW_SP_REGNUM && !found_sp)
	    found_sp = 1;
	}

      else if (is_ri18 (insn, op_ila, &rt, &immed))
	{
	  reg_immed[rt] = immed & 0x3ffff;

	  if (rt == SPU_RAW_SP_REGNUM && !found_sp)
	    found_sp = 1;
	}

      /* STQD is used to save registers to the stack.  */
      else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
	{
	  if (ra == data->cfa_reg)
	    data->reg_offset[rt] = data->cfa_offset - (immed << 4);

	  if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
              && !found_lr)
	    {
	      found_lr = 1;
	      prolog_pc = pc + 4;
	    }
	}

      /* _start uses SELB to set up the stack pointer.  */
      else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
	{
	  if (rt == SPU_RAW_SP_REGNUM && !found_sp)
	    found_sp = 1;
	}

      /* We terminate if we find a branch.  */
      else if (is_branch (insn, &immed, &ra))
	break;
    }


  /* If we successfully parsed until here, and didn't find any instruction
     modifying SP, we assume we have a frameless function.  */
  if (!found_sp)
    data->size = 0;

  /* Return cooked instead of raw SP.  */
  if (data->cfa_reg == SPU_RAW_SP_REGNUM)
    data->cfa_reg = SPU_SP_REGNUM;

  return prolog_pc;
}

/* Return the first instruction after the prologue starting at PC.  */
static CORE_ADDR
spu_skip_prologue (CORE_ADDR pc)
{
  struct spu_prologue_data data;
  return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
}

/* Return the frame pointer in use at address PC.  */
static void
spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
{
  struct spu_prologue_data data;
  spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);

  if (data.size != -1 && data.cfa_reg != -1)
    {
      /* The 'frame pointer' address is CFA minus frame size.  */
      *reg = data.cfa_reg;
      *offset = data.cfa_offset - data.size;
    }
  else
    {
      /* ??? We don't really know ... */
      *reg = SPU_SP_REGNUM;
      *offset = 0;
    }
}

/* Normal stack frames.  */

struct spu_unwind_cache
{
  CORE_ADDR func;
  CORE_ADDR frame_base;
  CORE_ADDR local_base;

  struct trad_frame_saved_reg *saved_regs;
};

static struct spu_unwind_cache *
spu_frame_unwind_cache (struct frame_info *next_frame,
			void **this_prologue_cache)
{
  struct spu_unwind_cache *info;
  struct spu_prologue_data data;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
  info->frame_base = 0;
  info->local_base = 0;

  /* Find the start of the current function, and analyze its prologue.  */
  info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
  if (info->func == 0)
    {
      /* Fall back to using the current PC as frame ID.  */
      info->func = frame_pc_unwind (next_frame);
      data.size = -1;
    }
  else
    spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);


  /* If successful, use prologue analysis data.  */
  if (data.size != -1 && data.cfa_reg != -1)
    {
      CORE_ADDR cfa;
      int i;
      gdb_byte buf[16];

      /* Determine CFA via unwound CFA_REG plus CFA_OFFSET.  */
      frame_unwind_register (next_frame, data.cfa_reg, buf);
      cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;

      /* Call-saved register slots.  */
      for (i = 0; i < SPU_NUM_GPRS; i++)
	if (i == SPU_LR_REGNUM
	    || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
	  if (data.reg_offset[i] != -1)
	    info->saved_regs[i].addr = cfa - data.reg_offset[i];

      /* The previous PC comes from the link register.  */
      if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
	info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
      else
	info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;

      /* The previous SP is equal to the CFA.  */
      trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa);

      /* Frame bases.  */
      info->frame_base = cfa;
      info->local_base = cfa - data.size;
    }

  /* Otherwise, fall back to reading the backchain link.  */
  else
    {
      CORE_ADDR reg, backchain;

      /* Get the backchain.  */
      reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
      backchain = read_memory_unsigned_integer (reg, 4);

      /* A zero backchain terminates the frame chain.  Also, sanity
         check against the local store size limit.  */
      if (backchain != 0 && backchain < SPU_LS_SIZE)
	{
	  /* Assume the link register is saved into its slot.  */
	  if (backchain + 16 < SPU_LS_SIZE)
	    info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;

	  /* This will also be the previous PC.  */
	  if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
	    info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
	  else
	    info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;

	  /* The previous SP will equal the backchain value.  */
	  trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain);

          /* Frame bases.  */
	  info->frame_base = backchain;
	  info->local_base = reg;
	}
    }
 
  return info;
}

static void
spu_frame_this_id (struct frame_info *next_frame,
		   void **this_prologue_cache, struct frame_id *this_id)
{
  struct spu_unwind_cache *info =
    spu_frame_unwind_cache (next_frame, this_prologue_cache);

  if (info->frame_base == 0)
    return;

  *this_id = frame_id_build (info->frame_base, info->func);
}

static void
spu_frame_prev_register (struct frame_info *next_frame,
			 void **this_prologue_cache,
			 int regnum, int *optimizedp,
			 enum lval_type *lvalp, CORE_ADDR * addrp,
			 int *realnump, gdb_byte *bufferp)
{
  struct spu_unwind_cache *info
    = spu_frame_unwind_cache (next_frame, this_prologue_cache);

  /* Special-case the stack pointer.  */
  if (regnum == SPU_RAW_SP_REGNUM)
    regnum = SPU_SP_REGNUM;

  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
				optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind spu_frame_unwind = {
  NORMAL_FRAME,
  spu_frame_this_id,
  spu_frame_prev_register
};

const struct frame_unwind *
spu_frame_sniffer (struct frame_info *next_frame)
{
  return &spu_frame_unwind;
}

static CORE_ADDR
spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct spu_unwind_cache *info
    = spu_frame_unwind_cache (next_frame, this_cache);
  return info->local_base;
}

static const struct frame_base spu_frame_base = {
  &spu_frame_unwind,
  spu_frame_base_address,
  spu_frame_base_address,
  spu_frame_base_address
};

static CORE_ADDR
spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
  /* Mask off interrupt enable bit.  */
  return pc & -4;
}

static CORE_ADDR
spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
}

static CORE_ADDR
spu_read_pc (ptid_t ptid)
{
  CORE_ADDR pc = read_register_pid (SPU_PC_REGNUM, ptid);
  /* Mask off interrupt enable bit.  */
  return pc & -4;
}

static void
spu_write_pc (CORE_ADDR pc, ptid_t ptid)
{
  /* Keep interrupt enabled state unchanged.  */
  CORE_ADDR old_pc = read_register_pid (SPU_PC_REGNUM, ptid);
  write_register_pid (SPU_PC_REGNUM, (pc & -4) | (old_pc & 3), ptid);
}


/* Function calling convention.  */

static int
spu_scalar_value_p (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      return TYPE_LENGTH (type) <= 16;

    default:
      return 0;
    }
}

static void
spu_value_to_regcache (struct regcache *regcache, int regnum,
		       struct type *type, const gdb_byte *in)
{
  int len = TYPE_LENGTH (type);

  if (spu_scalar_value_p (type))
    {
      int preferred_slot = len < 4 ? 4 - len : 0;
      regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
    }
  else
    {
      while (len >= 16)
	{
	  regcache_cooked_write (regcache, regnum++, in);
	  in += 16;
	  len -= 16;
	}

      if (len > 0)
	regcache_cooked_write_part (regcache, regnum, 0, len, in);
    }
}

static void
spu_regcache_to_value (struct regcache *regcache, int regnum,
		       struct type *type, gdb_byte *out)
{
  int len = TYPE_LENGTH (type);

  if (spu_scalar_value_p (type))
    {
      int preferred_slot = len < 4 ? 4 - len : 0;
      regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
    }
  else
    {
      while (len >= 16)
	{
	  regcache_cooked_read (regcache, regnum++, out);
	  out += 16;
	  len -= 16;
	}

      if (len > 0)
	regcache_cooked_read_part (regcache, regnum, 0, len, out);
    }
}

static CORE_ADDR
spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		     struct regcache *regcache, CORE_ADDR bp_addr,
		     int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  int i;
  int regnum = SPU_ARG1_REGNUM;
  int stack_arg = -1;
  gdb_byte buf[16];

  /* Set the return address.  */
  memset (buf, 0, sizeof buf);
  store_unsigned_integer (buf, 4, bp_addr);
  regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);

  /* If STRUCT_RETURN is true, then the struct return address (in
     STRUCT_ADDR) will consume the first argument-passing register.
     Both adjust the register count and store that value.  */
  if (struct_return)
    {
      memset (buf, 0, sizeof buf);
      store_unsigned_integer (buf, 4, struct_addr);
      regcache_cooked_write (regcache, regnum++, buf);
    }

  /* Fill in argument registers.  */
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = check_typedef (value_type (arg));
      const gdb_byte *contents = value_contents (arg);
      int len = TYPE_LENGTH (type);
      int n_regs = align_up (len, 16) / 16;

      /* If the argument doesn't wholly fit into registers, it and
	 all subsequent arguments go to the stack.  */
      if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
	{
	  stack_arg = i;
	  break;
	}

      spu_value_to_regcache (regcache, regnum, type, contents);
      regnum += n_regs;
    }

  /* Overflow arguments go to the stack.  */
  if (stack_arg != -1)
    {
      CORE_ADDR ap;

      /* Allocate all required stack size.  */
      for (i = stack_arg; i < nargs; i++)
	{
	  struct type *type = check_typedef (value_type (args[i]));
	  sp -= align_up (TYPE_LENGTH (type), 16);
	}

      /* Fill in stack arguments.  */
      ap = sp;
      for (i = stack_arg; i < nargs; i++)
	{
	  struct value *arg = args[i];
	  struct type *type = check_typedef (value_type (arg));
	  int len = TYPE_LENGTH (type);
	  int preferred_slot;
	  
	  if (spu_scalar_value_p (type))
	    preferred_slot = len < 4 ? 4 - len : 0;
	  else
	    preferred_slot = 0;

	  target_write_memory (ap + preferred_slot, value_contents (arg), len);
	  ap += align_up (TYPE_LENGTH (type), 16);
	}
    }

  /* Allocate stack frame header.  */
  sp -= 32;

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);

  return sp;
}

static struct frame_id
spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
			 spu_unwind_pc (gdbarch, next_frame));
}

/* Function return value access.  */

static enum return_value_convention
spu_return_value (struct gdbarch *gdbarch, struct type *type,
                  struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
{
  enum return_value_convention rvc;

  if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
    rvc = RETURN_VALUE_REGISTER_CONVENTION;
  else
    rvc = RETURN_VALUE_STRUCT_CONVENTION;

  if (in)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Cannot set function return value.");
	  break;
	}
    }
  else if (out)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Function return value unknown.");
	  break;
	}
    }

  return rvc;
}


/* Breakpoints.  */

static const gdb_byte *
spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
{
  static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };

  *lenptr = sizeof breakpoint;
  return breakpoint;
}


/* Software single-stepping support.  */

void
spu_software_single_step (enum target_signal signal, int insert_breakpoints_p)
{
  if (insert_breakpoints_p)
    {
      CORE_ADDR pc, next_pc;
      unsigned int insn;
      int offset, reg;
      gdb_byte buf[4];

      regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf);
      /* Mask off interrupt enable bit.  */
      pc = extract_unsigned_integer (buf, 4) & -4;

      if (target_read_memory (pc, buf, 4))
	return;
      insn = extract_unsigned_integer (buf, 4);

       /* Next sequential instruction is at PC + 4, except if the current
	  instruction is a PPE-assisted call, in which case it is at PC + 8.
	  Wrap around LS limit to be on the safe side.  */
      if ((insn & 0xffffff00) == 0x00002100)
	next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
      else
	next_pc = (pc + 4) & (SPU_LS_SIZE - 1);

      insert_single_step_breakpoint (next_pc);

      if (is_branch (insn, &offset, &reg))
	{
	  CORE_ADDR target = offset;

	  if (reg == SPU_PC_REGNUM)
	    target += pc;
	  else if (reg != -1)
	    {
	      regcache_cooked_read_part (current_regcache, reg, 0, 4, buf);
	      target += extract_unsigned_integer (buf, 4) & -4;
	    }

	  target = target & (SPU_LS_SIZE - 1);
	  if (target != next_pc)
	    insert_single_step_breakpoint (target);
	}
    }
  else
    remove_single_step_breakpoints ();
}


/* Set up gdbarch struct.  */

static struct gdbarch *
spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;

  /* Find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Is is for us?  */
  if (info.bfd_arch_info->mach != bfd_mach_spu)
    return NULL;

  /* Yes, create a new architecture.  */
  gdbarch = gdbarch_alloc (&info, NULL);

  /* Disassembler.  */
  set_gdbarch_print_insn (gdbarch, print_insn_spu);

  /* Registers.  */
  set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
  set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
  set_gdbarch_read_pc (gdbarch, spu_read_pc);
  set_gdbarch_write_pc (gdbarch, spu_write_pc);
  set_gdbarch_register_name (gdbarch, spu_register_name);
  set_gdbarch_register_type (gdbarch, spu_register_type);
  set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
  set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
  set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);

  /* Data types.  */
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);

  /* Inferior function calls.  */
  set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
  set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
  set_gdbarch_return_value (gdbarch, spu_return_value);

  /* Frame handling.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
  frame_base_set_default (gdbarch, &spu_frame_base);
  set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
  set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);

  /* Breakpoints.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 4);
  set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
  set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
  set_gdbarch_software_single_step (gdbarch, spu_software_single_step);

  return gdbarch;
}

/* Implement a SPU-specific vector type as replacement
   for __gdb_builtin_type_vec128.  */
static void
spu_init_vector_type (void)
{
  struct type *type;

  type = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
  append_composite_type_field (type, "uint128", builtin_type_int128);
  append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
  append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
  append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
  append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
  append_composite_type_field (type, "v2_double", builtin_type_v2_double);
  append_composite_type_field (type, "v4_float", builtin_type_v4_float);

  TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
  TYPE_NAME (type) = "spu_builtin_type_vec128";
  spu_builtin_type_vec128 = type;
}

void
_initialize_spu_tdep (void)
{
  register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);

  spu_init_vector_type ();
}